Inductive logic programming at 30
Inductive logic programming (ILP) is a form of logic-based machine learning. The goal is to induce a hypothesis (a logic program) that generalises given training examples and background knowledge. As ILP turns 30, we review the last decade of research. We focus on (i) new meta-level search methods,...
Gespeichert in:
| Veröffentlicht in: | Machine learning Jg. 111; H. 1; S. 147 - 172 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
Springer US
01.01.2022
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 0885-6125, 1573-0565 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Inductive logic programming (ILP) is a form of logic-based machine learning. The goal is to induce a hypothesis (a logic program) that generalises given training examples and background knowledge. As ILP turns 30, we review the last decade of research. We focus on (i) new meta-level search methods, (ii) techniques for learning recursive programs, (iii) new approaches for predicate invention, and (iv) the use of different technologies. We conclude by discussing current limitations of ILP and directions for future research. |
|---|---|
| AbstractList | Inductive logic programming (ILP) is a form of logic-based machine learning. The goal is to induce a hypothesis (a logic program) that generalises given training examples and background knowledge. As ILP turns 30, we review the last decade of research. We focus on (i) new meta-level search methods, (ii) techniques for learning recursive programs, (iii) new approaches for predicate invention, and (iv) the use of different technologies. We conclude by discussing current limitations of ILP and directions for future research. |
| Author | Evans, Richard Dumančić, Sebastijan Cropper, Andrew Muggleton, Stephen H. |
| Author_xml | – sequence: 1 givenname: Andrew orcidid: 0000-0002-4543-7199 surname: Cropper fullname: Cropper, Andrew email: andrew.cropper@cs.ox.ac.uk organization: University of Oxford – sequence: 2 givenname: Sebastijan surname: Dumančić fullname: Dumančić, Sebastijan organization: KU Leuven – sequence: 3 givenname: Richard surname: Evans fullname: Evans, Richard organization: Imperial College London – sequence: 4 givenname: Stephen H. surname: Muggleton fullname: Muggleton, Stephen H. organization: Imperial College London |
| BookMark | eNp9kEtLAzEUhYNUsK3-AVcjrqM372QpxUeh4EbXITNNhpR2piap4L936giCi67u5nznHr4ZmnR95xG6JnBHANR9JmAMx0AJBgnaYHKGpkQohkFIMUFT0FpgSai4QLOcNwBApZZTdLPs1oemxE9fbfs2NtU-9W1yu13s2sqVisElOg9um_3V752j96fHt8ULXr0-LxcPK9xwagr2QYnaERdq6cEBB2eIZq4O61pJwR047oPmhiquqeGGqUCdrBlXRvG11GyObsfeYcHHwediN_0hdcNLSyUVhHLOyZDSY6pJfc7JB9vE4krsu5Jc3FoC9ijEjkLsIMT-CLFHlP5D9ynuXPo6DbERykO4a336W3WC-gZ_-XJt |
| CitedBy_id | crossref_primary_10_1515_itit_2025_0007 crossref_primary_10_1007_s10586_024_04699_7 crossref_primary_10_1016_j_fss_2024_109259 crossref_primary_10_1145_3720420 crossref_primary_10_3390_math13111877 crossref_primary_10_3233_NAI_240712 crossref_primary_10_1098_rsta_2022_0046 crossref_primary_10_1145_3571200 crossref_primary_10_1007_s10703_023_00430_1 crossref_primary_10_1007_s10994_023_06320_1 crossref_primary_10_1038_s41467_024_50966_x crossref_primary_10_1007_s13218_024_00855_8 crossref_primary_10_3390_electronics12234767 crossref_primary_10_1007_s10817_022_09629_z crossref_primary_10_1007_s10626_025_00421_w crossref_primary_10_1016_j_artint_2024_104108 crossref_primary_10_1145_3641832_3641834 crossref_primary_10_3390_bioengineering9100561 crossref_primary_10_1016_j_eswa_2025_129660 crossref_primary_10_1007_s10994_024_06556_5 crossref_primary_10_1109_ACCESS_2025_3567385 |
| Cites_doi | 10.1007/s10994-020-05934-z 10.1613/jair.912 10.1007/s10844-016-0412-9 10.1007/s10994-006-5833-1 10.1016/j.artint.2012.04.001 10.1109/ICMLA.2015.19 10.1007/s10994-018-5709-1 10.1145/2661829.2662022 10.1109/ICSE.2019.00044 10.1007/s10994-018-5708-2 10.1145/1390156.1390209 10.1007/978-3-319-40566-7_1 10.1007/978-3-540-78652-8 10.1007/978-3-319-99960-9_5 10.1007/BF03037089 10.1007/978-3-540-68856-3 10.1016/j.artint.2020.103438 10.1609/aaai.v34i04.5776 10.1007/978-3-319-23708-4_8 10.1007/s10994-011-5259-2 10.1145/1273496.1273551 10.1609/aaai.v33i01.33012919 10.1613/jair.5714 10.1007/s10994-018-5710-8 10.24963/ijcai.2019/841 10.1007/978-3-642-13840-9_12 10.1007/978-3-030-49210-6_2 10.1016/j.jal.2008.10.007 10.1007/s10994-013-5358-3 10.1017/S1471068416000260 10.1145/1553374.1553440 10.1016/0743-1066(94)90035-3 10.24963/ijcai.2020/673 10.1145/1925844.1926423 10.1145/3448016.3457275 10.7551/mitpress/4298.003.0069 10.1016/B978-0-934613-64-4.50040-2 