Benchmarking the quantum approximate optimization algorithm
The performance of the quantum approximate optimization algorithm is evaluated by using three different measures: the probability of finding the ground state, the energy expectation value, and a ratio closely related to the approximation ratio. The set of problem instances studied consists of weight...
Uložené v:
| Vydané v: | Quantum information processing Ročník 19; číslo 7 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
Springer US
01.07.2020
Springer Nature B.V |
| Predmet: | |
| ISSN: | 1570-0755, 1573-1332 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The performance of the quantum approximate optimization algorithm is evaluated by using three different measures: the probability of finding the ground state, the energy expectation value, and a ratio closely related to the approximation ratio. The set of problem instances studied consists of weighted MaxCut problems and 2-satisfiability problems. The Ising model representations of the latter possess unique ground states and highly degenerate first excited states. The quantum approximate optimization algorithm is executed on quantum computer simulators and on the IBM Q Experience. Additionally, data obtained from the D-Wave 2000Q quantum annealer are used for comparison, and it is found that the D-Wave machine outperforms the quantum approximate optimization algorithm executed on a simulator. The overall performance of the quantum approximate optimization algorithm is found to strongly depend on the problem instance. |
|---|---|
| AbstractList | The performance of the quantum approximate optimization algorithm is evaluated by using three different measures: the probability of finding the ground state, the energy expectation value, and a ratio closely related to the approximation ratio. The set of problem instances studied consists of weighted MaxCut problems and 2-satisfiability problems. The Ising model representations of the latter possess unique ground states and highly degenerate first excited states. The quantum approximate optimization algorithm is executed on quantum computer simulators and on the IBM Q Experience. Additionally, data obtained from the D-Wave 2000Q quantum annealer are used for comparison, and it is found that the D-Wave machine outperforms the quantum approximate optimization algorithm executed on a simulator. The overall performance of the quantum approximate optimization algorithm is found to strongly depend on the problem instance. |
| ArticleNumber | 197 |
| Author | Willsch, Dennis Jin, Fengping De Raedt, Hans Willsch, Madita Michielsen, Kristel |
| Author_xml | – sequence: 1 givenname: Madita orcidid: 0000-0002-2351-3162 surname: Willsch fullname: Willsch, Madita email: m.willsch@fz-juelich.de organization: Institute for Advanced Simulation, Jülich Supercomputing Centre, Forschungszentrum Jülich, RWTH Aachen University – sequence: 2 givenname: Dennis surname: Willsch fullname: Willsch, Dennis organization: Institute for Advanced Simulation, Jülich Supercomputing Centre, Forschungszentrum Jülich, RWTH Aachen University – sequence: 3 givenname: Fengping surname: Jin fullname: Jin, Fengping organization: Institute for Advanced Simulation, Jülich Supercomputing Centre, Forschungszentrum Jülich – sequence: 4 givenname: Hans surname: De Raedt fullname: De Raedt, Hans organization: Zernike Institute for Advanced Materials, University of Groningen – sequence: 5 givenname: Kristel surname: Michielsen fullname: Michielsen, Kristel organization: Institute for Advanced Simulation, Jülich Supercomputing Centre, Forschungszentrum Jülich, RWTH Aachen University |
