Inductive logic programming at 30

Inductive logic programming (ILP) is a form of logic-based machine learning. The goal is to induce a hypothesis (a logic program) that generalises given training examples and background knowledge. As ILP turns 30, we review the last decade of research. We focus on (i) new meta-level search methods,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Machine learning Jg. 111; H. 1; S. 147 - 172
Hauptverfasser: Cropper, Andrew, Dumančić, Sebastijan, Evans, Richard, Muggleton, Stephen H.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.01.2022
Springer Nature B.V
Schlagworte:
ISSN:0885-6125, 1573-0565
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Inductive logic programming (ILP) is a form of logic-based machine learning. The goal is to induce a hypothesis (a logic program) that generalises given training examples and background knowledge. As ILP turns 30, we review the last decade of research. We focus on (i) new meta-level search methods, (ii) techniques for learning recursive programs, (iii) new approaches for predicate invention, and (iv) the use of different technologies. We conclude by discussing current limitations of ILP and directions for future research.
AbstractList Inductive logic programming (ILP) is a form of logic-based machine learning. The goal is to induce a hypothesis (a logic program) that generalises given training examples and background knowledge. As ILP turns 30, we review the last decade of research. We focus on (i) new meta-level search methods, (ii) techniques for learning recursive programs, (iii) new approaches for predicate invention, and (iv) the use of different technologies. We conclude by discussing current limitations of ILP and directions for future research.
Author Evans, Richard
Dumančić, Sebastijan
Cropper, Andrew
Muggleton, Stephen H.
Author_xml – sequence: 1
  givenname: Andrew
  orcidid: 0000-0002-4543-7199
  surname: Cropper
  fullname: Cropper, Andrew
  email: andrew.cropper@cs.ox.ac.uk
  organization: University of Oxford
– sequence: 2
  givenname: Sebastijan
  surname: Dumančić
  fullname: Dumančić, Sebastijan
  organization: KU Leuven
– sequence: 3
  givenname: Richard
  surname: Evans
  fullname: Evans, Richard
  organization: Imperial College London
– sequence: 4
  givenname: Stephen H.
  surname: Muggleton
  fullname: Muggleton, Stephen H.
  organization: Imperial College London
BookMark eNp9kEtLAzEUhYNUsK3-AVcjrqM372QpxUeh4EbXITNNhpR2piap4L936giCi67u5nznHr4ZmnR95xG6JnBHANR9JmAMx0AJBgnaYHKGpkQohkFIMUFT0FpgSai4QLOcNwBApZZTdLPs1oemxE9fbfs2NtU-9W1yu13s2sqVisElOg9um_3V752j96fHt8ULXr0-LxcPK9xwagr2QYnaERdq6cEBB2eIZq4O61pJwR047oPmhiquqeGGqUCdrBlXRvG11GyObsfeYcHHwediN_0hdcNLSyUVhHLOyZDSY6pJfc7JB9vE4krsu5Jc3FoC9ijEjkLsIMT-CLFHlP5D9ynuXPo6DbERykO4a336W3WC-gZ_-XJt
CitedBy_id crossref_primary_10_1515_itit_2025_0007
crossref_primary_10_1007_s10586_024_04699_7
crossref_primary_10_1016_j_fss_2024_109259
crossref_primary_10_1145_3720420
crossref_primary_10_3390_math13111877
crossref_primary_10_3233_NAI_240712
crossref_primary_10_1098_rsta_2022_0046
crossref_primary_10_1145_3571200
crossref_primary_10_1007_s10703_023_00430_1
crossref_primary_10_1007_s10994_023_06320_1
crossref_primary_10_1038_s41467_024_50966_x
crossref_primary_10_1007_s13218_024_00855_8
crossref_primary_10_3390_electronics12234767
crossref_primary_10_1007_s10817_022_09629_z
crossref_primary_10_1007_s10626_025_00421_w
crossref_primary_10_1016_j_artint_2024_104108
crossref_primary_10_1145_3641832_3641834
crossref_primary_10_3390_bioengineering9100561
crossref_primary_10_1016_j_eswa_2025_129660
crossref_primary_10_1007_s10994_024_06556_5
crossref_primary_10_1109_ACCESS_2025_3567385
Cites_doi 10.1007/s10994-020-05934-z
10.1613/jair.912
10.1007/s10844-016-0412-9
10.1007/s10994-006-5833-1
10.1016/j.artint.2012.04.001
10.1109/ICMLA.2015.19
10.1007/s10994-018-5709-1
10.1145/2661829.2662022
10.1109/ICSE.2019.00044
10.1007/s10994-018-5708-2
10.1145/1390156.1390209
10.1007/978-3-319-40566-7_1
10.1007/978-3-540-78652-8
10.1007/978-3-319-99960-9_5
10.1007/BF03037089
10.1007/978-3-540-68856-3
10.1016/j.artint.2020.103438
10.1609/aaai.v34i04.5776
10.1007/978-3-319-23708-4_8
10.1007/s10994-011-5259-2
10.1145/1273496.1273551
10.1609/aaai.v33i01.33012919
10.1613/jair.5714
10.1007/s10994-018-5710-8
10.24963/ijcai.2019/841
10.1007/978-3-642-13840-9_12
10.1007/978-3-030-49210-6_2
10.1016/j.jal.2008.10.007
10.1007/s10994-013-5358-3
10.1017/S1471068416000260
10.1145/1553374.1553440
10.1016/0743-1066(94)90035-3
10.24963/ijcai.2020/673
10.1145/1925844.1926423
10.1145/3448016.3457275
10.7551/mitpress/4298.003.0069
10.1016/B978-0-934613-64-4.50040-2
10.1007/s10994-020-05945-w
10.24963/ijcai.2020/678
10.24963/ijcai.2017/226
10.1007/978-3-319-11558-0_22
10.1007/978-3-319-23708-4_11
10.1609/aimag.v34i2.2475
10.1007/s10994-020-05941-0
10.1007/3-540-48751-4_6
10.1007/s10994-016-5556-x
10.24963/ijcai.2020/287
10.1007/s10994-014-5471-y
10.1007/s10994-018-5712-6
10.1007/s10994-019-05862-7
10.1016/j.artint.2018.03.005
10.1007/BF03037227
10.1007/s10994-013-5341-z
10.1007/s10994-021-06105-4
10.1007/978-3-319-40566-7_4
10.1007/s10994-019-05843-w
10.1007/978-3-031-01574-8
10.1007/978-3-540-30109-7_12
10.1007/s00354-019-00054-2
10.1007/3-540-62927-0
10.1145/3076246.3076249
10.1007/978-3-540-85928-4_10
10.24963/ijcai.2020/320
10.1371/journal.pone.0029028
10.1016/j.tree.2017.03.001
10.1007/s10994-019-05834-x
10.1007/s10994-013-5353-8
10.1609/icaps.v26i1.13746
10.1016/S0004-3702(98)00034-4
10.1017/S1471068413000689
10.1007/s10994-015-5512-1
10.1017/S1471068418000261
10.1007/978-3-319-66158-2_44
10.24963/ijcai.2021/254
10.1007/978-3-319-40970-2_15
10.24963/ijcai.2019/842
10.1007/s10994-018-5707-3
10.1609/aimag.v33i1.2395
10.1609/aaai.v34i03.5678
10.1007/978-3-642-31951-8_12
ContentType Journal Article
Copyright The Author(s) 2021
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
3V.