10.1007/s10994-020-05945-w 10.24963/ijcai.2020/678 10.24963/ijcai.2017/226 10.1007/978-3-319-11558-0_22 10.1007/978-3-319-23708-4_11 10.1609/aimag.v34i2.2475 10.1007/s10994-020-05941-0 10.1007/3-540-48751-4_6 10.1007/s10994-016-5556-x 10.24963/ijcai.2020/287 10.1007/s10994-014-5471-y 10.1007/s10994-018-5712-6 10.1007/s10994-019-05862-7 10.1016/j.artint.2018.03.005 10.1007/BF03037227 10.1007/s10994-013-5341-z 10.1007/s10994-021-06105-4 10.1007/978-3-319-40566-7_4 10.1007/s10994-019-05843-w 10.1007/978-3-031-01574-8 10.1007/978-3-540-30109-7_12 10.1007/s00354-019-00054-2 10.1007/3-540-62927-0 10.1145/3076246.3076249 10.1007/978-3-540-85928-4_10 10.24963/ijcai.2020/320 10.1371/journal.pone.0029028 10.1016/j.tree.2017.03.001 10.1007/s10994-019-05834-x 10.1007/s10994-013-5353-8 10.1609/icaps.v26i1.13746 10.1016/S0004-3702(98)00034-4 10.1017/S1471068413000689 10.1007/s10994-015-5512-1 10.1017/S1471068418000261 10.1007/978-3-319-66158-2_44 10.24963/ijcai.2021/254 10.1007/978-3-319-40970-2_15 10.24963/ijcai.2019/842 10.1007/s10994-018-5707-3 10.1609/aimag.v33i1.2395 10.1609/aaai.v34i03.5678 10.1007/978-3-642-31951-8_12 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2021 The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2021 – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION 3V. 7SC 7XB 88I 8AL 8AO 8FD 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L7M L~C L~D M0N M2P P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U |
| DOI | 10.1007/s10994-021-06089-1 |
| DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic |
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Computer Science Database |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1573-0565 |
| EndPage | 172 |
| ExternalDocumentID | 10_1007_s10994_021_06089_1 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 6TJ 78A 88I 8AO 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAEWM AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABIVO ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BPHCQ BSONS C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IZIGR IZQ I~X I~Y I~Z J-C J0Z JBSCW JCJTX JZLTJ K6V K7- KDC KOV KOW LAK LLZTM M0N M2P M4Y MA- MVM N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF- PQQKQ PROAC PT4 Q2X QF4 QM1 QN7 QO4 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZC RZE S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TAE TEORI TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VXZ W23 W48 WH7 WIP WK8 XJT YLTOR Z45 Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z85 Z86 Z87 Z88 Z8M Z8N Z8O Z8P Z8Q Z8R Z8S Z8T Z8U Z8W Z8Z Z91 Z92 ZMTXR AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 7SC 7XB 8AL 8FD 8FK JQ2 L7M L~C L~D PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c429t-ef75ba1afb6e0a040a9183abfdb7654a0a4ef8492748294937f2a6b347974d683 |
| IEDL.DBID | K7- |
| ISICitedReferencesCount | 53 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000716296200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0885-6125 |
| IngestDate | Tue Nov 04 23:04:15 EST 2025 Sat Nov 29 01:43:28 EST 2025 Tue Nov 18 21:29:39 EST 2025 Fri Feb 21 02:47:16 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Relational learning Inductive logic programming Program synthesis Program induction |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c429t-ef75ba1afb6e0a040a9183abfdb7654a0a4ef8492748294937f2a6b347974d683 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-4543-7199 |
| OpenAccessLink | https://link.springer.com/10.1007/s10994-021-06089-1 |
| PQID | 2625124441 |
| PQPubID | 54194 |
| PageCount | 26 |
| ParticipantIDs | proquest_journals_2625124441 crossref_citationtrail_10_1007_s10994_021_06089_1 crossref_primary_10_1007_s10994_021_06089_1 springer_journals_10_1007_s10994_021_06089_1 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-01-01 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Dordrecht |
| PublicationTitle | Machine learning |
| PublicationTitleAbbrev | Mach Learn |