| BookMark | eNp9kE1LAzEQhoNUsK3-AU8LnlfzsZtk8aTFLyh40XOYZrNtaje7TbKg_npjVxA8eBgyk8wz8-adoYnrnEHonOBLgrG4CoQQKnNMcQpe0VweoSkpBcsJY3RyyNOTKMsTNAthizElXPIpur41Tm9a8G_WrbO4Mdl-ABeHNoO-9927bSGarOujbe0nRNu5DHbrztu4aU_RcQO7YM5-zjl6vb97WTzmy-eHp8XNMtcFrWJuKkLqlS4LXTRMksasmqYCli4o0zXUuJCCGQ7AsOCQCglVSXjDBNQlrzSbo4txbhK0H0yIatsN3qWVihZYSs6lKFIXHbu070LwplG9T-r9hyJYfZukRpNUMkkdTFIyQfIPpG08fDN6sLv_UTaiIe1xa-N_Vf1DfQGgPX45 |
| CitedBy_id | crossref_primary_10_1007_s42484_024_00159_y crossref_primary_10_1103_PhysRevA_103_042612 crossref_primary_10_1145_3678184 crossref_primary_10_1103_PRXQuantum_2_010101 crossref_primary_10_1103_PhysRevResearch_5_043005 crossref_primary_10_1007_s42354_021_0335_7 crossref_primary_10_1016_j_cpc_2022_108411 crossref_primary_10_1038_s41598_022_20853_w crossref_primary_10_1109_ACCESS_2022_3188117 crossref_primary_10_1103_PhysRevA_106_062414 crossref_primary_10_1103_PhysRevResearch_4_013141 crossref_primary_10_1145_3620668 crossref_primary_10_1088_1367_2630_ad64fb crossref_primary_10_1016_j_physrep_2024_03_002 crossref_primary_10_1088_1402_4896_ad6aea crossref_primary_10_1103_PhysRevResearch_4_023249 crossref_primary_10_1088_2058_9565_ac91ef crossref_primary_10_1088_2058_9565_add61d crossref_primary_10_1103_PhysRevA_106_022423 crossref_primary_10_1007_s11128_022_03623_5 crossref_primary_10_1007_s00521_025_11353_9 crossref_primary_10_1007_s00521_022_07438_4 crossref_primary_10_1007_s11128_023_04025_x crossref_primary_10_1103_PRXQuantum_3_040339 crossref_primary_10_1016_j_ins_2022_11_020 crossref_primary_10_1016_j_ress_2025_111153 crossref_primary_10_1137_22M1514581 crossref_primary_10_1038_s41534_021_00440_z crossref_primary_10_1155_2021_1616725 crossref_primary_10_1016_j_jcp_2024_113070 crossref_primary_10_1103_PRXQuantum_4_030335 crossref_primary_10_1002_qute_202300419 crossref_primary_10_3390_s23104852 crossref_primary_10_1088_1402_4896_ad5a50 crossref_primary_10_1038_s41534_025_01020_1 crossref_primary_10_1038_s41598_024_76967_w crossref_primary_10_1103_PhysRevResearch_6_033215 crossref_primary_10_1103_PhysRevA_111_032411 crossref_primary_10_1007_s42484_022_00077_x crossref_primary_10_1088_1402_4896_acf6e8 crossref_primary_10_1088_2058_9565_ad35e4 crossref_primary_10_1103_PhysRevApplied_19_024047 crossref_primary_10_1038_s41534_024_00825_w crossref_primary_10_3390_math11092176 crossref_primary_10_20935_AcadQuant7900 crossref_primary_10_1103_vfxh_gjgy crossref_primary_10_1103_PhysRevApplied_22_044074 crossref_primary_10_1109_ACCESS_2025_3550788 crossref_primary_10_1002_qute_202300055 crossref_primary_10_1109_TNNLS_2022_3190042 crossref_primary_10_1038_s41567_020_01105_y crossref_primary_10_1088_2058_9565_ace474 crossref_primary_10_1088_1751_8121_ad00f0 crossref_primary_10_1103_PhysRevApplied_20_034062 crossref_primary_10_1109_TITS_2022_3172241 crossref_primary_10_1007_s11128_023_03968_5 crossref_primary_10_1016_j_cam_2021_113388 crossref_primary_10_1103_PhysRevResearch_5_023171 crossref_primary_10_1103_PhysRevA_104_032401 crossref_primary_10_3390_e25111499 crossref_primary_10_1103_n7r5_s63q crossref_primary_10_1007_s11128_021_03226_6 crossref_primary_10_1007_s11128_025_04675_z crossref_primary_10_1088_2632_072X_abdadc crossref_primary_10_1007_s11128_022_03476_y |