7SC
7XB
88I
8AL
8AO
8FD
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M0N
M2P
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.1007/s10994-021-06089-1
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Computer Science Database

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-0565
EndPage 172
ExternalDocumentID 10_1007_s10994_021_06089_1
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
88I
8AO
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAEWM
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIVO
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BPHCQ
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
KOW
LAK
LLZTM
M0N
M2P
M4Y
MA-
MVM
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF-
PQQKQ
PROAC
PT4
Q2X
QF4
QM1
QN7
QO4
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZC
RZE
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TAE
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VXZ
W23
W48
WH7
WIP
WK8
XJT
YLTOR
Z45
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z87
Z88
Z8M
Z8N
Z8O
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z8Z
Z91
Z92
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7XB
8AL
8FD
8FK
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c429t-ef75ba1afb6e0a040a9183abfdb7654a0a4ef8492748294937f2a6b347974d683
IEDL.DBID K7-
ISICitedReferencesCount 53
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000716296200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0885-6125
IngestDate Tue Nov 04 23:04:15 EST 2025
Sat Nov 29 01:43:28 EST 2025
Tue Nov 18 21:29:39 EST 2025
Fri Feb 21 02:47:16 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Relational learning
Inductive logic programming
Program synthesis
Program induction
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c429t-ef75ba1afb6e0a040a9183abfdb7654a0a4ef8492748294937f2a6b347974d683
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4543-7199
OpenAccessLink https://link.springer.com/10.1007/s10994-021-06089-1
PQID 2625124441
PQPubID 54194
PageCount 26
ParticipantIDs proquest_journals_2625124441
crossref_citationtrail_10_1007_s10994_021_06089_1
crossref_primary_10_1007_s10994_021_06089_1
springer_journals_10_1007_s10994_021_06089_1
PublicationCentury 2000
PublicationDate 2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationTitle Machine learning
PublicationTitleAbbrev Mach Learn
PublicationYear 2022
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Kaminski, Eiter, Inoue (CR60) 2018; 18
Ahlgren, Yuen (CR1) 2013; 14
Muggleton, De Raedt (CR84) 1994; 19
Quinlan (CR98) 1990; 5
Inoue, Doncescu, Nabeshima (CR55) 2013; 91
CR39
Ai, Muggleton, Hocquette, Gromowski, Schmid (CR2) 2020; 110
CR38
CR37
CR36
CR34
CR33
Nienhuys-Cheng, Wolf (CR93) 1997
CR30
Richardson, Domingos (CR104) 2006; 62
Ferilli (CR44) 2016
Patsantzis, Muggleton (CR94) 2021; 110
Muggleton, Dai, Sammut, Tamaddoni-Nezhad, Wen, Zhou (CR89) 2018; 107
Cropper, Tourret (CR25) 2020; 109
Sato, Kameya (CR108) 2001; 15
CR46
CR45
CR40
Katzouris, Artikis, Paliouras (CR61) 2015; 100
Inoue (CR54) 2016; 3
Gebser, Kaminski, Kaufmann, Schaub (CR47) 2012
Gebser, Kaufmann, Schaub (CR48) 2012; 187
CR59
Muggleton, De Raedt, Poole, Bratko, Flach, Inoue, Srinivasan (CR88) 2012; 86
CR53
CR52
CR51
CR50
Cropper, Evans, Law (CR28) 2020; 109
Muggleton (CR82) 1995; 13
Ray (CR99) 2009; 7
Bellodi, Riguzzi (CR9) 2015; 15
CR68
CR67
CR66
CR65
CR64
Bohan, Vacher, Tamaddoni-Nezhad, Raybould, Dumbrell, Woodward (CR12) 2017; 32
CR63
De Raedt (CR31) 2008
Muggleton, Lin, Tamaddoni-Nezhad (CR91) 2015; 100
Srinivasan, King, Bain (CR112) 2003; 4
Cropper, Morel (CR20) 2021; 110
Stahl (CR113) 1995; 20
CR79
CR78
CR77
CR115
CR76
CR116
CR75
CR74
CR114
CR73
CR111
CR71
CR70
CR110
Law, Russo, Broda (CR72) 2020
Muggleton, Hocquette (CR86) 2019; 37
Katzouris, Artikis, Paliouras (CR62) 2016; 16
CR118
CR4
CR3
CR5
CR8
CR7
Schüller, Benz (CR109) 2018; 107
Muggleton (CR81) 1991; 8
Evans, Grefenstette (CR42) 2018; 61
Cropper, Muggleton (CR24) 2019; 108
CR87
CR85
CR83
CR80
Inoue, Ribeiro, Sakama (CR56) 2014; 94
Järvisalo, Le Berre, Roussel, Simon (CR57) 2012; 33
CR19
CR18
Muggleton, Lin, Pahlavi, Tamaddoni-Nezhad (CR90) 2014; 94
CR17
CR16
CR15
CR14
CR13
CR97
CR96
De Raedt, Kersting, Natarajan, Poole (CR35) 2016
CR95
Bain, Srinivasan (CR6) 2018; 107
Bohan, Caron-Lormier, Muggleton, Raybould, Tamaddoni-Nezhad (CR11) 2011; 6
De Raedt, Kersting (CR32) 2008
Genesereth, Björnsson (CR49) 2013; 34
Cropper, Morel, Muggleton (CR29) 2020; 109
Law, Russo, Broda (CR69) 2018; 259
CR27
Blockeel, De Raedt (CR10) 1998; 101