| PublicationYear | 2022 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Kaminski, Eiter, Inoue (CR60) 2018; 18 Ahlgren, Yuen (CR1) 2013; 14 Muggleton, De Raedt (CR84) 1994; 19 Quinlan (CR98) 1990; 5 Inoue, Doncescu, Nabeshima (CR55) 2013; 91 CR39 Ai, Muggleton, Hocquette, Gromowski, Schmid (CR2) 2020; 110 CR38 CR37 CR36 CR34 CR33 Nienhuys-Cheng, Wolf (CR93) 1997 CR30 Richardson, Domingos (CR104) 2006; 62 Ferilli (CR44) 2016 Patsantzis, Muggleton (CR94) 2021; 110 Muggleton, Dai, Sammut, Tamaddoni-Nezhad, Wen, Zhou (CR89) 2018; 107 Cropper, Tourret (CR25) 2020; 109 Sato, Kameya (CR108) 2001; 15 CR46 CR45 CR40 Katzouris, Artikis, Paliouras (CR61) 2015; 100 Inoue (CR54) 2016; 3 Gebser, Kaminski, Kaufmann, Schaub (CR47) 2012 Gebser, Kaufmann, Schaub (CR48) 2012; 187 CR59 Muggleton, De Raedt, Poole, Bratko, Flach, Inoue, Srinivasan (CR88) 2012; 86 CR53 CR52 CR51 CR50 Cropper, Evans, Law (CR28) 2020; 109 Muggleton (CR82) 1995; 13 Ray (CR99) 2009; 7 Bellodi, Riguzzi (CR9) 2015; 15 CR68 CR67 CR66 CR65 CR64 Bohan, Vacher, Tamaddoni-Nezhad, Raybould, Dumbrell, Woodward (CR12) 2017; 32 CR63 De Raedt (CR31) 2008 Muggleton, Lin, Tamaddoni-Nezhad (CR91) 2015; 100 Srinivasan, King, Bain (CR112) 2003; 4 Cropper, Morel (CR20) 2021; 110 Stahl (CR113) 1995; 20 CR79 CR78 CR77 CR115 CR76 CR116 CR75 CR74 CR114 CR73 CR111 CR71 CR70 CR110 Law, Russo, Broda (CR72) 2020 Muggleton, Hocquette (CR86) 2019; 37 Katzouris, Artikis, Paliouras (CR62) 2016; 16 CR118 CR4 CR3 CR5 CR8 CR7 Schüller, Benz (CR109) 2018; 107 Muggleton (CR81) 1991; 8 Evans, Grefenstette (CR42) 2018; 61 Cropper, Muggleton (CR24) 2019; 108 CR87 CR85 CR83 CR80 Inoue, Ribeiro, Sakama (CR56) 2014; 94 Järvisalo, Le Berre, Roussel, Simon (CR57) 2012; 33 CR19 CR18 Muggleton, Lin, Pahlavi, Tamaddoni-Nezhad (CR90) 2014; 94 CR17 CR16 CR15 CR14 CR13 CR97 CR96 De Raedt, Kersting, Natarajan, Poole (CR35) 2016 CR95 Bain, Srinivasan (CR6) 2018; 107 Bohan, Caron-Lormier, Muggleton, Raybould, Tamaddoni-Nezhad (CR11) 2011; 6 De Raedt, Kersting (CR32) 2008 Genesereth, Björnsson (CR49) 2013; 34 Cropper, Morel, Muggleton (CR29) 2020; 109 Law, Russo, Broda (CR69) 2018; 259 CR27 Blockeel, De Raedt (CR10) 1998; 101 CR26 CR23 CR22 Ellis, Morales, Sablé-Meyer, Solar-Lezama, Tenenbaum (CR41) 2018; 2018 Wirth (CR117) 1985 CR21 CR105 Muggleton, Schmid, Zeller, Tamaddoni-Nezhad, Besold (CR92) 2018; 107 CR102 CR103 CR100 CR101 Evans, Hernández-Orallo, Welbl, Kohli, Sergot (CR43) 2021; 293 Kaalia, Srinivasan, Kumar, Ghosh (CR58) 2016; 103 CR106 CR107 R Evans (6089_CR43) 2021; 293 6089_CR40 A Cropper (6089_CR28) 2020; 109 S Muggleton (6089_CR88) 2012; 86 6089_CR46 6089_CR45 S Muggleton (6089_CR82) 1995; 13 N Wirth (6089_CR117) 1985 M Law (6089_CR69) 2018; 259 SH Muggleton (6089_CR92) 2018; 107 6089_CR4 6089_CR3 6089_CR5 6089_CR8 6089_CR7 L De Raedt (6089_CR35) 2016 6089_CR33 6089_CR30 6089_CR37 E Bellodi (6089_CR9) 2015; 15 6089_CR36 6089_CR34 M Richardson (6089_CR104) 2006; 62 6089_CR39 6089_CR38 SH Muggleton (6089_CR90) 2014; 94 A Cropper (6089_CR29) 2020; 109 M Gebser (6089_CR47) 2012 M Bain (6089_CR6) 2018; 107 6089_CR66 6089_CR65 6089_CR64 6089_CR63 6089_CR68 6089_CR67 H Blockeel (6089_CR10) 1998; 101 R Kaalia (6089_CR58) 2016; 103 L De Raedt (6089_CR32) 2008 L De Raedt (6089_CR31) 2008 K Inoue (6089_CR55) 2013; 91 J Ahlgren (6089_CR1) 2013; 14 JR Quinlan (6089_CR98) 1990; 5 M Gebser (6089_CR48) 2012; 187 A Cropper (6089_CR20) 2021; 110 S Muggleton (6089_CR81) 1991; 8 R Evans (6089_CR42) 2018; 61 6089_CR51 6089_CR50 6089_CR53 6089_CR52 O Ray (6089_CR99) 2009; 7 T Sato (6089_CR108) 2001; 15 6089_CR59 A Cropper (6089_CR25) 2020; 109 DA Bohan (6089_CR11) 2011; 6 P Schüller (6089_CR109) 2018; 107 T Kaminski (6089_CR60) 2018; 18 6089_CR80 6089_CR115 6089_CR116 6089_CR114 A Srinivasan (6089_CR112) 2003; 4 6089_CR83 SH Nienhuys-Cheng (6089_CR93) 1997 6089_CR118 6089_CR87 6089_CR85 K Inoue (6089_CR54) 2016; 3 S Patsantzis (6089_CR94) 2021; 110 MR Genesereth (6089_CR49) 2013; 34 M Järvisalo (6089_CR57) 2012; 33 S Ferilli (6089_CR44) 2016 6089_CR73 K Ellis (6089_CR41) 2018; 2018 6089_CR71 6089_CR70 6089_CR77 6089_CR76 6089_CR75 6089_CR74 K Inoue (6089_CR56) 2014; 94 6089_CR79 6089_CR78 I Stahl (6089_CR113) 1995; 20 S Muggleton (6089_CR89) 2018; 107 SH Muggleton (6089_CR91) 2015; 100 M Law (6089_CR72) 2020 A Cropper (6089_CR24) 2019; 108 N Katzouris (6089_CR61) 2015; 100 6089_CR22 6089_CR21 L Ai (6089_CR2) 2020; 110 DA Bohan (6089_CR12) 2017; 32 6089_CR26 6089_CR100 6089_CR101 6089_CR23 S Muggleton (6089_CR84) 1994; 19 6089_CR27 N Katzouris (6089_CR62) 2016; 16 6089_CR105 6089_CR102 6089_CR103 6089_CR95 6089_CR106 S Muggleton (6089_CR86) 2019; 37 6089_CR107 6089_CR97 6089_CR96 6089_CR15 6089_CR111 6089_CR14 6089_CR13 6089_CR110 6089_CR19 6089_CR18 6089_CR17 6089_CR16 |