| Cites_doi | 10.3390/a12020034 10.1017/CBO9780511921735 10.1038/s41566-018-0236-y 10.1109/TASC.2014.2318294 10.1007/s11128-015-1150-6 10.22331/q-2018-08-06-79 10.1016/j.cpc.2018.11.005 10.1038/ncomms5213 10.1103/PhysRevE.58.5355 10.1137/S0097539795293172 10.1103/PhysRevA.65.012322 10.1007/BF01343193 10.1063/1.526596 10.1093/comjnl/7.4.308 10.1145/227683.227684 10.1103/PhysRevA.28.3575 10.1103/PhysRevA.97.022304 10.1103/RevModPhys.90.015002 10.1038/nature23879 10.1090/S0002-9939-1959-0108732-6 10.4208/cicp.OA-2018-0257 10.3389/fphy.2014.00056 10.1038/s41534-017-0022-6 10.1016/0009-2614(94)00117-0 10.1038/s41598-019-43176-9 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2020 The Author(s) 2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2020 – notice: The Author(s) 2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION JQ2 |
| DOI | 10.1007/s11128-020-02692-8 |
| DatabaseName | Springer Nature Link CrossRef ProQuest Computer Science Collection |
| DatabaseTitle | CrossRef ProQuest Computer Science Collection |
| DatabaseTitleList | ProQuest Computer Science Collection CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics Computer Science |
| EISSN | 1573-1332 |
| ExternalDocumentID | 10_1007_s11128_020_02692_8 |
| GrantInformation_xml | – fundername: European Commission grantid: 820363 funderid: http://dx.doi.org/10.13039/501100000780 – fundername: Helmholtz-Gemeinschaft grantid: ZT-0013 funderid: http://dx.doi.org/10.13039/501100001656 |
| GroupedDBID | -5F -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 123 1N0 203 29P 29~ 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 8TC 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BGNMA BSONS C6C CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z J9A JBSCW JCJTX JZLTJ KDC KOV LAK LLZTM M4Y MA- N2Q NPVJJ NQJWS NU0 O9- O93 O9J OAM OVD P2P P9O PF0 PT4 QOS R89 R9I RIG RNI RNS ROL RPX RSV RZC RZE S16 S1Z S27 S3B SAP SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE SZN T13 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7X Z7Y Z7Z Z83 Z88 ZMTXR ~8M ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION JQ2 |
| ID | FETCH-LOGICAL-c429t-e911dbc54c4f381febff9a3c5423cdad04873e6aa3076a4878a9516f37ad569c3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 99 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000538059200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1570-0755 |
| IngestDate | Thu Sep 25 00:51:17 EDT 2025 Tue Nov 18 20:41:45 EST 2025 Sat Nov 29 03:12:02 EST 2025 Fri Feb 21 02:38:37 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Keywords | Quantum annealing Quantum computation Optimization problems QAOA |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c429t-e911dbc54c4f381febff9a3c5423cdad04873e6aa3076a4878a9516f37ad569c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-2351-3162 |
| OpenAccessLink | https://link.springer.com/10.1007/s11128-020-02692-8 |
| PQID | 2408866874 |
| PQPubID | 2043832 |
| ParticipantIDs | proquest_journals_2408866874 crossref_primary_10_1007_s11128_020_02692_8 crossref_citationtrail_10_1007_s11128_020_02692_8 springer_journals_10_1007_s11128_020_02692_8 |
| PublicationCentury | 2000 |
| PublicationDate | 20200700 |
| PublicationDateYYYYMMDD | 2020-07-01 |
| PublicationDate_xml | – month: 7 year: 2020 text: 20200700 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Dordrecht |
| PublicationTitle | Quantum information processing |
| PublicationTitleAbbrev | Quantum Inf Process |