CR26
CR23
CR22
Ellis, Morales, Sablé-Meyer, Solar-Lezama, Tenenbaum (CR41) 2018; 2018
Wirth (CR117) 1985
CR21
CR105
Muggleton, Schmid, Zeller, Tamaddoni-Nezhad, Besold (CR92) 2018; 107
CR102
CR103
CR100
CR101
Evans, Hernández-Orallo, Welbl, Kohli, Sergot (CR43) 2021; 293
Kaalia, Srinivasan, Kumar, Ghosh (CR58) 2016; 103
CR106
CR107
R Evans (6089_CR43) 2021; 293
6089_CR40
A Cropper (6089_CR28) 2020; 109
S Muggleton (6089_CR88) 2012; 86
6089_CR46
6089_CR45
S Muggleton (6089_CR82) 1995; 13
N Wirth (6089_CR117) 1985
M Law (6089_CR69) 2018; 259
SH Muggleton (6089_CR92) 2018; 107
6089_CR4
6089_CR3
6089_CR5
6089_CR8
6089_CR7
L De Raedt (6089_CR35) 2016
6089_CR33
6089_CR30
6089_CR37
E Bellodi (6089_CR9) 2015; 15
6089_CR36
6089_CR34
M Richardson (6089_CR104) 2006; 62
6089_CR39
6089_CR38
SH Muggleton (6089_CR90) 2014; 94
A Cropper (6089_CR29) 2020; 109
M Gebser (6089_CR47) 2012
M Bain (6089_CR6) 2018; 107
6089_CR66
6089_CR65
6089_CR64
6089_CR63
6089_CR68
6089_CR67
H Blockeel (6089_CR10) 1998; 101
R Kaalia (6089_CR58) 2016; 103
L De Raedt (6089_CR32) 2008
L De Raedt (6089_CR31) 2008
K Inoue (6089_CR55) 2013; 91
J Ahlgren (6089_CR1) 2013; 14
JR Quinlan (6089_CR98) 1990; 5
M Gebser (6089_CR48) 2012; 187
A Cropper (6089_CR20) 2021; 110
S Muggleton (6089_CR81) 1991; 8
R Evans (6089_CR42) 2018; 61
6089_CR51
6089_CR50
6089_CR53
6089_CR52
O Ray (6089_CR99) 2009; 7
T Sato (6089_CR108) 2001; 15
6089_CR59
A Cropper (6089_CR25) 2020; 109
DA Bohan (6089_CR11) 2011; 6
P Schüller (6089_CR109) 2018; 107
T Kaminski (6089_CR60) 2018; 18
6089_CR80
6089_CR115
6089_CR116
6089_CR114
A Srinivasan (6089_CR112) 2003; 4
6089_CR83
SH Nienhuys-Cheng (6089_CR93) 1997
6089_CR118
6089_CR87
6089_CR85
K Inoue (6089_CR54) 2016; 3
S Patsantzis (6089_CR94) 2021; 110
MR Genesereth (6089_CR49) 2013; 34
M Järvisalo (6089_CR57) 2012; 33
S Ferilli (6089_CR44) 2016
6089_CR73
K Ellis (6089_CR41) 2018; 2018
6089_CR71
6089_CR70
6089_CR77
6089_CR76
6089_CR75
6089_CR74
K Inoue (6089_CR56) 2014; 94
6089_CR79
6089_CR78
I Stahl (6089_CR113) 1995; 20
S Muggleton (6089_CR89) 2018; 107
SH Muggleton (6089_CR91) 2015; 100
M Law (6089_CR72) 2020
A Cropper (6089_CR24) 2019; 108
N Katzouris (6089_CR61) 2015; 100
6089_CR22
6089_CR21
L Ai (6089_CR2) 2020; 110
DA Bohan (6089_CR12) 2017; 32
6089_CR26
6089_CR100
6089_CR101
6089_CR23
S Muggleton (6089_CR84) 1994; 19
6089_CR27
N Katzouris (6089_CR62) 2016; 16
6089_CR105
6089_CR102
6089_CR103
6089_CR95
6089_CR106
S Muggleton (6089_CR86) 2019; 37
6089_CR107
6089_CR97
6089_CR96
6089_CR15
6089_CR111
6089_CR14
6089_CR13
6089_CR110
6089_CR19
6089_CR18
6089_CR17
6089_CR16
References_xml – ident: CR45
– volume: 110
  start-page: 801
  issue: 4
  year: 2021
  end-page: 856
  ident: CR20
  article-title: Learning programs by learning from failures
  publication-title: Machine Learning
  doi: 10.1007/s10994-020-05934-z
– ident: CR22
– volume: 13
  start-page: 245
  issue: 3&4
  year: 1995
  end-page: 286
  ident: CR82
  article-title: Inverse entailment and Progol
  publication-title: New Generation Computing
– ident: CR97
– volume: 15
  start-page: 169
  issue: 2
  year: 2015
  end-page: 212
  ident: CR9
  article-title: Structure learning of probabilistic logic programs by searching the clause space
  publication-title: Theory and Practice of Logic Programming
– ident: CR68
– ident: CR74
– volume: 103
  start-page: 309
  issue: 3
  year: 2016
  end-page: 341
  ident: CR58
  article-title: ILP-assisted de novo drug design
  publication-title: Machine Learning
– ident: CR39
– ident: CR16
– ident: CR51
– volume: 109
  start-page: 1289
  issue: 7
  year: 2020
  end-page: 1322
  ident: CR29
  article-title: Learning higher-order logic programs
  publication-title: Machine Learning
– ident: CR115
– volume: 14
  start-page: 3649
  issue: 1
  year: 2013
  end-page: 3682
  ident: CR1
  article-title: Efficient program synthesis using constraint satisfaction in inductive logic programming
  publication-title: The Journal of Machine Learning Research
– volume: 37
  start-page: 203
  year: 2019
  end-page: 217
  ident: CR86
  article-title: Machine discovery of comprehensible strategies for simple games using meta-interpretive learning
  publication-title: New Generation Computing
– ident: CR80
– ident: CR77
– ident: CR8
– volume: 7
  start-page: 329
  issue: 3
  year: 2009
  end-page: 340
  ident: CR99
  article-title: Nonmonotonic abductive inductive learning
  publication-title: Journal of Applied Logic
– volume: 16
  start-page: 817
  issue: 5–6
  year: 2016
  end-page: 833