| References_xml | – ident: CR45 – volume: 110 start-page: 801 issue: 4 year: 2021 end-page: 856 ident: CR20 article-title: Learning programs by learning from failures publication-title: Machine Learning doi: 10.1007/s10994-020-05934-z – ident: CR22 – volume: 13 start-page: 245 issue: 3&4 year: 1995 end-page: 286 ident: CR82 article-title: Inverse entailment and Progol publication-title: New Generation Computing – ident: CR97 – volume: 15 start-page: 169 issue: 2 year: 2015 end-page: 212 ident: CR9 article-title: Structure learning of probabilistic logic programs by searching the clause space publication-title: Theory and Practice of Logic Programming – ident: CR68 – ident: CR74 – volume: 103 start-page: 309 issue: 3 year: 2016 end-page: 341 ident: CR58 article-title: ILP-assisted de novo drug design publication-title: Machine Learning – ident: CR39 – ident: CR16 – ident: CR51 – volume: 109 start-page: 1289 issue: 7 year: 2020 end-page: 1322 ident: CR29 article-title: Learning higher-order logic programs publication-title: Machine Learning – ident: CR115 – volume: 14 start-page: 3649 issue: 1 year: 2013 end-page: 3682 ident: CR1 article-title: Efficient program synthesis using constraint satisfaction in inductive logic programming publication-title: The Journal of Machine Learning Research – volume: 37 start-page: 203 year: 2019 end-page: 217 ident: CR86 article-title: Machine discovery of comprehensible strategies for simple games using meta-interpretive learning publication-title: New Generation Computing – ident: CR80 – ident: CR77 – ident: CR8 – volume: 7 start-page: 329 issue: 3 year: 2009 end-page: 340 ident: CR99 article-title: Nonmonotonic abductive inductive learning publication-title: Journal of Applied Logic – volume: 16 start-page: 817 issue: 5–6 year: 2016 end-page: 833 ident: CR62 article-title: Online learning of event definitions publication-title: Theory and Practice of Logic Programming – ident: CR106 – ident: CR101 – ident: CR71 – ident: CR19 – volume: 19 start-page: 629 issue: 20 year: 1994 end-page: 679 ident: CR84 article-title: Inductive logic programming: Theory and methods publication-title: The Journal of Logic Programming – volume: 259 start-page: 110 year: 2018 end-page: 146 ident: CR69 article-title: The complexity and generality of learning answer set programs publication-title: Artificial Intelligence – volume: 91 start-page: 239 issue: 2 year: 2013 end-page: 277 ident: CR55 article-title: Completing causal networks by meta-level abduction publication-title: Machine Learning – volume: 107 start-page: 1171 issue: 7 year: 2018 end-page: 1206 ident: CR6 article-title: Identification of biological transition systems using meta-interpreted logic programs publication-title: Machine Learning – ident: CR36 – ident: CR85 – ident: CR5 – volume: 34 start-page: 107 issue: 2 year: 2013 end-page: 111 ident: CR49 article-title: The international general game playing competition publication-title: AI Magazine – ident: CR100 – ident: CR18 – volume: 109 start-page: 1393 issue: 7 year: 2020 end-page: 1434 ident: CR28 article-title: Inductive general game playing publication-title: Machine Learning – ident: CR66 – start-page: 1 year: 2008 end-page: 27 ident: CR32 publication-title: Probabilistic inductive logic programming – ident: CR30 – ident: CR33 – volume: 187 start-page: 52 year: 2012 end-page: 89 ident: CR48 article-title: Conflict-driven answer set solving: From theory to practice publication-title: Artificial Intelligence – ident: CR63 – volume: 6 start-page: e29028 issue: 12 year: 2011 ident: CR11 article-title: Automated discovery of food webs from ecological data using logic-based machine learning publication-title: PLoS ONE – volume: 33 start-page: 89 issue: 1 year: 2012 end-page: 92 ident: CR57 article-title: The international sat solver competitions publication-title: Ai Magazine – ident: CR27 – volume: 110 start-page: 755 year: 2021 end-page: 778 ident: CR94 article-title: Top program construction and reduction for polynomial time meta-interpretive learning publication-title: Machine Learning – year: 1997 ident: CR93 publication-title: Foundations of inductive logic programming – ident: CR103 – year: 2016 ident: CR35 publication-title: Statistical relational artificial intelligence: Logic, probability, and computation. Synthesis lectures on artificial intelligence and machine learning – volume: 3 start-page: 7 issue: 1 year: 2016 end-page: 36 ident: CR54 article-title: Meta-level abduction publication-title: FLAP – ident: CR3 – ident: CR38 – ident: CR52 – volume: 8 start-page: 295 issue: 4 year: 1991 end-page: 318 ident: CR81 article-title: Inductive logic programming publication-title: New Generation Computing – ident: CR13 – volume: 100 start-page: 555 issue: 2–3 year: 2015 end-page: 585 ident: CR61 article-title: Incremental learning of event definitions with inductive logic programming publication-title: Machine Learning – volume: 293 start-page: 103438 year: 2021 ident: CR43 article-title: Making sense of sensory input