| PublicationYear | 2020 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | WangZHadfieldSJiangZRieffelEGQuantum approximate optimization algorithm for MaxCut: a fermionic viewPhys. Rev. A2018970223042018PhRvA..97b2304W10.1103/PhysRevA.97.022304 Farhi, E., Goldstone, J., Gutmann, S.: A quantum approximate optimization algorithm (2014). arXiv:1411.4028 BoothbyTKingADRoyAFast clique minor generation in Chimera qubit connectivity graphsQuantum Inf. Process.2016154952016QuIP...15..495B344141410.1007/s11128-015-1150-6 ChancellorNZohrenSWarburtonPACircuit design for multi-body interactions in superconducting quantum annealing systems with applications to a scalable architectureNPJ Quantum Inf.20173212017npjQI...3...21C10.1038/s41534-017-0022-6 HadfieldSWangZO’GormanBRieffelEGVenturelliDBiswasRFrom the quantum approximate optimization algorithm to a quantum alternating operator ansatzAlgorithms20191234393270710.3390/a12020034 TrotterHFOn the product of semi-groups of operatorsProc. Am. Math. Soc.19591054510873210.1090/S0002-9939-1959-0108732-6 BunykPIHoskinsonEMJohnsonMWTolkachevaEAltomareFBerkleyAJHarrisRHiltonJPLantingTPrzybyszAJWhittakerJArchitectural considerations in the design of a superconducting quantum annealing processorIEEE Trans. Appl. Supercond.201424110.1109/TASC.2014.2318294 Farhi, E., Goldstone, J., Gutmann, S., Sipser, M.: Quantum computation by adiabatic evolution (2000). arXiv:quant-ph/0001106 Otterbach, J. S., Manenti, R., Alidoust, N., Bestwick, A., Block, M., Bloom, B., Caldwell, S., Didier, N., Fried, E. S., Hong, S., Karalekas, P., Osborn, C.B., Papageorge, A., Peterson, E.C., Prawiroatmodjo, G., Rubin, G., Ryan, C.A., Scarabelli, D., Scheer, M., Sete, E.A., Sivarajah, P., Smith, R.S., Staley, A., Tezak, N., Zeng, W.J., Hudson, A., Johnson, B.R., Reagor, M., da Silva, M.P., Rigetti, C.: Unsupervised machine learning on a hybrid quantum computer (2017). arXiv:1712.05771 Aleksandrowicz, G., Alexander, T., Barkoutsos, P., Bello, L., Ben-Haim, Y., Bucher, D., Cabrera-Hernádez, F.J., Carballo-Franquis, J., Chen, A., Chen, C.-F., Chow, J.M., Córcoles-Gonzales, A.D., Cross, A.J., Cross, A., Cruz-Benito, J., Culver, C., González, S.D. L.P., Torre, E.D.L., Ding, D., Dumitrescu, E., Duran, I., Eendebak, P., Everitt, M., Sertage, I.F., Frisch, A., Fuhrer, A., Gambetta, J., Gago, B.G., Gomez-Mosquera, J., Greenberg, D., Hamamura, I., Havlicek, V., Hellmers, J., Herok, Ł., Horii, H., Hu, S., Imamichi, T., Itoko, T., Javadi-Abhari, A., Kanazawa, N., Karazeev, A., Krsulich, K., Liu, P., Luh, Y., Maeng, Y., Marques, M., Martín-Fernández, F.J., McClure, D.T., McKay, D., Meesala, S., Mezzacapo, A., Moll, N., Rodríguez, D. M., Nannicini, G., Nation, P., Ollitrault, P., O’Riordan, L.J., Paik, H., Pérez, J., Phan, A., Pistoia, M., Prutyanov, V., Reuter, M., Rice, J., Davila, A.R., Rudy, R.H.P., Ryu, M., Sathaye, N., Schnabel, C., Schoute, E., Setia, K., Shi, Y., Silva, A., Siraichi, Y., Sivarajah, S., Smolin, J.A., Soeken, M., Takahashi, H., Tavernelli, I., Taylor, C., Taylour, P., Trabing, K., Treinish, M., Turner, W., Vogt-Lee, D., Vuillot, C., Wildstrom, J.A., Wilson, J., Winston, E., Wood, C., Wood, S., Wörner, S., Akhalwaya, I.Y., Zoufal, C.: Qiskit: an open-source framework for quantum computing (2019) NelderJAMeadRA simplex method for function minimizationComput. J.19657308336340910.1093/comjnl/7.4.308 De RaedtHDe RaedtBApplications of the generalized Trotter