Benchmarking the quantum approximate optimization algorithm

The performance of the quantum approximate optimization algorithm is evaluated by using three different measures: the probability of finding the ground state, the energy expectation value, and a ratio closely related to the approximation ratio. The set of problem instances studied consists of weight...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Quantum information processing Ročník 19; číslo 7
Hlavní autori: Willsch, Madita, Willsch, Dennis, Jin, Fengping, De Raedt, Hans, Michielsen, Kristel
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.07.2020
Springer Nature B.V
Predmet:
ISSN:1570-0755, 1573-1332
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The performance of the quantum approximate optimization algorithm is evaluated by using three different measures: the probability of finding the ground state, the energy expectation value, and a ratio closely related to the approximation ratio. The set of problem instances studied consists of weighted MaxCut problems and 2-satisfiability problems. The Ising model representations of the latter possess unique ground states and highly degenerate first excited states. The quantum approximate optimization algorithm is executed on quantum computer simulators and on the IBM Q Experience. Additionally, data obtained from the D-Wave 2000Q quantum annealer are used for comparison, and it is found that the D-Wave machine outperforms the quantum approximate optimization algorithm executed on a simulator. The overall performance of the quantum approximate optimization algorithm is found to strongly depend on the problem instance.
AbstractList The performance of the quantum approximate optimization algorithm is evaluated by using three different measures: the probability of finding the ground state, the energy expectation value, and a ratio closely related to the approximation ratio. The set of problem instances studied consists of weighted MaxCut problems and 2-satisfiability problems. The Ising model representations of the latter possess unique ground states and highly degenerate first excited states. The quantum approximate optimization algorithm is executed on quantum computer simulators and on the IBM Q Experience. Additionally, data obtained from the D-Wave 2000Q quantum annealer are used for comparison, and it is found that the D-Wave machine outperforms the quantum approximate optimization algorithm executed on a simulator. The overall performance of the quantum approximate optimization algorithm is found to strongly depend on the problem instance.
ArticleNumber 197
Author Willsch, Dennis
Jin, Fengping
De Raedt, Hans
Willsch, Madita
Michielsen, Kristel
Author_xml – sequence: 1
  givenname: Madita
  orcidid: 0000-0002-2351-3162
  surname: Willsch
  fullname: Willsch, Madita
  email: m.willsch@fz-juelich.de
  organization: Institute for Advanced Simulation, Jülich Supercomputing Centre, Forschungszentrum Jülich, RWTH Aachen University
– sequence: 2
  givenname: Dennis
  surname: Willsch
  fullname: Willsch, Dennis
  organization: Institute for Advanced Simulation, Jülich Supercomputing Centre, Forschungszentrum Jülich, RWTH Aachen University
– sequence: 3
  givenname: Fengping
  surname: Jin
  fullname: Jin, Fengping
  organization: Institute for Advanced Simulation, Jülich Supercomputing Centre, Forschungszentrum Jülich
– sequence: 4
  givenname: Hans
  surname: De Raedt
  fullname: De Raedt, Hans
  organization: Zernike Institute for Advanced Materials, University of Groningen
– sequence: 5
  givenname: Kristel
  surname: Michielsen
  fullname: Michielsen, Kristel
  organization: Institute for Advanced Simulation, Jülich Supercomputing Centre, Forschungszentrum Jülich, RWTH Aachen University
BookMark eNp9kE1LAzEQhoNUsK3-AU8LnlfzsZtk8aTFLyh40XOYZrNtaje7TbKg_npjVxA8eBgyk8wz8-adoYnrnEHonOBLgrG4CoQQKnNMcQpe0VweoSkpBcsJY3RyyNOTKMsTNAthizElXPIpur41Tm9a8G_WrbO4Mdl-ABeHNoO-9927bSGarOujbe0nRNu5DHbrztu4aU_RcQO7YM5-zjl6vb97WTzmy-eHp8XNMtcFrWJuKkLqlS4LXTRMksasmqYCli4o0zXUuJCCGQ7AsOCQCglVSXjDBNQlrzSbo4txbhK0H0yIatsN3qWVihZYSs6lKFIXHbu070LwplG9T-r9hyJYfZukRpNUMkkdTFIyQfIPpG08fDN6sLv_UTaiIe1xa-N_Vf1DfQGgPX45
CitedBy_id crossref_primary_10_1007_s42484_024_00159_y
crossref_primary_10_1103_PhysRevA_103_042612
crossref_primary_10_1145_3678184
crossref_primary_10_1103_PRXQuantum_2_010101
crossref_primary_10_1103_PhysRevResearch_5_043005
crossref_primary_10_1007_s42354_021_0335_7