  ident: CR62
  article-title: Online learning of event definitions
  publication-title: Theory and Practice of Logic Programming
– ident: CR106
– ident: CR101
– ident: CR71
– ident: CR19
– volume: 19
  start-page: 629
  issue: 20
  year: 1994
  end-page: 679
  ident: CR84
  article-title: Inductive logic programming: Theory and methods
  publication-title: The Journal of Logic Programming
– volume: 259
  start-page: 110
  year: 2018
  end-page: 146
  ident: CR69
  article-title: The complexity and generality of learning answer set programs
  publication-title: Artificial Intelligence
– volume: 91
  start-page: 239
  issue: 2
  year: 2013
  end-page: 277
  ident: CR55
  article-title: Completing causal networks by meta-level abduction
  publication-title: Machine Learning
– volume: 107
  start-page: 1171
  issue: 7
  year: 2018
  end-page: 1206
  ident: CR6
  article-title: Identification of biological transition systems using meta-interpreted logic programs
  publication-title: Machine Learning
– ident: CR36
– ident: CR85
– ident: CR5
– volume: 34
  start-page: 107
  issue: 2
  year: 2013
  end-page: 111
  ident: CR49
  article-title: The international general game playing competition
  publication-title: AI Magazine
– ident: CR100
– ident: CR18
– volume: 109
  start-page: 1393
  issue: 7
  year: 2020
  end-page: 1434
  ident: CR28
  article-title: Inductive general game playing
  publication-title: Machine Learning
– ident: CR66
– start-page: 1
  year: 2008
  end-page: 27
  ident: CR32
  publication-title: Probabilistic inductive logic programming
– ident: CR30
– ident: CR33
– volume: 187
  start-page: 52
  year: 2012
  end-page: 89
  ident: CR48
  article-title: Conflict-driven answer set solving: From theory to practice
  publication-title: Artificial Intelligence
– ident: CR63
– volume: 6
  start-page: e29028
  issue: 12
  year: 2011
  ident: CR11
  article-title: Automated discovery of food webs from ecological data using logic-based machine learning
  publication-title: PLoS ONE
– volume: 33
  start-page: 89
  issue: 1
  year: 2012
  end-page: 92
  ident: CR57
  article-title: The international sat solver competitions
  publication-title: Ai Magazine
– ident: CR27
– volume: 110
  start-page: 755
  year: 2021
  end-page: 778
  ident: CR94
  article-title: Top program construction and reduction for polynomial time meta-interpretive learning
  publication-title: Machine Learning
– year: 1997
  ident: CR93
  publication-title: Foundations of inductive logic programming
– ident: CR103
– year: 2016
  ident: CR35
  publication-title: Statistical relational artificial intelligence: Logic, probability, and computation. Synthesis lectures on artificial intelligence and machine learning
– volume: 3
  start-page: 7
  issue: 1
  year: 2016
  end-page: 36
  ident: CR54
  article-title: Meta-level abduction
  publication-title: FLAP
– ident: CR3
– ident: CR38
– ident: CR52
– volume: 8
  start-page: 295
  issue: 4
  year: 1991
  end-page: 318
  ident: CR81
  article-title: Inductive logic programming
  publication-title: New Generation Computing
– ident: CR13
– volume: 100
  start-page: 555
  issue: 2–3
  year: 2015
  end-page: 585
  ident: CR61
  article-title: Incremental learning of event definitions with inductive logic programming
  publication-title: Machine Learning
– volume: 293
  start-page: 103438
  year: 2021
  ident: CR43
  article-title: Making sense of sensory input
  publication-title: Artificial Intelligence
– ident: CR114
– volume: 20
  start-page: 95
  issue: 1–2
  year: 1995
  end-page: 117
  ident: CR113
  article-title: The appropriateness of predicate invention as bias shift operation in ILP
  publication-title: Machine Learning
– ident: CR83
– volume: 107
  start-page: 1097
  issue: 7
  year: 2018
  end-page: 1118
  ident: CR89
  article-title: Meta-interpretive learning from noisy images
  publication-title: Machine Learning
– volume: 107
  start-page: 1119
  issue: 7
  year: 2018
  end-page: 1140
  ident: CR92
  article-title: Ultra-strong machine learning: Comprehensibility of programs learned with ILP
  publication-title: Machine Learning
– ident: CR70
– volume: 2018
  start-page: 7816
  year: 2018
  end-page: 7826
  ident: CR41
  article-title: Learning libraries of subroutines for neurally-guided Bayesian program induction
  publication-title: NeurIPS
– ident: CR102
– ident: CR4
– ident: CR87
– ident: CR111
– volume: 61
  start-page: 1
  year: 2018
  end-page: 64
  ident: CR42
  article-title: Learning explanatory rules from noisy data