formulaPhys. Rev. A19832835751983PhRvA..28.3575D72686410.1103/PhysRevA.28.3575 ShorPWPolynomial-time algorithms for prime factorization and discrete logarithms on a quantum computerSIAM J. Comput.1997261484147199010.1137/S0097539795293172 KadowakiTNishimoriHQuantum annealing in the transverse Ising modelPhys. Rev. E19985853551998PhRvE..58.5355K10.1103/PhysRevE.58.5355 GareyGRJohnsonDComputers and Intractability2000San FransicoW.H. Freeaman O’MalleyPJJBabbushRKivlichanIDRomeroJMcCleanJRBarendsRKellyJRoushanPTranterADingNCampbellBChenYChenZChiaroBDunsworthAFowlerAGJeffreyELuceroEMegrantAMutusJYNeeleyMNeillCQuintanaCSankDVainsencherAWennerJWhiteTCCoveneyPVLovePJNevenHAspuru-GuzikAMartinisJMScalable quantum simulation of molecular energiesPhys. Rev. X20166031007 YangZRahmaniAShabaniANevenHChamonCOptimizing variational quantum algorithms using Pontryagin’s minimum principlePhys. Rev. X20177021027 GuerreschiGGMatsuuraAYQAOA for Max-Cut requires hundreds of qubits for quantum speed-upSci. Rep.2019969032019NatSR...9.6903G10.1038/s41598-019-43176-9 AlbashTLidarDAdiabatic quantum computationRev. Mod. Phys.2018900150022018RvMP...90a5002A378842410.1103/RevModPhys.90.015002 FinnilaAGomezMSebenikCStensonCDollJQuantum annealing: a new method for minimizing multidimensional functionsChem. Phys. Lett.19942193431994CPL...219..343F10.1016/0009-2614(94)00117-0 GoemansMXWilliamsonDPImproved approximation algorithms for maximum cut and satisfiability problems using semidefinite programmingJ. ACM1995421115141222810.1145/227683.227684 Zhou, L., Wang, S.-T., Choi, S., Pichler, H., Lukin, M.D.: Quantum approximate optimization algorithm: performance, mechanism, and implementation on near-term devices (2018). arXiv:1812.01041v1 SuzukiMDecomposition formulas of exponential operators and Lie exponentials with some applications to quantum mechanics and statistical physicsJ. Math. Phys.1985266011985JMP....26..601S78567010.1063/1.526596 IBM: IBM Q experience. https://www.research.ibm.com/ibm-q/ (2016) BornMFockVBeweis des AdiabatensatzesZ. Phys.1928511651928ZPhy...51..165B10.1007/BF01343193 KandalaAMezzacapoATemmeKTakitaMBrinkMChowJMGambettaJMHardware-efficient variational quantum eigensolver for small molecules and quantum magnetsNature20175492422017Natur.549..242K10.1038/nature23879 De RaedtHJinFWillschDWillschMYoshiokaNItoNYuanSMichielsenKMassively parallel quantum computer simulator, eleven years laterComput. Phys. Commun.2019237472019CoPhC.237...47D10.1016/j.cpc.2018.11.005 PreskillJQuantum computing in the NISQ era and beyondQuantum201827910.22331/q-2018-08-06-79 WilliamsonDPShmoysDBThe Design of Approximation Algorithms2011CambridgeCambridge University Press10.1017/CBO9780511921735 BianZChudakFIsraelRLackeyBMacreadyWGRoyADiscrete optimization using quantum annealing on sparse Ising modelsFront. Phys.201425610.3389/fphy.2014.00056 Hsu, T., Jin, F., Seidel, C., Neukart, F., De Raedt, H., Michielsen, K.: Quantum annealing with anneal path control: application to 2-SAT problems with known energy landscapes (2018). arXiv:1810.00194 Streif, M., Leib, M.: Comparison of QAOA with quantum and simulated annealing (2019). arXiv:1901.01903 PressWHTeukolskySAVetterlingWTFlanneryBPNumerical Recipes, 3rd Edition: The Art of Scientific Computing2007New YorkCambridge University Press1132.65001 ChildsAMFarhiEPreskillJRobustness of adiabatic quantum computationPhys. Rev. A2001650123222002PhRvA..65a2322C10.1103/PhysRevA.65.012322 Crooks, G.E.: Performance of the