crossref_primary_10_1016_j_cpc_2022_108411
crossref_primary_10_1038_s41598_022_20853_w
crossref_primary_10_1109_ACCESS_2022_3188117
crossref_primary_10_1103_PhysRevA_106_062414
crossref_primary_10_1103_PhysRevResearch_4_013141
crossref_primary_10_1145_3620668
crossref_primary_10_1088_1367_2630_ad64fb
crossref_primary_10_1016_j_physrep_2024_03_002
crossref_primary_10_1088_1402_4896_ad6aea
crossref_primary_10_1103_PhysRevResearch_4_023249
crossref_primary_10_1088_2058_9565_ac91ef
crossref_primary_10_1088_2058_9565_add61d
crossref_primary_10_1103_PhysRevA_106_022423
crossref_primary_10_1007_s11128_022_03623_5
crossref_primary_10_1007_s00521_025_11353_9
crossref_primary_10_1007_s00521_022_07438_4
crossref_primary_10_1007_s11128_023_04025_x
crossref_primary_10_1103_PRXQuantum_3_040339
crossref_primary_10_1016_j_ins_2022_11_020
crossref_primary_10_1016_j_ress_2025_111153
crossref_primary_10_1137_22M1514581
crossref_primary_10_1038_s41534_021_00440_z
crossref_primary_10_1155_2021_1616725
crossref_primary_10_1016_j_jcp_2024_113070
crossref_primary_10_1103_PRXQuantum_4_030335
crossref_primary_10_1002_qute_202300419
crossref_primary_10_3390_s23104852
crossref_primary_10_1088_1402_4896_ad5a50
crossref_primary_10_1038_s41534_025_01020_1
crossref_primary_10_1038_s41598_024_76967_w
crossref_primary_10_1103_PhysRevResearch_6_033215
crossref_primary_10_1103_PhysRevA_111_032411
crossref_primary_10_1007_s42484_022_00077_x
crossref_primary_10_1088_1402_4896_acf6e8
crossref_primary_10_1088_2058_9565_ad35e4
crossref_primary_10_1103_PhysRevApplied_19_024047
crossref_primary_10_1038_s41534_024_00825_w
crossref_primary_10_3390_math11092176
crossref_primary_10_20935_AcadQuant7900
crossref_primary_10_1103_vfxh_gjgy
crossref_primary_10_1103_PhysRevApplied_22_044074
crossref_primary_10_1109_ACCESS_2025_3550788
crossref_primary_10_1002_qute_202300055
crossref_primary_10_1109_TNNLS_2022_3190042
crossref_primary_10_1038_s41567_020_01105_y
crossref_primary_10_1088_2058_9565_ace474
crossref_primary_10_1088_1751_8121_ad00f0
crossref_primary_10_1103_PhysRevApplied_20_034062
crossref_primary_10_1109_TITS_2022_3172241
crossref_primary_10_1007_s11128_023_03968_5
crossref_primary_10_1016_j_cam_2021_113388
crossref_primary_10_1103_PhysRevResearch_5_023171
crossref_primary_10_1103_PhysRevA_104_032401
crossref_primary_10_3390_e25111499
crossref_primary_10_1103_n7r5_s63q
crossref_primary_10_1007_s11128_021_03226_6
crossref_primary_10_1007_s11128_025_04675_z
crossref_primary_10_1088_2632_072X_abdadc
crossref_primary_10_1007_s11128_022_03476_y
Cites_doi 10.3390/a12020034
10.1017/CBO9780511921735
10.1038/s41566-018-0236-y
10.1109/TASC.2014.2318294
10.1007/s11128-015-1150-6
10.22331/q-2018-08-06-79
10.1016/j.cpc.2018.11.005
10.1038/ncomms5213
10.1103/PhysRevE.58.5355
10.1137/S0097539795293172
10.1103/PhysRevA.65.012322
10.1007/BF01343193
10.1063/1.526596
10.1093/comjnl/7.4.308
10.1145/227683.227684
10.1103/PhysRevA.28.3575
10.1103/PhysRevA.97.022304
10.1103/RevModPhys.90.015002
10.1038/nature23879
10.1090/S0002-9939-1959-0108732-6
10.4208/cicp.OA-2018-0257
10.3389/fphy.2014.00056
10.1038/s41534-017-0022-6
10.1016/0009-2614(94)00117-0
10.1038/s41598-019-43176-9
ContentType Journal Article
Copyright The Author(s) 2020
The Author(s) 2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2020
– notice: The Author(s) 2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
JQ2
DOI 10.1007/s11128-020-02692-8
DatabaseName Springer Nature Link
CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Physics
Computer Science
EISSN 1573-1332
ExternalDocumentID 10_1007_s11128_020_02692_8
GrantInformation_xml – fundername: European Commission
  grantid: 820363
  funderid: http://dx.doi.org/10.13039/501100000780
– fundername: Helmholtz-Gemeinschaft
  grantid: ZT-0013
  funderid: http://dx.doi.org/10.13039/501100001656
GroupedDBID -5F
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
1N0
203
29P
29~
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BGNMA
BSONS
C6C
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAK
LLZTM
M4Y
MA-
N2Q
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
P2P
P9O
PF0
PT4
QOS
R89
R9I
RIG
RNI
RNS
ROL
RPX
RSV
RZC
RZE
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z7Y
Z7Z
Z83
Z88
ZMTXR
~8M
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
JQ2
ID FETCH-LOGICAL-c429t-e911dbc54c4f381febff9a3c5423cdad04873e6aa3076a4878a9516f37ad569c3
IEDL.DBID RSV
ISICitedReferencesCount 99