  publication-title: Journal of Artificial Intelligence Research
– ident: CR21
– ident: CR46
– ident: CR96
– volume: 15
  start-page: 391
  year: 2001
  end-page: 454
  ident: CR108
  article-title: Parameter learning of logic programs for symbolic-statistical modeling
  publication-title: Journal of Artificial Intelligence Research
  doi: 10.1613/jair.912
– ident: CR67
– ident: CR75
– ident: CR15
– ident: CR50
– ident: CR116
– year: 2016
  ident: CR44
  article-title: Predicate invention-based specialization in inductive logic programming
  publication-title: Journal of Intelligent Information Systems
  doi: 10.1007/s10844-016-0412-9
– volume: 101
  start-page: 285
  issue: 1–2
  year: 1998
  end-page: 297
  ident: CR10
  article-title: Top-down induction of first-order logical decision trees
  publication-title: Artificial Intelligence
– ident: CR78
– volume: 62
  start-page: 107
  issue: 1–2
  year: 2006
  end-page: 136
  ident: CR104
  article-title: Markov logic networks
  publication-title: Machine Learning
  doi: 10.1007/s10994-006-5833-1
– ident: CR64
– ident: CR105
– ident: CR26
– year: 2020
  ident: CR72
  publication-title: The ilasp system for inductive learning of answer set programs
– volume: 107
  start-page: 1141
  issue: 7
  year: 2018
  end-page: 1169
  ident: CR109
  article-title: Best-effort inductive logic programming via fine-grained cost-based hypothesis generation—The inspire system at the inductive logic programming competition
  publication-title: Machine Learning
– volume: 5
  start-page: 239
  year: 1990
  end-page: 266
  ident: CR98
  article-title: Learning logical definitions from relations
  publication-title: Machine Learning
– ident: CR95
– volume: 32
  start-page: 477
  issue: 7
  year: 2017
  end-page: 487
  ident: CR12
  article-title: Next-generation global biomonitoring: Large-scale, automated reconstruction of ecological networks
  publication-title: Trends in Ecology & Evolution
– ident: CR14
– volume: 94
  start-page: 25
  issue: 1
  year: 2014
  end-page: 49
  ident: CR90
  article-title: Meta-interpretive learning: Application to grammatical inference
  publication-title: Machine Learning
– ident: CR37
– ident: CR53
– year: 2008
  ident: CR31
  publication-title: Logical and relational learning. Cognitive technologies
– volume: 100
  start-page: 49
  issue: 1
  year: 2015
  end-page: 73
  ident: CR91
  article-title: Meta-interpretive learning of higher-order dyadic Datalog: Predicate invention revisited
  publication-title: Machine Learning
– ident: CR79
– volume: 86
  start-page: 3
  issue: 1
  year: 2012
  end-page: 23
  ident: CR88
  article-title: ILP turns 20—Biography and future challenges
  publication-title: Machine Learning
– volume: 18
  start-page: 571
  issue: 3–4
  year: 2018
  end-page: 588
  ident: CR60
  article-title: Exploiting answer set programming with external sources for meta-interpretive learning
  publication-title: Theory and Practice of Logic Programming
– ident: CR40
– ident: CR23
– volume: 109
  start-page: 1323
  issue: 7
  year: 2020
  end-page: 1369
  ident: CR25
  article-title: Logical reduction of metarules
  publication-title: Machine Learning
– volume: 110
  start-page: 695
  year: 2020
  end-page: 721
  ident: CR2
  article-title: Beneficial and harmful explanatory machine learning
  publication-title: Machine Learning
– ident: CR73
– ident: CR65
– ident: CR17
– ident: CR118
– ident: CR34
– ident: CR110
– volume: 94
  start-page: 51
  issue: 1
  year: 2014
  end-page: 79
  ident: CR56
  article-title: Learning from interpretation transition
  publication-title: Machine Learning
– ident: CR7
– ident: CR59
– ident: CR76
– year: 1985
  ident: CR117
  publication-title: Algorithms and data structures
– year: 2012
  ident: CR47
  publication-title: Answer set solving in practice. Synthesis lectures on artificial intelligence and machine learning
– ident: CR107
– volume: 4
  start-page: 369
  year: 2003
  end-page: 383
  ident: CR112
  article-title: An empirical study of the use of relevance information in inductive logic programming
  publication-title: The Journal of Machine Learning Research
– volume: 108
  start-page: 1063
  issue: 7
  year: 2019
  end-page: 1083
  ident: CR24
  article-title: Learning efficient logic programs
  publication-title: Machine Learning
– ident: 6089_CR21
– volume: 187
  start-page: 52
  year: 2012
  ident: 6089_CR48
  publication-title: Artificial Intelligence
  doi: 10.1016/j.artint.2012.04.001
– ident: 6089_CR5
– ident: 6089_CR102