quantum approximate optimization algorithm on the maximum cut problem (2018). arXiv:1811.08419v1 PeruzzoAMcCleanJShadboltPYungMZhouXLovePJAspuru-GuzikAO’BrienJLA variational eigenvalue solver on a photonic quantum processorNat. Commun.2014542132014NatCo...5.4213P10.1038/ncomms5213 QiangXZhouXWangJWilkesCMLokeTO’GaraSKlingLMarshallGDSantagatiRRalphTCWangJBO’BrienJLThompsonMGMatthewsJCFLarge-scale silicon quantum photonics implementing arbitrary two-qubit processingNat. Photon.2018125342018NaPho..12..534Q10.1038/s41566-018-0236-y Farhi, E., Harrow, A.W.: Quantum supremacy through the quantum approximate optimization algorithm (2016). arXiv:1602.07674 PJJ O’Malley (2692_CR23) 2016; 6 PW Shor (2692_CR4) 1997; 26 Z Wang (2692_CR29) 2018; 97 M Suzuki (2692_CR17) 1985; 26 J Preskill (2692_CR5) 2018; 2 T Albash (2692_CR19) 2018; 90 GR Garey (2692_CR9) 2000 H De Raedt (2692_CR38) 1983; 28 PI Bunyk (2692_CR10) 2014; 24 A Peruzzo (2692_CR22) 2014; 5 Z Bian (2692_CR11) 2014; 2 2692_CR26 S Hadfield (2692_CR21) 2019; 12 JA Nelder (2692_CR33) 1965; 7 Z Yang (2692_CR25) 2017; 7 DP Williamson (2692_CR27) 2011 2692_CR31 X Qiang (2692_CR7) 2018; 12 2692_CR30 A Kandala (2692_CR24) 2017; 549 T Boothby (2692_CR12) 2016; 15 MX Goemans (2692_CR28) 1995; 42 H De Raedt (2692_CR32) 2019; 237 N Chancellor (2692_CR20) 2017; 3 WH Press (2692_CR34) 2007 AM Childs (2692_CR16) 2001; 65 GG Guerreschi (2692_CR35) 2019; 9 A Finnila (2692_CR13) 1994; 219 M Born (2692_CR2) 1928; 51 2692_CR15 2692_CR37 2692_CR6 T Kadowaki (2692_CR14) 1998; 58 2692_CR36 2692_CR8 2692_CR1 HF Trotter (2692_CR18) 1959; 10 2692_CR3 |
| References_xml | – reference: KandalaAMezzacapoATemmeKTakitaMBrinkMChowJMGambettaJMHardware-efficient variational quantum eigensolver for small molecules and quantum magnetsNature20175492422017Natur.549..242K10.1038/nature23879 – reference: TrotterHFOn the product of semi-groups of operatorsProc. Am. Math. Soc.19591054510873210.1090/S0002-9939-1959-0108732-6 – reference: PressWHTeukolskySAVetterlingWTFlanneryBPNumerical Recipes, 3rd Edition: The Art of Scientific Computing2007New YorkCambridge University Press1132.65001 – reference: GoemansMXWilliamsonDPImproved approximation algorithms for maximum cut and satisfiability problems using semidefinite programmingJ. ACM1995421115141222810.1145/227683.227684 – reference: De RaedtHJinFWillschDWillschMYoshiokaNItoNYuanSMichielsenKMassively parallel quantum computer simulator, eleven years laterComput. Phys. Commun.2019237472019CoPhC.237...47D10.1016/j.cpc.2018.11.005 – reference: NelderJAMeadRA simplex method for function minimizationComput. J.19657308336340910.1093/comjnl/7.4.308 – reference: BornMFockVBeweis des AdiabatensatzesZ. Phys.1928511651928ZPhy...51..165B10.1007/BF01343193 – reference: Farhi, E., Goldstone, J., Gutmann, S., Sipser, M.: Quantum computation by adiabatic evolution (2000). arXiv:quant-ph/0001106 – reference: Hsu, T., Jin, F., Seidel, C., Neukart, F., De Raedt, H., Michielsen, K.: Quantum annealing with anneal path control: application to 2-SAT problems with known energy landscapes (2018). arXiv:1810.00194 – reference: GuerreschiGGMatsuuraAYQAOA for Max-Cut requires hundreds of qubits for quantum speed-upSci. Rep.2019969032019NatSR...9.6903G10.1038/s41598-019-43176-9 – reference: IBM: IBM Q experience. https://www.research.ibm.com/ibm-q/ (2016) – reference: PeruzzoAMcCleanJShadboltPYungMZhouXLovePJAspuru-GuzikAO’BrienJLA variational eigenvalue solver on a photonic