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000538059200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1570-0755
IngestDate Thu Sep 25 00:51:17 EDT 2025
Tue Nov 18 20:41:45 EST 2025
Sat Nov 29 03:12:02 EST 2025
Fri Feb 21 02:38:37 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Quantum annealing
Quantum computation
Optimization problems
QAOA
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c429t-e911dbc54c4f381febff9a3c5423cdad04873e6aa3076a4878a9516f37ad569c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2351-3162
OpenAccessLink https://link.springer.com/10.1007/s11128-020-02692-8
PQID 2408866874
PQPubID 2043832
ParticipantIDs proquest_journals_2408866874
crossref_primary_10_1007_s11128_020_02692_8
crossref_citationtrail_10_1007_s11128_020_02692_8
springer_journals_10_1007_s11128_020_02692_8
PublicationCentury 2000
PublicationDate 20200700
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 7
  year: 2020
  text: 20200700
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationTitle Quantum information processing
PublicationTitleAbbrev Quantum Inf Process
PublicationYear 2020
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References WangZHadfieldSJiangZRieffelEGQuantum approximate optimization algorithm for MaxCut: a fermionic viewPhys. Rev. A2018970223042018PhRvA..97b2304W10.1103/PhysRevA.97.022304
Farhi, E., Goldstone, J., Gutmann, S.: A quantum approximate optimization algorithm (2014). arXiv:1411.4028
BoothbyTKingADRoyAFast clique minor generation in Chimera qubit connectivity graphsQuantum Inf. Process.2016154952016QuIP...15..495B344141410.1007/s11128-015-1150-6
ChancellorNZohrenSWarburtonPACircuit design for multi-body interactions in superconducting quantum annealing systems with applications to a scalable architectureNPJ Quantum Inf.20173212017npjQI...3...21C10.1038/s41534-017-0022-6
HadfieldSWangZO’GormanBRieffelEGVenturelliDBiswasRFrom the quantum approximate optimization algorithm to a quantum alternating operator ansatzAlgorithms20191234393270710.3390/a12020034
TrotterHFOn the product of semi-groups of operatorsProc. Am. Math. Soc.19591054510873210.1090/S0002-9939-1959-0108732-6
BunykPIHoskinsonEMJohnsonMWTolkachevaEAltomareFBerkleyAJHarrisRHiltonJPLantingTPrzybyszAJWhittakerJArchitectural considerations in the design of a superconducting quantum annealing processorIEEE Trans. Appl. Supercond.201424110.1109/TASC.2014.2318294
Farhi, E., Goldstone, J., Gutmann, S., Sipser, M.: Quantum computation by adiabatic evolution (2000). arXiv:quant-ph/0001106
Otterbach, J. S., Manenti, R., Alidoust, N., Bestwick, A., Block, M., Bloom, B., Caldwell, S., Didier, N., Fried, E. S., Hong, S., Karalekas, P., Osborn, C.B., Papageorge, A., Peterson, E.C., Prawiroatmodjo, G., Rubin, G., Ryan, C.A., Scarabelli, D., Scheer, M., Sete, E.A., Sivarajah, P., Smith, R.S., Staley, A., Tezak, N., Zeng, W.J., Hudson, A., Johnson, B.R., Reagor, M., da Silva, M.P., Rigetti, C.: Unsupervised machine learning on a hybrid quantum computer (2017). arXiv:1712.05771
Aleksandrowicz, G., Alexander, T., Barkoutsos, P., Bello, L., Ben-Haim, Y., Bucher, D., Cabrera-Hernádez, F.J., Carballo-Franquis, J., Chen, A., Chen, C.-F., Chow, J.M., Córcoles-Gonzales, A.D., Cross, A.J., Cross, A., Cruz-Benito, J., Culver, C., González, S.D. L.P., Torre, E.D.L., Ding, D., Dumitrescu, E., Duran, I., Eendebak, P., Everitt, M., Sertage, I.F., Frisch, A., Fuhrer, A., Gambetta, J., Gago, B.G., Gomez-Mosquera, J., Greenberg, D., Hamamura, I., Havlicek, V., Hellmers, J., Herok, Ł., Horii, H., Hu, S., Imamichi, T., Itoko, T., Javadi-Abhari, A., Kanazawa, N., Karazeev, A., Krsulich, K., Liu, P., Luh, Y., Maeng, Y., Marques, M., Martín-Fernández, F.J., McClure, D.T., McKay, D., Meesala, S., Mezzacapo, A., Moll, N., Rodríguez, D. M., Nannicini, G., Nation, P., Ollitrault, P., O’Riordan, L.J., Paik, H., Pérez, J., Phan, A., Pistoia, M., Prutyanov, V., Reuter, M., Rice, J., Davila, A.R., Rudy, R.H.P., Ryu, M., Sathaye, N., Schnabel, C., Schoute, E., Setia, K., Shi, Y., Silva, A., Siraichi, Y., Sivarajah, S., Smolin, J.A., Soeken, M., Takahashi, H., Tavernelli, I., Taylor, C., Taylour, P., Trabing, K., Treinish, M., Turner, W., Vogt-Lee, D., Vuillot, C., Wildstrom, J.A., Wilson, J., Winston, E., Wood, C., Wood, S., Wörner, S., Akhalwaya, I.Y., Zoufal, C.: Qiskit: an open-source framework for quantum computing (2019)
NelderJAMeadRA simplex method for function minimizationComput. J.19657308336340910.1093/comjnl/7.4.308