  doi: 10.1109/ICMLA.2015.19
– ident: 6089_CR38
– volume: 107
  start-page: 1171
  issue: 7
  year: 2018
  ident: 6089_CR6
  publication-title: Machine Learning
  doi: 10.1007/s10994-018-5709-1
– ident: 6089_CR116
  doi: 10.1145/2661829.2662022
– ident: 6089_CR110
  doi: 10.1109/ICSE.2019.00044
– volume: 107
  start-page: 1141
  issue: 7
  year: 2018
  ident: 6089_CR109
  publication-title: Machine Learning
  doi: 10.1007/s10994-018-5708-2
– ident: 6089_CR53
  doi: 10.1145/1390156.1390209
– ident: 6089_CR4
  doi: 10.1007/978-3-319-40566-7_1
– start-page: 1
  volume-title: Probabilistic inductive logic programming
  year: 2008
  ident: 6089_CR32
  doi: 10.1007/978-3-540-78652-8
– ident: 6089_CR74
  doi: 10.1007/978-3-319-99960-9_5
– ident: 6089_CR118
– ident: 6089_CR76
– volume: 8
  start-page: 295
  issue: 4
  year: 1991
  ident: 6089_CR81
  publication-title: New Generation Computing
  doi: 10.1007/BF03037089
– volume-title: Logical and relational learning. Cognitive technologies
  year: 2008
  ident: 6089_CR31
  doi: 10.1007/978-3-540-68856-3
– volume: 293
  start-page: 103438
  year: 2021
  ident: 6089_CR43
  publication-title: Artificial Intelligence
  doi: 10.1016/j.artint.2020.103438
– ident: 6089_CR17
  doi: 10.1609/aaai.v34i04.5776
– volume: 5
  start-page: 239
  year: 1990
  ident: 6089_CR98
  publication-title: Machine Learning
– ident: 6089_CR101
  doi: 10.1007/978-3-319-23708-4_8
– volume: 86
  start-page: 3
  issue: 1
  year: 2012
  ident: 6089_CR88
  publication-title: Machine Learning
  doi: 10.1007/s10994-011-5259-2
– ident: 6089_CR64
  doi: 10.1145/1273496.1273551
– ident: 6089_CR70
  doi: 10.1609/aaai.v33i01.33012919
– ident: 6089_CR46
– ident: 6089_CR23
– ident: 6089_CR7
– ident: 6089_CR115
– ident: 6089_CR79
– volume: 61
  start-page: 1
  year: 2018
  ident: 6089_CR42
  publication-title: Journal of Artificial Intelligence Research
  doi: 10.1613/jair.5714
– volume: 107
  start-page: 1097
  issue: 7
  year: 2018
  ident: 6089_CR89
  publication-title: Machine Learning
  doi: 10.1007/s10994-018-5710-8
– ident: 6089_CR106
– ident: 6089_CR16
  doi: 10.24963/ijcai.2019/841
– ident: 6089_CR87
  doi: 10.1007/978-3-642-13840-9_12
– ident: 6089_CR85
– volume: 62
  start-page: 107
  issue: 1–2
  year: 2006
  ident: 6089_CR104
  publication-title: Machine Learning
  doi: 10.1007/s10994-006-5833-1
– ident: 6089_CR8
  doi: 10.1007/978-3-030-49210-6_2
– volume: 7
  start-page: 329
  issue: 3
  year: 2009
  ident: 6089_CR99
  publication-title: Journal of Applied Logic
  doi: 10.1016/j.jal.2008.10.007
– volume: 110
  start-page: 801
  issue: 4
  year: 2021
  ident: 6089_CR20
  publication-title: Machine Learning
  doi: 10.1007/s10994-020-05934-z
– volume: 94
  start-page: 25
  issue: 1
  year: 2014
  ident: 6089_CR90
  publication-title: Machine Learning
  doi: 10.1007/s10994-013-5358-3
– volume: 16
  start-page: 817
  issue: 5–6
  year: 2016
  ident: 6089_CR62
  publication-title: Theory and Practice of Logic Programming
  doi: 10.1017/S1471068416000260
– ident: 6089_CR63
  doi: 10.1145/1553374.1553440
– ident: 6089_CR18
– volume: 4
  start-page: 369
  year: 2003
  ident: 6089_CR112
  publication-title: The Journal of Machine Learning Research
– volume: 19
  start-page: 629
  issue: 20
  year: 1994
  ident: 6089_CR84
  publication-title: The Journal of Logic Programming
  doi: 10.1016/0743-1066(94)90035-3
– ident: 6089_CR27
  doi: 10.24963/ijcai.2020/673
– ident: 6089_CR50
  doi: 10.1145/1925844.1926423
– ident: 6089_CR96
  doi: 10.1145/3448016.3457275
– ident: 6089_CR107
  doi: 10.7551/mitpress/4298.003.0069
– ident: 6089_CR80
– ident: 6089_CR83
  doi: 10.1016/B978-0-934613-64-4.50040-2
– volume: 110
  start-page: 755
  year: 2021
  ident: 6089_CR94
  publication-title: Machine Learning
  doi: 10.1007/s10994-020-05945-w
– ident: 6089_CR66
  doi: 10.24963/ijcai.2020/678
– ident: 6089_CR39
  doi: 10.24963/ijcai.2017/226
– ident: 6089_CR68
  doi: 10.1007/978-3-319-11558-0_22
– ident: 6089_CR114
  doi: 10.1007/978-3-319-23708-4_11
– volume: 34
  start-page: 107
  issue: 2
  year: 2013
  ident: 6089_CR49
  publication-title: AI Magazine
  doi: 10.1609/aimag.v34i2.2475
– volume: 110
  start-page: 695
  year: 2020
  ident: 6089_CR2
  publication-title: Machine Learning
  doi: 10.1007/s10994-020-05941-0
– ident: 6089_CR13
  doi: 10.1007/3-540-48751-4_6
– volume: 103
  start-page: 309
  issue: 3
  year: 2016
  ident: 6089_CR58
  publication-title: Machine Learning
  doi: 10.1007/s10994-016-5556-x
– ident: 6089_CR100
– ident: 6089_CR19
  doi: 10.24963/ijcai.2020/287