publication-title: Artificial Intelligence – ident: CR114 – volume: 20 start-page: 95 issue: 1–2 year: 1995 end-page: 117 ident: CR113 article-title: The appropriateness of predicate invention as bias shift operation in ILP publication-title: Machine Learning – ident: CR83 – volume: 107 start-page: 1097 issue: 7 year: 2018 end-page: 1118 ident: CR89 article-title: Meta-interpretive learning from noisy images publication-title: Machine Learning – volume: 107 start-page: 1119 issue: 7 year: 2018 end-page: 1140 ident: CR92 article-title: Ultra-strong machine learning: Comprehensibility of programs learned with ILP publication-title: Machine Learning – ident: CR70 – volume: 2018 start-page: 7816 year: 2018 end-page: 7826 ident: CR41 article-title: Learning libraries of subroutines for neurally-guided Bayesian program induction publication-title: NeurIPS – ident: CR102 – ident: CR4 – ident: CR87 – ident: CR111 – volume: 61 start-page: 1 year: 2018 end-page: 64 ident: CR42 article-title: Learning explanatory rules from noisy data publication-title: Journal of Artificial Intelligence Research – ident: CR21 – ident: CR46 – ident: CR96 – volume: 15 start-page: 391 year: 2001 end-page: 454 ident: CR108 article-title: Parameter learning of logic programs for symbolic-statistical modeling publication-title: Journal of Artificial Intelligence Research doi: 10.1613/jair.912 – ident: CR67 – ident: CR75 – ident: CR15 – ident: CR50 – ident: CR116 – year: 2016 ident: CR44 article-title: Predicate invention-based specialization in inductive logic programming publication-title: Journal of Intelligent Information Systems doi: 10.1007/s10844-016-0412-9 – volume: 101 start-page: 285 issue: 1–2 year: 1998 end-page: 297 ident: CR10 article-title: Top-down induction of first-order logical decision trees publication-title: Artificial Intelligence – ident: CR78 – volume: 62 start-page: 107 issue: 1–2 year: 2006 end-page: 136 ident: CR104 article-title: Markov logic networks publication-title: Machine Learning doi: 10.1007/s10994-006-5833-1 – ident: CR64 – ident: CR105 – ident: CR26 – year: 2020 ident: CR72 publication-title: The ilasp system for inductive learning of answer set programs – volume: 107 start-page: 1141 issue: 7 year: 2018 end-page: 1169 ident: CR109 article-title: Best-effort inductive logic programming via fine-grained cost-based hypothesis generation—The inspire system at the inductive logic programming competition publication-title: Machine Learning – volume: 5 start-page: 239 year: 1990 end-page: 266 ident: CR98 article-title: Learning logical definitions from relations publication-title: Machine Learning – ident: CR95 – volume: 32 start-page: 477 issue: 7 year: 2017 end-page: 487 ident: CR12 article-title: Next-generation global biomonitoring: Large-scale, automated reconstruction of ecological networks publication-title: Trends in Ecology & Evolution – ident: CR14 – volume: 94 start-page: 25 issue: 1 year: 2014 end-page: 49 ident: CR90 article-title: Meta-interpretive learning: Application to grammatical inference publication-title: Machine Learning – ident: CR37 – ident: CR53 – year: 2008 ident: CR31 publication-title: Logical and relational learning. Cognitive technologies – volume: 100 start-page: 49 issue: 1 year: 2015 end-page: 73 ident: CR91 article-title: Meta-interpretive learning of higher-order dyadic Datalog: Predicate invention revisited publication-title: Machine Learning – ident: CR79 – volume: 86 start-page: 3 issue: 1 year: 2012 end-page: 23 ident: CR88 article-title: ILP turns 20—Biography and future challenges publication-title: Machine Learning – volume: 18 start-page: 571 issue: 3–4 year: 2018 end-page: 588 ident: CR60 article-title: Exploiting answer set programming with external sources for meta-interpretive learning publication-title: Theory and Practice of Logic Programming – ident: CR40 – ident: CR23 – volume: 109 start-page: 1323 issue: 7 year: 2020 end-page: 1369 ident: CR25 article-title: Logical reduction of metarules publication-title: Machine Learning – volume: 110 start-page: 695 year: 2020 end-page: 721 ident: CR2 article-title: Beneficial and harmful explanatory machine learning publication-title: Machine Learning – ident: CR73 – ident: CR65 – ident: CR17 – ident: CR118 – ident: CR34 – ident: CR110 – volume: 94 start-page: 51 issue: 1 year: 2014 end-page: 79 ident: CR56 article-title: Learning from interpretation transition publication-title: Machine Learning – ident: CR7 – ident: CR59 – ident: CR76 – year: 1985 ident: CR117 publication-title: Algorithms and data structures – year: 2012 