De RaedtHDe RaedtBApplications of the generalized Trotter formulaPhys. Rev. A19832835751983PhRvA..28.3575D72686410.1103/PhysRevA.28.3575
ShorPWPolynomial-time algorithms for prime factorization and discrete logarithms on a quantum computerSIAM J. Comput.1997261484147199010.1137/S0097539795293172
KadowakiTNishimoriHQuantum annealing in the transverse Ising modelPhys. Rev. E19985853551998PhRvE..58.5355K10.1103/PhysRevE.58.5355
GareyGRJohnsonDComputers and Intractability2000San FransicoW.H. Freeaman
O’MalleyPJJBabbushRKivlichanIDRomeroJMcCleanJRBarendsRKellyJRoushanPTranterADingNCampbellBChenYChenZChiaroBDunsworthAFowlerAGJeffreyELuceroEMegrantAMutusJYNeeleyMNeillCQuintanaCSankDVainsencherAWennerJWhiteTCCoveneyPVLovePJNevenHAspuru-GuzikAMartinisJMScalable quantum simulation of molecular energiesPhys. Rev. X20166031007
YangZRahmaniAShabaniANevenHChamonCOptimizing variational quantum algorithms using Pontryagin’s minimum principlePhys. Rev. X20177021027
GuerreschiGGMatsuuraAYQAOA for Max-Cut requires hundreds of qubits for quantum speed-upSci. Rep.2019969032019NatSR...9.6903G10.1038/s41598-019-43176-9
AlbashTLidarDAdiabatic quantum computationRev. Mod. Phys.2018900150022018RvMP...90a5002A378842410.1103/RevModPhys.90.015002
FinnilaAGomezMSebenikCStensonCDollJQuantum annealing: a new method for minimizing multidimensional functionsChem. Phys. Lett.19942193431994CPL...219..343F10.1016/0009-2614(94)00117-0
GoemansMXWilliamsonDPImproved approximation algorithms for maximum cut and satisfiability problems using semidefinite programmingJ. ACM1995421115141222810.1145/227683.227684
Zhou, L., Wang, S.-T., Choi, S., Pichler, H., Lukin, M.D.: Quantum approximate optimization algorithm: performance, mechanism, and implementation on near-term devices (2018). arXiv:1812.01041v1
SuzukiMDecomposition formulas of exponential operators and Lie exponentials with some applications to quantum mechanics and statistical physicsJ. Math. Phys.1985266011985JMP....26..601S78567010.1063/1.526596
IBM: IBM Q experience. https://www.research.ibm.com/ibm-q/ (2016)
BornMFockVBeweis des AdiabatensatzesZ. Phys.1928511651928ZPhy...51..165B10.1007/BF01343193
KandalaAMezzacapoATemmeKTakitaMBrinkMChowJMGambettaJMHardware-efficient variational quantum eigensolver for small molecules and quantum magnetsNature20175492422017Natur.549..242K10.1038/nature23879
De RaedtHJinFWillschDWillschMYoshiokaNItoNYuanSMichielsenKMassively parallel quantum computer simulator, eleven years laterComput. Phys. Commun.2019237472019CoPhC.237...47D10.1016/j.cpc.2018.11.005
PreskillJQuantum computing in the NISQ era and beyondQuantum201827910.22331/q-2018-08-06-79
WilliamsonDPShmoysDBThe Design of Approximation Algorithms2011CambridgeCambridge University Press10.1017/CBO9780511921735
BianZChudakFIsraelRLackeyBMacreadyWGRoyADiscrete optimization using quantum annealing on sparse Ising modelsFront. Phys.201425610.3389/fphy.2014.00056
Hsu, T., Jin, F., Seidel, C., Neukart, F., De Raedt, H., Michielsen, K.: Quantum annealing with anneal path control: application to 2-SAT problems with known energy landscapes (2018). arXiv:1810.00194
Streif, M., Leib, M.: Comparison of QAOA with quantum and simulated annealing (2019). arXiv:1901.01903
PressWHTeukolskySAVetterlingWTFlanneryBPNumerical Recipes, 3rd Edition: The Art of Scientific Computing2007New YorkCambridge University Press1132.65001
ChildsAMFarhiEPreskillJRobustness of adiabatic quantum computationPhys. Rev. A2001650123222002PhRvA..65a2322C10.1103/PhysRevA.65.012322
Crooks, G.E.: Performance of the quantum approximate optimization algorithm on the maximum cut problem (2018). arXiv:1811.08419v1
PeruzzoAMcCleanJShadboltPYungMZhouXLovePJAspuru-GuzikAO’BrienJLA variational eigenvalue solver on a photonic quantum processorNat. Commun.2014542132014NatCo...5.4213P10.1038/ncomms5213
QiangXZhouXWangJWilkesCMLokeTO’GaraSKlingLMarshallGDSantagatiRRalphTCWangJBO’BrienJLThompsonMGMatthewsJCFLarge-scale silicon quantum photonics implementing arbitrary two-qubit processingNat. Photon.2018125342018NaPho..12..534Q10.1038/s41566-018-0236-y
Farhi, E., Harrow, A.W.: Quantum supremacy through the quantum approximate optimization algorithm (2016). arXiv:1602.07674
PJJ O’Malley (2692_CR23) 2016; 6
PW Shor (2692_CR4) 1997; 26
Z Wang (2692_CR29) 2018; 97
M Suzuki (2692_CR17) 1985; 26
J Preskill (2692_CR5) 2018; 2
T Albash (2692_CR19) 2018; 90
GR Garey (2692_CR9) 2000
H De Raedt (2692_CR38) 1983; 28
PI Bunyk (2692_CR10) 2014; 24
A Peruzzo (2692_CR22) 2014; 5
Z Bian (2692_CR11) 2014; 2