– volume: 100
  start-page: 49
  issue: 1
  year: 2015
  ident: 6089_CR91
  publication-title: Machine Learning
  doi: 10.1007/s10994-014-5471-y
– volume: 108
  start-page: 1063
  issue: 7
  year: 2019
  ident: 6089_CR24
  publication-title: Machine Learning
  doi: 10.1007/s10994-018-5712-6
– volume: 14
  start-page: 3649
  issue: 1
  year: 2013
  ident: 6089_CR1
  publication-title: The Journal of Machine Learning Research
– volume: 109
  start-page: 1289
  issue: 7
  year: 2020
  ident: 6089_CR29
  publication-title: Machine Learning
  doi: 10.1007/s10994-019-05862-7
– volume: 259
  start-page: 110
  year: 2018
  ident: 6089_CR69
  publication-title: Artificial Intelligence
  doi: 10.1016/j.artint.2018.03.005
– ident: 6089_CR97
– ident: 6089_CR37
– volume: 13
  start-page: 245
  issue: 3&4
  year: 1995
  ident: 6089_CR82
  publication-title: New Generation Computing
  doi: 10.1007/BF03037227
– ident: 6089_CR34
– volume-title: The ilasp system for inductive learning of answer set programs
  year: 2020
  ident: 6089_CR72
– volume: 91
  start-page: 239
  issue: 2
  year: 2013
  ident: 6089_CR55
  publication-title: Machine Learning
  doi: 10.1007/s10994-013-5341-z
– volume-title: Answer set solving in practice. Synthesis lectures on artificial intelligence and machine learning
  year: 2012
  ident: 6089_CR47
– ident: 6089_CR103
  doi: 10.1007/s10994-021-06105-4
– ident: 6089_CR65
– volume: 20
  start-page: 95
  issue: 1–2
  year: 1995
  ident: 6089_CR113
  publication-title: Machine Learning
– ident: 6089_CR111
– ident: 6089_CR26
  doi: 10.1007/978-3-319-40566-7_4
– volume: 109
  start-page: 1393
  issue: 7
  year: 2020
  ident: 6089_CR28
  publication-title: Machine Learning
  doi: 10.1007/s10994-019-05843-w
– ident: 6089_CR36
– volume-title: Statistical relational artificial intelligence: Logic, probability, and computation. Synthesis lectures on artificial intelligence and machine learning
  year: 2016
  ident: 6089_CR35
  doi: 10.1007/978-3-031-01574-8
– ident: 6089_CR45
  doi: 10.1007/978-3-540-30109-7_12
– ident: 6089_CR59
– volume: 37
  start-page: 203
  year: 2019
  ident: 6089_CR86
  publication-title: New Generation Computing
  doi: 10.1007/s00354-019-00054-2
– volume-title: Foundations of inductive logic programming
  year: 1997
  ident: 6089_CR93
  doi: 10.1007/3-540-62927-0
– ident: 6089_CR75
– ident: 6089_CR95
  doi: 10.1145/3076246.3076249
– volume: 2018
  start-page: 7816
  year: 2018
  ident: 6089_CR41
  publication-title: NeurIPS
– ident: 6089_CR73
  doi: 10.1007/978-3-540-85928-4_10
– ident: 6089_CR33
– ident: 6089_CR52
  doi: 10.24963/ijcai.2020/320
– volume: 15
  start-page: 391
  year: 2001
  ident: 6089_CR108
  publication-title: Journal of Artificial Intelligence Research
  doi: 10.1613/jair.912
– volume: 6
  start-page: e29028
  issue: 12
  year: 2011
  ident: 6089_CR11
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0029028
– volume: 32
  start-page: 477
  issue: 7
  year: 2017
  ident: 6089_CR12
  publication-title: Trends in Ecology & Evolution
  doi: 10.1016/j.tree.2017.03.001
– volume: 109
  start-page: 1323
  issue: 7
  year: 2020
  ident: 6089_CR25
  publication-title: Machine Learning
  doi: 10.1007/s10994-019-05834-x
– volume: 3
  start-page: 7
  issue: 1
  year: 2016
  ident: 6089_CR54
  publication-title: FLAP
– volume: 94
  start-page: 51
  issue: 1
  year: 2014
  ident: 6089_CR56
  publication-title: Machine Learning
  doi: 10.1007/s10994-013-5353-8
– ident: 6089_CR77
  doi: 10.1609/icaps.v26i1.13746
– year: 2016
  ident: 6089_CR44
  publication-title: Journal of Intelligent Information Systems
  doi: 10.1007/s10844-016-0412-9
– volume: 101
  start-page: 285
  issue: 1–2
  year: 1998
  ident: 6089_CR10
  publication-title: Artificial Intelligence
  doi: 10.1016/S0004-3702(98)00034-4
– ident: 6089_CR22
– volume: 15
  start-page: 169
  issue: 2
  year: 2015
  ident: 6089_CR9
  publication-title: Theory and Practice of Logic Programming
  doi: 10.1017/S1471068413000689
– volume: 100
  start-page: 555
  issue: 2–3
  year: 2015
  ident: 6089_CR61
  publication-title: Machine Learning
  doi: 10.1007/s10994-015-5512-1
– volume: 18
  start-page: 571
  issue: 3–4
  year: 2018
  ident: 6089_CR60
  publication-title: Theory and Practice of Logic Programming
  doi: 10.1017/S1471068418000261
– ident: 6089_CR14
– ident: 6089_CR3
  doi: 10.1007/978-3-319-66158-2_44
– ident: 6089_CR30
  doi: 10.24963/ijcai.2021/254
– ident: 6089_CR51
  doi: 10.1007/978-3-319-40970-2_15
– ident: 6089_CR40
  doi: 10.24963/ijcai.2019/842