ident: CR47 publication-title: Answer set solving in practice. Synthesis lectures on artificial intelligence and machine learning – ident: CR107 – volume: 4 start-page: 369 year: 2003 end-page: 383 ident: CR112 article-title: An empirical study of the use of relevance information in inductive logic programming publication-title: The Journal of Machine Learning Research – volume: 108 start-page: 1063 issue: 7 year: 2019 end-page: 1083 ident: CR24 article-title: Learning efficient logic programs publication-title: Machine Learning – ident: 6089_CR21 – volume: 187 start-page: 52 year: 2012 ident: 6089_CR48 publication-title: Artificial Intelligence doi: 10.1016/j.artint.2012.04.001 – ident: 6089_CR5 – ident: 6089_CR102 doi: 10.1109/ICMLA.2015.19 – ident: 6089_CR38 – volume: 107 start-page: 1171 issue: 7 year: 2018 ident: 6089_CR6 publication-title: Machine Learning doi: 10.1007/s10994-018-5709-1 – ident: 6089_CR116 doi: 10.1145/2661829.2662022 – ident: 6089_CR110 doi: 10.1109/ICSE.2019.00044 – volume: 107 start-page: 1141 issue: 7 year: 2018 ident: 6089_CR109 publication-title: Machine Learning doi: 10.1007/s10994-018-5708-2 – ident: 6089_CR53 doi: 10.1145/1390156.1390209 – ident: 6089_CR4 doi: 10.1007/978-3-319-40566-7_1 – start-page: 1 volume-title: Probabilistic inductive logic programming year: 2008 ident: 6089_CR32 doi: 10.1007/978-3-540-78652-8 – ident: 6089_CR74 doi: 10.1007/978-3-319-99960-9_5 – ident: 6089_CR118 – ident: 6089_CR76 – volume: 8 start-page: 295 issue: 4 year: 1991 ident: 6089_CR81 publication-title: New Generation Computing doi: 10.1007/BF03037089 – volume-title: Logical and relational learning. Cognitive technologies year: 2008 ident: 6089_CR31 doi: 10.1007/978-3-540-68856-3 – volume: 293 start-page: 103438 year: 2021 ident: 6089_CR43 publication-title: Artificial Intelligence doi: 10.1016/j.artint.2020.103438 – ident: 6089_CR17 doi: 10.1609/aaai.v34i04.5776 – volume: 5 start-page: 239 year: 1990 ident: 6089_CR98 publication-title: Machine Learning – ident: 6089_CR101 doi: 10.1007/978-3-319-23708-4_8 – volume: 86 start-page: 3 issue: 1 year: 2012 ident: 6089_CR88 publication-title: Machine Learning doi: 10.1007/s10994-011-5259-2 – ident: 6089_CR64 doi: 10.1145/1273496.1273551 – ident: 6089_CR70 doi: 10.1609/aaai.v33i01.33012919 – ident: 6089_CR46 – ident: 6089_CR23 – ident: 6089_CR7 – ident: 6089_CR115 – ident: 6089_CR79 – volume: 61 start-page: 1 year: 2018 ident: 6089_CR42 publication-title: Journal of Artificial Intelligence Research doi: 10.1613/jair.5714 – volume: 107 start-page: 1097 issue: 7 year: 2018 ident: 6089_CR89 publication-title: Machine Learning doi: 10.1007/s10994-018-5710-8 – ident: 6089_CR106 – ident: 6089_CR16 doi: 10.24963/ijcai.2019/841 – ident: 6089_CR87 doi: 10.1007/978-3-642-13840-9_12 – ident: 6089_CR85 – volume: 62 start-page: 107 issue: 1–2 year: 2006 ident: 6089_CR104 publication-title: Machine Learning doi: 10.1007/s10994-006-5833-1 – ident: 6089_CR8 doi: 10.1007/978-3-030-49210-6_2 – volume: 7 start-page: 329 issue: 3 year: 2009 ident: 6089_CR99 publication-title: Journal of Applied Logic doi: 10.1016/j.jal.2008.10.007 – volume: 110 start-page: 801 issue: 4 year: 2021 ident: 6089_CR20 publication-title: Machine Learning doi: 10.1007/s10994-020-05934-z – volume: 94 start-page: 25 issue: 1 year: 2014 ident: 6089_CR90 publication-title: Machine Learning doi: 10.1007/s10994-013-5358-3 – volume: 16 start-page: 817 issue: 5–6 year: 2016 ident: 6089_CR62 publication-title: Theory and Practice of Logic Programming doi: 10.1017/S1471068416000260 – ident: 6089_CR63 doi: 10.1145/1553374.1553440 – ident: 6089_CR18 – volume: 4 start-page: 369 year: 2003 ident: 6089_CR112 publication-title: The Journal of Machine Learning Research – volume: 19 start-page: 629 issue: 20 year: 1994 ident: 6089_CR84 publication-title: The Journal of Logic Programming doi: 10.1016/0743-1066(94)90035-3 – ident: 6089_CR27 doi: 10.24963/ijcai.2020/673 – ident: 6089_CR50 doi: 10.1145/1925844.1926423 – ident: 6089_CR96 doi: 10.1145/3448016.3457275 – ident: 6089_CR107 doi: 10.7551/mitpress/4298.003.0069 – ident: 6089_CR80 – ident: 6089_CR83 doi: 10.1016/B978-0-934613-64-4.50040-2 – volume: 110 start-page: 755 year: 2021 ident: 6089_CR94 publication-title: Machine Learning doi: 10.1007/s10994-020-05945-w – ident: 6089_CR66 doi: 10.24963/ijcai.2020/678 – ident: 6089_CR39 doi: 10.24963/ijcai.2017/226 – ident: 6089_CR68 doi: 10.1007/978-3-319-11558-0_22 – ident: 6089_CR114 doi: 10.1007/978-3-319-23708-4_11 – volume: 34 start-page: 107 issue: 2 year: 2013 ident: 6089_CR49 publication-title: AI Magazine doi: 