2692_CR26
S Hadfield (2692_CR21) 2019; 12
JA Nelder (2692_CR33) 1965; 7
Z Yang (2692_CR25) 2017; 7
DP Williamson (2692_CR27) 2011
2692_CR31
X Qiang (2692_CR7) 2018; 12
2692_CR30
A Kandala (2692_CR24) 2017; 549
T Boothby (2692_CR12) 2016; 15
MX Goemans (2692_CR28) 1995; 42
H De Raedt (2692_CR32) 2019; 237
N Chancellor (2692_CR20) 2017; 3
WH Press (2692_CR34) 2007
AM Childs (2692_CR16) 2001; 65
GG Guerreschi (2692_CR35) 2019; 9
A Finnila (2692_CR13) 1994; 219
M Born (2692_CR2) 1928; 51
2692_CR15
2692_CR37
2692_CR6
T Kadowaki (2692_CR14) 1998; 58
2692_CR36
2692_CR8
2692_CR1
HF Trotter (2692_CR18) 1959; 10
2692_CR3
References_xml – reference: KandalaAMezzacapoATemmeKTakitaMBrinkMChowJMGambettaJMHardware-efficient variational quantum eigensolver for small molecules and quantum magnetsNature20175492422017Natur.549..242K10.1038/nature23879
– reference: TrotterHFOn the product of semi-groups of operatorsProc. Am. Math. Soc.19591054510873210.1090/S0002-9939-1959-0108732-6
– reference: PressWHTeukolskySAVetterlingWTFlanneryBPNumerical Recipes, 3rd Edition: The Art of Scientific Computing2007New YorkCambridge University Press1132.65001
– reference: GoemansMXWilliamsonDPImproved approximation algorithms for maximum cut and satisfiability problems using semidefinite programmingJ. ACM1995421115141222810.1145/227683.227684
– reference: De RaedtHJinFWillschDWillschMYoshiokaNItoNYuanSMichielsenKMassively parallel quantum computer simulator, eleven years laterComput. Phys. Commun.2019237472019CoPhC.237...47D10.1016/j.cpc.2018.11.005
– reference: NelderJAMeadRA simplex method for function minimizationComput. J.19657308336340910.1093/comjnl/7.4.308
– reference: BornMFockVBeweis des AdiabatensatzesZ. Phys.1928511651928ZPhy...51..165B10.1007/BF01343193
– reference: Farhi, E., Goldstone, J., Gutmann, S., Sipser, M.: Quantum computation by adiabatic evolution (2000). arXiv:quant-ph/0001106
– reference: Hsu, T., Jin, F., Seidel, C., Neukart, F., De Raedt, H., Michielsen, K.: Quantum annealing with anneal path control: application to 2-SAT problems with known energy landscapes (2018). arXiv:1810.00194
– reference: GuerreschiGGMatsuuraAYQAOA for Max-Cut requires hundreds of qubits for quantum speed-upSci. Rep.2019969032019NatSR...9.6903G10.1038/s41598-019-43176-9
– reference: IBM: IBM Q experience. https://www.research.ibm.com/ibm-q/ (2016)
– reference: PeruzzoAMcCleanJShadboltPYungMZhouXLovePJAspuru-GuzikAO’BrienJLA variational eigenvalue solver on a photonic quantum processorNat. Commun.2014542132014NatCo...5.4213P10.1038/ncomms5213
– reference: YangZRahmaniAShabaniANevenHChamonCOptimizing variational quantum algorithms using Pontryagin’s minimum principlePhys. Rev. X20177021027
– reference: Farhi, E., Goldstone, J., Gutmann, S.: A quantum approximate optimization algorithm (2014). arXiv:1411.4028
– reference: PreskillJQuantum computing in the NISQ era and beyondQuantum201827910.22331/q-2018-08-06-79
– reference: FinnilaAGomezMSebenikCStensonCDollJQuantum annealing: a new method for minimizing multidimensional functionsChem. Phys. Lett.19942193431994CPL...219..343F10.1016/0009-2614(94)00117-0
– reference: BunykPIHoskinsonEMJohnsonMWTolkachevaEAltomareFBerkleyAJHarrisRHiltonJPLantingTPrzybyszAJWhittakerJArchitectural considerations in the design of a superconducting quantum annealing processorIEEE Trans. Appl. Supercond.201424110.1109/TASC.2014.2318294
– reference: Zhou, L., Wang, S.-T., Choi, S., Pichler, H., Lukin, M.D.: Quantum approximate optimization algorithm: performance, mechanism, and implementation on near-term devices (2018). arXiv:1812.01041v1
– reference: WangZHadfieldSJiangZRieffelEGQuantum approximate optimization algorithm for MaxCut: a fermionic viewPhys. Rev. A2018970223042018PhRvA..97b2304W10.1103/PhysRevA.97.022304
– reference: GareyGRJohnsonDComputers and Intractability2000San FransicoW.H. Freeaman
– reference: BianZChudakFIsraelRLackeyBMacreadyWGRoyADiscrete optimization using quantum annealing on sparse Ising modelsFront. Phys.201425610.3389/fphy.2014.00056
– reference: De RaedtHDe RaedtBApplications of the generalized Trotter formulaPhys. Rev. A19832835751983PhRvA..28.3575D72686410.1103/PhysRevA.28.3575
– reference: Farhi, E., Harrow, A.W.: Quantum supremacy through the quantum approximate optimization algorithm (2016). arXiv:1602.07674