– ident: 6089_CR78
– volume: 107
  start-page: 1119
  issue: 7
  year: 2018
  ident: 6089_CR92
  publication-title: Machine Learning
  doi: 10.1007/s10994-018-5707-3
– volume-title: Algorithms and data structures
  year: 1985
  ident: 6089_CR117
– ident: 6089_CR105
– volume: 33
  start-page: 89
  issue: 1
  year: 2012
  ident: 6089_CR57
  publication-title: Ai Magazine
  doi: 10.1609/aimag.v33i1.2395
– ident: 6089_CR71
  doi: 10.1609/aaai.v34i03.5678
– ident: 6089_CR15
  doi: 10.1007/978-3-642-31951-8_12
– ident: 6089_CR67
SSID ssj0002686
Score 2.6139264
Snippet Inductive logic programming (ILP) is a form of logic-based machine learning. The goal is to induce a hypothesis (a logic program) that generalises given...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 147
SubjectTerms Artificial Intelligence
Computer Science
Control
Logic programming
Logic programs
Machine Learning
Mechatronics
Natural Language Processing (NLP)
Robotics
S.i.: Lr 2020
Simulation and Modeling
Special issue on Learning and Reasoning
SummonAdditionalLinks – databaseName: Springer LINK
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8QwEB1EPXhx_cTVVSp400CbJml6FHHxIIv4xd5CmiYg6Cq71d_vJJvuqqig56Zpec3MvGky8wCOeCV4LV1GtKlzwipbEkybObGO89o4o6UJLfMvi8FADoflVSwKm7Sn3dstyeCpPxS7hTa21J_USWVJMOdZwnAnvTle39zP_C8VQd8RzYcTH79jqcz3c3wOR3OO-WVbNESbfud_77kGq5FdJqfT5bAOC3a0AZ1WuSGJhrwJh16xI3i6JPi-JB7TesIHJbpJ8nQL7vrnt2cXJIolEIMhpUFwC17pTLtK2FSjaeoSrVVXrq4KwZlONbNOshKzUElLhqzEUS0qX0hasFrIfBsWR88juwOJRk5kMc3gjuZMMKFpKVNmhc280JWkXchazJSJncS9oMWjmvdA9hgoxEAFDFTWhePZPS_TPhq_ju61n0JFm5ooKjwXY8jfunDSQj-__PNsu38bvgcr1Nc4hP8sPVhsxq92H5bNW_MwGR-EtfYOlvrJlw
  priority: 102
  providerName: Springer Nature
Title Inductive logic programming at 30
URI https://link.springer.com/article/10.1007/s10994-021-06089-1
https://www.proquest.com/docview/2625124441
Volume 111
WOSCitedRecordID wos000716296200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-0565
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002686
  issn: 0885-6125
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFH_o5sGL8xOnc1TwpsE2S9L0JCobgjrK_GB4KWmbgKDb3Kp_v0mWrii4i5d3aRvCr3lfSd77AZzQlNGcqwCJLO8gksoI6bSZIqkozTOVCZ7Zlvl3Yb_Ph8ModhtuM3etsrSJ1lDn48zskZ9jZjwx0d77YvKBDGuUOV11FBqrUA8wDsw6vw3RwhJjZpketSJRZDy5K5pxpXO2KS429358HqHgp2Oqos1fB6TW7_Qa_53xJmy4iNO7nC-RLViRo21olGwOnlPuHTg2LB7W-nnWHnru6ta7npYnCq_j78JTr_t4fYMcgQLKtJspNOAhTUUgVMqkL7S6ikhrsEhVnoaMEuELIhUnkc5MOY6IjlQUFiw1xaUhyRnv7EFtNB7JffCEjpOkTj2owh3CCBM44j6RTAaG_IrjJgQleknmuosbkou3pOqLbBBPNOKJRTwJmnC6-GYy762x9O1WCXPi9GyWVBg34az8UdXjv0c7WD7aIaxjU-dg91paUCumn_II1rKv4nU2bUP9qtuPB2272rS8x7GWMX3RcvDw_A26hdfC
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3PS8MwFH7MKejF-ROnUyvoSYNtmqTpQUTUsbE5PEzYraZtCoJuc6uK_5R_o0nWrii42w6e24aQ7-V776V57wM4piGjMU8cJKLYRSSUPlJpM0UyoTSOkkjwyLTMb3udDu_1_PsSfOW1MPpaZc6JhqjjQaTPyM8x056YKO99OXxFWjVK_13NJTQmZtGSnx8qZRtfNG8UvicY12-71w2UqQqgSHFvqmbh0VA4IgmZtIWyYeErsxZhEoceo0TYgsiEE1-laxz7RLnvBAsW6opLj8SMu2rcBVgkLvd0r_6Wh6bMj5lRllQblyIdOWRFOlmpnmnCi_U9I5v7yPnpCIvo9tcPWePn6pX_tkJrsJpF1NbVZAusQ0n2N6CSq1VYGXltwpFWKTHsbhm-t7KraS9qGSyRWq69BQ9zmeg2lPuDvtwBS6g4UKrUiibYJYwwgX1uE8mko8W9OK6Ck6MVRFn3dC3i8RwUfZ81woFCODAIB04VTqffDCe9Q2a-XcthDTIeGQcFplU4yw2jePz3aLuzRzuE5Ub3rh20m53WHqxgXdNhzpVqUE5Hb3IflqL39Gk8OjAWbsHjvA3mGz0JL3I
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LSwMxEB5qFfHiW6xWXUFPGtxNk2z2ICJqsVSKBwVva3Y3AUHro1Xxr_nrnKTZFgV78-B5syFkJvPNJDPzAezwTPBCmoiovGgQlumEYNjMiTacF7nJlcxdy_yLuNORNzfJZQU-y1oYm1ZZ2kRnqIvH3N6RH1BhkZgheh8YnxZxedo8enomlkHKvrSWdBoDFWnrj3cM33qHrVOU9S6lzbOrk3PiGQZIjna4jyuKeaYiZTKhQ4X6rBJUcZWZIosFZypUTBvJEgzdJE0YQrmhSmS2-jJmhZANnHcCJhGFuT1j7ZgMUYAKxzKJh5gT60X4gh1ftuca8lKbcxTKhETfQXHk6f54nHWY15z7z7s1D7Pe0w6OB0djASq6uwhzJYtF4I3aEmxb9hJn9QOHA4FPWXvALQlUP2iEy3D9JwtdgWr3satXIVDoH2oMubihDSaYUDSRIdNCR5b0S9IaRKXk0tx3VbfkHvfpqB-0lXaK0k6dtNOoBnvDf54GPUXGjq6XIk69femlI_nWYL9UktHn32dbGz_bFkyjnqQXrU57HWaoLfVw1011qPZfXvUGTOVv_bvey6ZT9gBu_1pfvgB03zgs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inductive+logic+programming+at+30&rft.jtitle=Machine+learning&rft.au=Cropper%2C+Andrew&rft.au=Sebastijan%2C+Duman%C4%8Di%C4%87&rft.au=Evans%2C+Richard&rft.au=Muggleton%2C+Stephen+H&rft.date=2022-01-01&rft.pub=Springer+Nature+B.V&rft.issn=0885-6125&rft.eissn=1573-0565&rft.volume=111&rft.issue=1&rft.spage=147&rft.epage=172&rft_id=info:doi/10.1007%2Fs10994-021-06089-1&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-6125&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-6125&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-6125&client=summon