10.1609/aimag.v34i2.2475 – volume: 110 start-page: 695 year: 2020 ident: 6089_CR2 publication-title: Machine Learning doi: 10.1007/s10994-020-05941-0 – ident: 6089_CR13 doi: 10.1007/3-540-48751-4_6 – volume: 103 start-page: 309 issue: 3 year: 2016 ident: 6089_CR58 publication-title: Machine Learning doi: 10.1007/s10994-016-5556-x – ident: 6089_CR100 – ident: 6089_CR19 doi: 10.24963/ijcai.2020/287 – volume: 100 start-page: 49 issue: 1 year: 2015 ident: 6089_CR91 publication-title: Machine Learning doi: 10.1007/s10994-014-5471-y – volume: 108 start-page: 1063 issue: 7 year: 2019 ident: 6089_CR24 publication-title: Machine Learning doi: 10.1007/s10994-018-5712-6 – volume: 14 start-page: 3649 issue: 1 year: 2013 ident: 6089_CR1 publication-title: The Journal of Machine Learning Research – volume: 109 start-page: 1289 issue: 7 year: 2020 ident: 6089_CR29 publication-title: Machine Learning doi: 10.1007/s10994-019-05862-7 – volume: 259 start-page: 110 year: 2018 ident: 6089_CR69 publication-title: Artificial Intelligence doi: 10.1016/j.artint.2018.03.005 – ident: 6089_CR97 – ident: 6089_CR37 – volume: 13 start-page: 245 issue: 3&4 year: 1995 ident: 6089_CR82 publication-title: New Generation Computing doi: 10.1007/BF03037227 – ident: 6089_CR34 – volume-title: The ilasp system for inductive learning of answer set programs year: 2020 ident: 6089_CR72 – volume: 91 start-page: 239 issue: 2 year: 2013 ident: 6089_CR55 publication-title: Machine Learning doi: 10.1007/s10994-013-5341-z – volume-title: Answer set solving in practice. Synthesis lectures on artificial intelligence and machine learning year: 2012 ident: 6089_CR47 – ident: 6089_CR103 doi: 10.1007/s10994-021-06105-4 – ident: 6089_CR65 – volume: 20 start-page: 95 issue: 1–2 year: 1995 ident: 6089_CR113 publication-title: Machine Learning – ident: 6089_CR111 – ident: 6089_CR26 doi: 10.1007/978-3-319-40566-7_4 – volume: 109 start-page: 1393 issue: 7 year: 2020 ident: 6089_CR28 publication-title: Machine Learning doi: 10.1007/s10994-019-05843-w – ident: 6089_CR36 – volume-title: Statistical relational artificial intelligence: Logic, probability, and computation. Synthesis lectures on artificial intelligence and machine learning year: 2016 ident: 6089_CR35 doi: 10.1007/978-3-031-01574-8 – ident: 6089_CR45 doi: 10.1007/978-3-540-30109-7_12 – ident: 6089_CR59 – volume: 37 start-page: 203 year: 2019 ident: 6089_CR86 publication-title: New Generation Computing doi: 10.1007/s00354-019-00054-2 – volume-title: Foundations of inductive logic programming year: 1997 ident: 6089_CR93 doi: 10.1007/3-540-62927-0 – ident: 6089_CR75 – ident: 6089_CR95 doi: 10.1145/3076246.3076249 – volume: 2018 start-page: 7816 year: 2018 ident: 6089_CR41 publication-title: NeurIPS – ident: 6089_CR73 doi: 10.1007/978-3-540-85928-4_10 – ident: 6089_CR33 – ident: 6089_CR52 doi: 10.24963/ijcai.2020/320 – volume: 15 start-page: 391 year: 2001 ident: 6089_CR108 publication-title: Journal of Artificial Intelligence Research doi: 10.1613/jair.912 – volume: 6 start-page: e29028 issue: 12 year: 2011 ident: 6089_CR11 publication-title: PLoS ONE doi: 10.1371/journal.pone.0029028 – volume: 32 start-page: 477 issue: 7 year: 2017 ident: 6089_CR12 publication-title: Trends in Ecology & Evolution doi: 10.1016/j.tree.2017.03.001 – volume: 109 start-page: 1323 issue: 7 year: 2020 ident: 6089_CR25 publication-title: Machine Learning doi: 10.1007/s10994-019-05834-x – volume: 3 start-page: 7 issue: 1 year: 2016 ident: 6089_CR54 publication-title: FLAP – volume: 94 start-page: 51 issue: 1 year: 2014 ident: 6089_CR56 publication-title: Machine Learning doi: 10.1007/s10994-013-5353-8 – ident: 6089_CR77 doi: 10.1609/icaps.v26i1.13746 – year: 2016 ident: 6089_CR44 publication-title: Journal of Intelligent Information Systems doi: 10.1007/s10844-016-0412-9 – volume: 101 start-page: 285 issue: 1–2 year: 1998 ident: 6089_CR10 publication-title: Artificial Intelligence doi: 10.1016/S0004-3702(98)00034-4 – ident: 6089_CR22 – volume: 15 start-page: 169 issue: 2 year: 2015 ident: 6089_CR9 publication-title: Theory and Practice of Logic Programming doi: 10.1017/S1471068413000689 – volume: 100 start-page: 555 issue: 2–3 year: 2015 ident: 6089_CR61 publication-title: Machine Learning doi: 10.1007/s10994-015-5512-1 – volume: 18 start-page: 571 issue: 3–4 year: 2018 ident: 6089_CR60 publication-title: Theory and Practice of Logic Programming doi: 10.1017/S1471068418000261 – ident: 6089_CR14 – ident: 6089_CR3 doi: 10.1007/978-3-319-66158-2_44 – ident: 6089_CR30 doi: 10.24963/ijcai.2021/254 – ident: 6089_CR51 doi: 10.1007/978-3-319-40970-2_15 – ident: 6089_CR40 doi: 10.24963/ijcai.2019/842 – ident: 6089_CR78 – volume: 107 start-page: 1119 issue: 7 year: 2018 ident: 6089_CR92 publication-title: Machine Learning doi: 10.1007/s10994-018-5707-3 – volume-title: Algorithms and data structures year: 1985 ident: 6089_CR117 – ident: 6089_CR105 – volume: 33 start-page: 89 issue: 1 year: 2012 ident: 6089_CR57 publication-title: Ai Magazine doi: 10.1609/aimag.v33i1.2395 – ident: 6089_CR71 doi: 10.1609/aaai.v34i03.5678 – ident: 6089_CR15 doi: 10.1007/978-3-642-31951-8_12 – ident: 6089_CR67 |