– reference: Aleksandrowicz, G., Alexander, T., Barkoutsos, P., Bello, L., Ben-Haim, Y., Bucher, D., Cabrera-Hernádez, F.J., Carballo-Franquis, J., Chen, A., Chen, C.-F., Chow, J.M., Córcoles-Gonzales, A.D., Cross, A.J., Cross, A., Cruz-Benito, J., Culver, C., González, S.D. L.P., Torre, E.D.L., Ding, D., Dumitrescu, E., Duran, I., Eendebak, P., Everitt, M., Sertage, I.F., Frisch, A., Fuhrer, A., Gambetta, J., Gago, B.G., Gomez-Mosquera, J., Greenberg, D., Hamamura, I., Havlicek, V., Hellmers, J., Herok, Ł., Horii, H., Hu, S., Imamichi, T., Itoko, T., Javadi-Abhari, A., Kanazawa, N., Karazeev, A., Krsulich, K., Liu, P., Luh, Y., Maeng, Y., Marques, M., Martín-Fernández, F.J., McClure, D.T., McKay, D., Meesala, S., Mezzacapo, A., Moll, N., Rodríguez, D. M., Nannicini, G., Nation, P., Ollitrault, P., O’Riordan, L.J., Paik, H., Pérez, J., Phan, A., Pistoia, M., Prutyanov, V., Reuter, M., Rice, J., Davila, A.R., Rudy, R.H.P., Ryu, M., Sathaye, N., Schnabel, C., Schoute, E., Setia, K., Shi, Y., Silva, A., Siraichi, Y., Sivarajah, S., Smolin, J.A., Soeken, M., Takahashi, H., Tavernelli, I., Taylor, C., Taylour, P., Trabing, K., Treinish, M., Turner, W., Vogt-Lee, D., Vuillot, C., Wildstrom, J.A., Wilson, J., Winston, E., Wood, C., Wood, S., Wörner, S., Akhalwaya, I.Y., Zoufal, C.: Qiskit: an open-source framework for quantum computing (2019)
– reference: QiangXZhouXWangJWilkesCMLokeTO’GaraSKlingLMarshallGDSantagatiRRalphTCWangJBO’BrienJLThompsonMGMatthewsJCFLarge-scale silicon quantum photonics implementing arbitrary two-qubit processingNat. Photon.2018125342018NaPho..12..534Q10.1038/s41566-018-0236-y
– reference: Otterbach, J. S., Manenti, R., Alidoust, N., Bestwick, A., Block, M., Bloom, B., Caldwell, S., Didier, N., Fried, E. S., Hong, S., Karalekas, P., Osborn, C.B., Papageorge, A., Peterson, E.C., Prawiroatmodjo, G., Rubin, G., Ryan, C.A., Scarabelli, D., Scheer, M., Sete, E.A., Sivarajah, P., Smith, R.S., Staley, A., Tezak, N., Zeng, W.J., Hudson, A., Johnson, B.R., Reagor, M., da Silva, M.P., Rigetti, C.: Unsupervised machine learning on a hybrid quantum computer (2017). arXiv:1712.05771
– reference: KadowakiTNishimoriHQuantum annealing in the transverse Ising modelPhys. Rev. E19985853551998PhRvE..58.5355K10.1103/PhysRevE.58.5355
– reference: ShorPWPolynomial-time algorithms for prime factorization and discrete logarithms on a quantum computerSIAM J. Comput.1997261484147199010.1137/S0097539795293172
– reference: O’MalleyPJJBabbushRKivlichanIDRomeroJMcCleanJRBarendsRKellyJRoushanPTranterADingNCampbellBChenYChenZChiaroBDunsworthAFowlerAGJeffreyELuceroEMegrantAMutusJYNeeleyMNeillCQuintanaCSankDVainsencherAWennerJWhiteTCCoveneyPVLovePJNevenHAspuru-GuzikAMartinisJMScalable quantum simulation of molecular energiesPhys. Rev. X20166031007
– reference: SuzukiMDecomposition formulas of exponential operators and Lie exponentials with some applications to quantum mechanics and statistical physicsJ. Math. Phys.1985266011985JMP....26..601S78567010.1063/1.526596
– reference: AlbashTLidarDAdiabatic quantum computationRev. Mod. Phys.2018900150022018RvMP...90a5002A378842410.1103/RevModPhys.90.015002
– reference: ChancellorNZohrenSWarburtonPACircuit design for multi-body interactions in superconducting quantum annealing systems with applications to a scalable architectureNPJ Quantum Inf.20173212017npjQI...3...21C10.1038/s41534-017-0022-6
– reference: WilliamsonDPShmoysDBThe Design of Approximation Algorithms2011CambridgeCambridge University Press10.1017/CBO9780511921735
– reference: BoothbyTKingADRoyAFast clique minor generation in Chimera qubit connectivity graphsQuantum Inf. Process.2016154952016QuIP...15..495B344141410.1007/s11128-015-1150-6
– reference: Streif, M., Leib, M.: Comparison of QAOA with quantum and simulated annealing (2019). arXiv:1901.01903
– reference: ChildsAMFarhiEPreskillJRobustness of adiabatic quantum computationPhys. Rev. A2001650123222002PhRvA..65a2322C10.1103/PhysRevA.65.012322
– reference: HadfieldSWangZO’GormanBRieffelEGVenturelliDBiswasRFrom the quantum approximate optimization algorithm to a quantum alternating operator ansatzAlgorithms20191234393270710.3390/a12020034
– reference: Crooks, G.E.: Performance of the quantum approximate optimization algorithm on the maximum cut problem (2018). arXiv:1811.08419v1
– volume: 12
  start-page: 34
  year: 2019
  ident: 2692_CR21
  publication-title: Algorithms
  doi: 10.3390/a12020034
– volume-title: The Design of Approximation Algorithms
  year: 2011
  ident: 2692_CR27
  doi: 10.1017/CBO9780511921735
– volume: 12
  start-page: 534
  year: 2018
  ident: 2692_CR7
  publication-title: Nat. Photon.
  doi: 10.1038/s41566-018-0236-y
– ident: 2692_CR6
– volume: 24
  start-page: 1
  year: 2014
  ident: 2692_CR10
  publication-title: IEEE Trans. Appl. Supercond.
  doi: 10.1109/TASC.2014.2318294
– volume: 15
  start-page: 495
  year: 2016
  ident: 2692_CR12
  publication-title: Quantum Inf. Process.
  doi: 10.1007/s11128-015-1150-6
– volume: 2
  start-page: 79
  year: 2018
  ident: 2692_CR5
  publication-title: Quantum
  doi: 10.22331/q-2018-08-06-79
– volume: 237
  start-page: 47
  year: 2019
  ident: 2692_CR32
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2018.11.005
– ident: 2692_CR8
– volume: 5
  start-page: 4213
  year: 2014
  ident: 2692_CR22
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5213
– volume: 58
  start-page: 5355
  year: 1998
  ident: 2692_CR14
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.58.5355
– volume: 26
  start-page: 1484
  year: 1997
  ident: 2692_CR4
  publication-title: SIAM J. Comput.
  doi: 10.1137/S0097539795293172
– volume: 65
  start-page: 012322
  year: 2001
  ident: 2692_CR16
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.65.012322
– ident: 2692_CR36
– ident: 2692_CR15
– volume: 51
  start-page: 165
  year: 1928
  ident: 2692_CR2
  publication-title: Z. Phys.
  doi: 10.1007/BF01343193
– ident: 2692_CR30
– volume-title: Numerical Recipes, 3rd Edition: The Art of Scientific Computing
  year: 2007
  ident: 2692_CR34
– volume: 26
  start-page: 601
  year: 1985
  ident: 2692_CR17
  publication-title: J. Math. Phys.
  doi: 10.1063/1.526596
– volume: 7
  start-page: 308
  year: 1965
  ident: 2692_CR33
  publication-title: Comput. J.
  doi: 10.1093/comjnl/7.4.308
– volume: 42
  start-page: 1115
  year: 1995
  ident: 2692_CR28
  publication-title: J. ACM
  doi: 10.1145/227683.227684
– volume: 6
  start-page: 031007
  year: 2016
  ident: 2692_CR23
  publication-title: Phys. Rev. X
– volume: 28
  start-page: 3575
  year: 1983
  ident: 2692_CR38
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.28.3575
– ident: 2692_CR3
– volume: 97
  start-page: 022304
  year: 2018
  ident: 2692_CR29
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.97.022304
– volume: 7
  start-page: 021027
  year: 2017
  ident: 2692_CR25
  publication-title: Phys. Rev. X
– ident: 2692_CR1
– volume: 90
  start-page: 015002
  year: 2018
  ident: 2692_CR19
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.90.015002
– volume: 549
  start-page: 242
  year: 2017
  ident: 2692_CR24
  publication-title: Nature
  doi: 10.1038/nature23879
– volume: 10
  start-page: 545
  year: 1959
  ident: 2692_CR18
  publication-title: Proc. Am. Math. Soc.
  doi: 10.1090/S0002-9939-1959-0108732-6
– ident: 2692_CR37
– ident: 2692_CR26
  doi: 10.4208/cicp.OA-2018-0257
– volume-title: Computers and Intractability
  year: 2000
  ident: 2692_CR9
– ident: 2692_CR31
– volume: 2
  start-page: 56
  year: 2014
  ident: 2692_CR11
  publication-title: Front. Phys.
  doi: 10.3389/fphy.2014.00056
– volume: 3
  start-page: 21
  year: 2017
  ident: 2692_CR20
  publication-title: NPJ Quantum Inf.