| SSID | ssj0002686 |
| Score | 2.6139264 |
| Snippet | Inductive logic programming (ILP) is a form of logic-based machine learning. The goal is to induce a hypothesis (a logic program) that generalises given... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 147 |
| SubjectTerms | Artificial Intelligence Computer Science Control Logic programming Logic programs Machine Learning Mechatronics Natural Language Processing (NLP) Robotics S.i.: Lr 2020 Simulation and Modeling Special issue on Learning and Reasoning |
| SummonAdditionalLinks | – databaseName: Springer LINK dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8QwEB1EPXhx_cTVVSp400CbJml6FHHxIIv4xd5CmiYg6Cq71d_vJJvuqqig56Zpec3MvGky8wCOeCV4LV1GtKlzwipbEkybObGO89o4o6UJLfMvi8FADoflVSwKm7Sn3dstyeCpPxS7hTa21J_USWVJMOdZwnAnvTle39zP_C8VQd8RzYcTH79jqcz3c3wOR3OO-WVbNESbfud_77kGq5FdJqfT5bAOC3a0AZ1WuSGJhrwJh16xI3i6JPi-JB7TesIHJbpJ8nQL7vrnt2cXJIolEIMhpUFwC17pTLtK2FSjaeoSrVVXrq4KwZlONbNOshKzUElLhqzEUS0qX0hasFrIfBsWR88juwOJRk5kMc3gjuZMMKFpKVNmhc280JWkXchazJSJncS9oMWjmvdA9hgoxEAFDFTWhePZPS_TPhq_ju61n0JFm5ooKjwXY8jfunDSQj-__PNsu38bvgcr1Nc4hP8sPVhsxq92H5bNW_MwGR-EtfYOlvrJlw priority: 102 providerName: Springer Nature |
| Title | Inductive logic programming at 30 |
| URI | https://link.springer.com/article/10.1007/s10994-021-06089-1 https://www.proquest.com/docview/2625124441 |
| Volume | 111 |
| WOSCitedRecordID | wos000716296200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-0565 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002686 issn: 0885-6125 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFH_o5sGL8xOnc1TwpsE2S9L0JCobgjrK_GB4KWmbgKDb3Kp_v0mWrii4i5d3aRvCr3lfSd77AZzQlNGcqwCJLO8gksoI6bSZIqkozTOVCZ7Zlvl3Yb_Ph8ModhtuM3etsrSJ1lDn48zskZ9jZjwx0d77YvKBDGuUOV11FBqrUA8wDsw6vw3RwhJjZpketSJRZDy5K5pxpXO2KS429358HqHgp2Oqos1fB6TW7_Qa_53xJmy4iNO7nC-RLViRo21olGwOnlPuHTg2LB7W-nnWHnru6ta7npYnCq_j78JTr_t4fYMcgQLKtJspNOAhTUUgVMqkL7S6ikhrsEhVnoaMEuELIhUnkc5MOY6IjlQUFiw1xaUhyRnv7EFtNB7JffCEjpOkTj2owh3CCBM44j6RTAaG_IrjJgQleknmuosbkou3pOqLbBBPNOKJRTwJmnC6-GYy762x9O1WCXPi9GyWVBg34az8UdXjv0c7WD7aIaxjU-dg91paUCumn_II1rKv4nU2bUP9qtuPB2272rS8x7GWMX3RcvDw_A26hdfC |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3PS8MwFH7MKejF-ROnUyvoSYNtmqTpQUTUsbE5PEzYraZtCoJuc6uK_5R_o0nWrii42w6e24aQ7-V776V57wM4piGjMU8cJKLYRSSUPlJpM0UyoTSOkkjwyLTMb3udDu_1_PsSfOW1MPpaZc6JhqjjQaTPyM8x056YKO99OXxFWjVK_13NJTQmZtGSnx8qZRtfNG8UvicY12-71w2UqQqgSHFvqmbh0VA4IgmZtIWyYeErsxZhEoceo0TYgsiEE1-laxz7RLnvBAsW6opLj8SMu2rcBVgkLvd0r_6Wh6bMj5lRllQblyIdOWRFOlmpnmnCi_U9I5v7yPnpCIvo9tcPWePn6pX_tkJrsJpF1NbVZAusQ0n2N6CSq1VYGXltwpFWKTHsbhm-t7KraS9qGSyRWq69BQ9zmeg2lPuDvtwBS6g4UKrUiibYJYwwgX1uE8mko8W9OK6Ck6MVRFn3dC3i8RwUfZ81woFCODAIB04VTqffDCe9Q2a-XcthDTIeGQcFplU4yw2jePz3aLuzRzuE5Ub3rh20m53WHqxgXdNhzpVqUE5Hb3IflqL39Gk8OjAWbsHjvA3mGz0JL3I |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LSwMxEB5qFfHiW6xWXUFPGtxNk2z2ICJqsVSKBwVva3Y3AUHro1Xxr_nrnKTZFgV78-B5syFkJvPNJDPzAezwTPBCmoiovGgQlumEYNjMiTacF7nJlcxdy_yLuNORNzfJZQU-y1oYm1ZZ2kRnqIvH3N6RH1BhkZgheh8YnxZxedo8enomlkHKvrSWdBoDFWnrj3cM33qHrVOU9S6lzbOrk3PiGQZIjna4jyuKeaYiZTKhQ4X6rBJUcZWZIosFZypUTBvJEgzdJE0YQrmhSmS2-jJmhZANnHcCJhGFuT1j7ZgMUYAKxzKJh5gT60X4gh1ftuca8lKbcxTKhETfQXHk6f54nHWY15z7z7s1D7Pe0w6OB0djASq6uwhzJYtF4I3aEmxb9hJn9QOHA4FPWXvALQlUP2iEy3D9JwtdgWr3satXIVDoH2oMubihDSaYUDSRIdNCR5b0S9IaRKXk0tx3VbfkHvfpqB-0lXaK0k6dtNOoBnvDf54GPUXGjq6XIk69femlI_nWYL9UktHn32dbGz_bFkyjnqQXrU57HWaoLfVw1011qPZfXvUGTOVv_bvey6ZT9gBu_1pfvgB03zgs |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inductive+logic+programming+at+30&rft.jtitle=Machine+learning&rft.au=Cropper%2C+Andrew&rft.au=Sebastijan%2C+Duman%C4%8Di%C4%87&rft.au=Evans%2C+Richard&rft.au=Muggleton%2C+Stephen+H&rft.date=2022-01-01&rft.pub=Springer+Nature+B.V&rft.issn=0885-6125&rft.eissn=1573-0565&rft.volume=111&rft.issue=1&rft.spage=147&rft.epage=172&rft_id=info:doi/10.1007%2Fs10994-021-06089-1&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-6125&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-6125&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-6125&client=summon |