  doi: 10.1038/s41534-017-0022-6
– volume: 219
  start-page: 343
  year: 1994
  ident: 2692_CR13
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(94)00117-0
– volume: 9
  start-page: 6903
  year: 2019
  ident: 2692_CR35
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-43176-9
SSID ssj0021686
Score 2.5948043
Snippet The performance of the quantum approximate optimization algorithm is evaluated by using three different measures: the probability of finding the ground state,...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Algorithms
Computer simulation
Data Structures and Information Theory
Ground state
Ising model
Mathematical Physics
Optimization
Optimization algorithms
Physics
Physics and Astronomy
Quantum computers
Quantum Computing
Quantum Information Technology
Quantum Physics
Simulators
Spintronics
Title Benchmarking the quantum approximate optimization algorithm
URI https://link.springer.com/article/10.1007/s11128-020-02692-8
https://www.proquest.com/docview/2408866874
Volume 19
WOSCitedRecordID wos000538059200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLink Journals
  customDbUrl:
  eissn: 1573-1332
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021686
  issn: 1570-0755
  databaseCode: RSV
  dateStart: 20020401
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZggMSFwQAxGKgHbtBDlyZNxAkQE6cJ8dJuVeqmbNK6wdohfj5u1lKBAAmOTdOosmP7c-IHwLHisoDlxiVTzVxfGOOqKFGuL9ELjA6kx9A2mwj6fTkYqJsyKSyrot2rK0mrqetkN4IG0i3cHfIbFMnxMqyQuZOFON7ePX64WZ6w_R09XrRUCTgvU2W-X-OzOaox5pdrUWttes3__ecmbJTo0jlfbIctWDKTFjSrzg1OKcgtWLOBn5htw9kFjQxTbY_MHUKDzsuciD1PHVtt_G1EiNY4U1IsaZmx6ejx03Q2yofpDjz0ru4vr92yoYKLZHZy15BmiyPkPvoJWerEREmiNKOBLsNYxyTNATNCaxJ8oelBagJgImGBjrlQyHahMZlOzB44DFUQRX6cCI4-eqh0oiVXEpEpjp5og1fRNcSy2njR9GIc1nWSCzqFRKfQ0imUbTj5-OZ5UWvj19mdil1hKXdZWBRsk0LIwG_DacWe-vXPq-3_bfoBrHcth4u43Q408tncHMIqvuajbHZk9-M7hwDYkQ
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZggODCeIrBgB64QQ8lTZqIEyAQiDEhGGi3KnVTmLRusG6In4-btUwgQIJj0zSq7Nj-nPgBsKe4zGG5cclUM9cXxrgqSpTrS_QCowPpMbTNJoJmU7bb6qZICsvKaPfyStJq6kmyG0ED6ebuDvkNiuR4GmZ8slh5IN_t3cOHm-UJ29_R43lLlYDzIlXm-zU-m6MJxvxyLWqtzXn1f_-5BIsFunSOx9thGaZMbwWqZecGpxDkFZizgZ-YrcLRCY08pdoemTuEBp2XERF7lDq22vhbhxCtcfqkWNIiY9PR3cf-oDN8Stfg_vysdXrhFg0VXCSzM3QNabY4Qu6jn5ClTkyUJEozGjhkGOuYpDlgRmhNgi80PUhNAEwkLNAxFwrZOlR6_Z7ZAIehCqLIjxPB0UcPlU605EoiMsXREzXwSrqGWFQbz5tedMNJneScTiHRKbR0CmUN9j--eR7X2vh1dr1kV1jIXRbmBdukEDLwa3BQsmfy-ufVNv82fRfmL1rXjbBx2bzagoVDy-08hrcOleFgZLZhFl-HnWywY_fmO7bn23U
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB6xZRdx4Y0ozxy4LRFKHTu2OPGqQKAKCVhxi5yJDZXogzZF_HzGbkJhBUirPcZxrGjG4_nG9swHsKu4dLDchOSqWRgLY0KVWRXGEqPE6ERGDD3ZRNJqybs7dfUui9_fdq-OJMc5Da5KU7fY7-d2f5L4RjBBhi70oRhCkU3_gOnYkQa5eP36z1vIFQnP9RhxR6-ScF6mzXw-xkfXNMGbfx2Res_TnP__f16AuRJ1BofjabIIU6a7BPMVo0NQGvgS_PIXQnG4DAdH1PLQ0X4rPSCUGDyNSAmjTuCrkL-0CemaoEcLTqfM5Az0431v0C4eOitw2zy9OT4LS6KFEMkdFaGhFS_PkMcYW_Lg1mTWKs2oocEw1zlZecKM0JoWBKHpQWoCZsKyROdcKGSrUOv2umYNAoYqybI4t4JjjBEqbbXkSiIyxTESdYgqGadYViF3ZBiP6aR-spNTSnJKvZxSWYffb9_0xzU4vu29WakuLe1xmLpCblIImcR12KtUNXn99Wjr_9Z9B2auTprp5XnrYgNmG17Z7mrvJtSKwchswU98LtrDwbafpq-0qeRZ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Benchmarking+the+quantum+approximate+optimization+algorithm&rft.jtitle=Quantum+information+processing&rft.au=Willsch%2C+Madita&rft.au=Willsch%2C+Dennis&rft.au=Jin%2C+Fengping&rft.au=De+Raedt%2C+Hans&rft.date=2020-07-01&rft.issn=1570-0755&rft.eissn=1573-1332&rft.volume=19&rft.issue=7&rft_id=info:doi/10.1007%2Fs11128-020-02692-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11128_020_02692_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1570-0755&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1570-0755&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1570-0755&client=summon