quantum processorNat. Commun.2014542132014NatCo...5.4213P10.1038/ncomms5213 – reference: YangZRahmaniAShabaniANevenHChamonCOptimizing variational quantum algorithms using Pontryagin’s minimum principlePhys. Rev. X20177021027 – reference: Farhi, E., Goldstone, J., Gutmann, S.: A quantum approximate optimization algorithm (2014). arXiv:1411.4028 – reference: PreskillJQuantum computing in the NISQ era and beyondQuantum201827910.22331/q-2018-08-06-79 – reference: FinnilaAGomezMSebenikCStensonCDollJQuantum annealing: a new method for minimizing multidimensional functionsChem. Phys. Lett.19942193431994CPL...219..343F10.1016/0009-2614(94)00117-0 – reference: BunykPIHoskinsonEMJohnsonMWTolkachevaEAltomareFBerkleyAJHarrisRHiltonJPLantingTPrzybyszAJWhittakerJArchitectural considerations in the design of a superconducting quantum annealing processorIEEE Trans. Appl. Supercond.201424110.1109/TASC.2014.2318294 – reference: Zhou, L., Wang, S.-T., Choi, S., Pichler, H., Lukin, M.D.: Quantum approximate optimization algorithm: performance, mechanism, and implementation on near-term devices (2018). arXiv:1812.01041v1 – reference: WangZHadfieldSJiangZRieffelEGQuantum approximate optimization algorithm for MaxCut: a fermionic viewPhys. Rev. A2018970223042018PhRvA..97b2304W10.1103/PhysRevA.97.022304 – reference: GareyGRJohnsonDComputers and Intractability2000San FransicoW.H. Freeaman – reference: BianZChudakFIsraelRLackeyBMacreadyWGRoyADiscrete optimization using quantum annealing on sparse Ising modelsFront. Phys.201425610.3389/fphy.2014.00056 – reference: De RaedtHDe RaedtBApplications of the generalized Trotter formulaPhys. Rev. A19832835751983PhRvA..28.3575D72686410.1103/PhysRevA.28.3575 – reference: Farhi, E., Harrow, A.W.: Quantum supremacy through the quantum approximate optimization algorithm (2016). arXiv:1602.07674 – reference: Aleksandrowicz, G., Alexander, T., Barkoutsos, P., Bello, L., Ben-Haim, Y., Bucher, D., Cabrera-Hernádez, F.J., Carballo-Franquis, J., Chen, A., Chen, C.-F., Chow, J.M., Córcoles-Gonzales, A.D., Cross, A.J., Cross, A., Cruz-Benito, J., Culver, C., González, S.D. L.P., Torre, E.D.L., Ding, D., Dumitrescu, E., Duran, I., Eendebak, P., Everitt, M., Sertage, I.F., Frisch, A., Fuhrer, A., Gambetta, J., Gago, B.G., Gomez-Mosquera, J., Greenberg, D., Hamamura, I., Havlicek, V., Hellmers, J., Herok, Ł., Horii, H., Hu, S., Imamichi, T., Itoko, T., Javadi-Abhari, A., Kanazawa, N., Karazeev, A., Krsulich, K., Liu, P., Luh, Y., Maeng, Y., Marques, M., Martín-Fernández, F.J., McClure, D.T., McKay, D., Meesala, S., Mezzacapo, A., Moll, N., Rodríguez, D. M., Nannicini, G., Nation, P., Ollitrault, P., O’Riordan, L.J., Paik, H., Pérez, J., Phan, A., Pistoia, M., Prutyanov, V., Reuter, M., Rice, J., Davila, A.R., Rudy, R.H.P., Ryu, M., Sathaye, N., Schnabel, C., Schoute, E., Setia, K., Shi, Y., Silva, A., Siraichi, Y., Sivarajah, S., Smolin, J.A., Soeken, M., Takahashi, H., Tavernelli, I., Taylor, C., Taylour, P., Trabing, K., Treinish, M., Turner, W., Vogt-Lee, D., Vuillot, C., Wildstrom, J.A., Wilson, J., Winston, E., Wood, C., Wood, S., Wörner, S., Akhalwaya, I.Y., Zoufal, C.: Qiskit: an open-source framework for quantum computing (2019) – reference: QiangXZhouXWangJWilkesCMLokeTO’GaraSKlingLMarshallGDSantagatiRRalphTCWangJBO’BrienJLThompsonMGMatthewsJCFLarge-scale silicon quantum photonics implementing arbitrary two-qubit processingNat. Photon.2018125342018NaPho..12..534Q10.1038/s41566-018-0236-y – reference: Otterbach, J. S., Manenti, R., Alidoust, N., Bestwick, A., Block, M., Bloom, B., Caldwell, S., Didier, N., Fried, E. S., Hong, S., Karalekas, P., Osborn, C.B., Papageorge, A., Peterson, E.C., Prawiroatmodjo, G., Rubin, G., Ryan, C.A., Scarabelli, D., Scheer, M., Sete, E.A., Sivarajah, P., Smith, R.S., Staley, A., Tezak, N., Zeng, W.J., Hudson, A., Johnson, B.R., Reagor, M., da Silva, M.P., Rigetti, C.: Unsupervised machine learning on a hybrid quantum computer (2017). arXiv:1712.05771 – reference: KadowakiTNishimoriHQuantum annealing in the transverse Ising modelPhys. Rev. E19985853551998PhRvE..58.5355K10.1103/PhysRevE.58.5355 – reference: ShorPWPolynomial-time algorithms for prime factorization and discrete logarithms on a quantum computerSIAM J. Comput.1997261484147199010.1137/S0097539795293172 – reference: O’MalleyPJJBabbushRKivlichanIDRomeroJMcCleanJRBarendsRKellyJRoushanPTranterADingNCampbellBChenYChenZChiaroBDunsworthAFowlerAGJeffreyELuceroEMegrantAMutusJYNeeleyMNeillCQuintanaCSankDVainsencherAWennerJWhiteTCCoveneyPVLovePJNevenHAspuru-GuzikAMartinisJMScalable quantum simulation of molecular energiesPhys. Rev. X20166031007 – reference: SuzukiMDecomposition formulas of exponential operators and Lie exponentials with some applications to quantum mechanics and statistical physicsJ. Math. Phys.1985266011985JMP....26..601S78567010.1063/1.526596 – reference: AlbashTLidarDAdiabatic quantum computationRev. Mod. Phys.2018900150022018RvMP...90a5002A378842410.1103/RevModPhys.90.015002 – reference: ChancellorNZohrenSWarburtonPACircuit design for multi-body interactions in superconducting quantum annealing systems with applications to a scalable architectureNPJ Quantum Inf.20173212017npjQI...3...21C10.1038/s41534-017-0022-6 – reference: WilliamsonDPShmoysDBThe Design of Approximation Algorithms2011CambridgeCambridge University Press10.1017/CBO9780511921735 – reference: BoothbyTKingADRoyAFast clique minor generation in Chimera qubit connectivity graphsQuantum Inf. Process.2016154952016QuIP...15..495B344141410.1007/s11128-015-1150-6 – reference: Streif, M., Leib, M.: Comparison of QAOA with quantum and simulated annealing (2019). arXiv:1901.01903 – reference: ChildsAMFarhiEPreskillJRobustness of adiabatic quantum computationPhys. Rev. A2001650123222002PhRvA..65a2322C10.1103/PhysRevA.65.012322 – reference: HadfieldSWangZO’GormanBRieffelEGVenturelliDBiswasRFrom the quantum approximate optimization algorithm to a quantum alternating operator ansatzAlgorithms20191234393270710.3390/a12020034 – reference: Crooks, G.E.: Performance of the quantum approximate optimization algorithm on the maximum cut problem (2018). arXiv:1811.08419v1 – volume: 12 start-page: 34 year: 2019 ident: 2692_CR21 publication-title: Algorithms doi: 10.3390/a12020034 – volume-title: The Design of Approximation Algorithms year: 2011 ident: 2692_CR27 doi: 10.1017/CBO9780511921735 – volume: 12 start-page: 534 year: 2018 ident: 2692_CR7 publication-title: Nat. Photon. doi: 10.1038/s41566-018-0236-y – ident: 2692_CR6 – volume: 24 start-page: 1 year: 2014 ident: 2692_CR10 publication-title: IEEE Trans. Appl. Supercond. doi: 10.1109/TASC.2014.2318294 – volume: 15 start-page: 495 year: 2016 ident: 2692_CR12 publication-title: Quantum Inf. Process. doi: 10.1007/s11128-015-1150-6 – volume: 2 start-page: 79 year: 2018 ident: 2692_CR5 publication-title: Quantum doi: 10.22331/q-2018-08-06-79 – volume: 237 start-page: 47 year: 2019 ident: 2692_CR32 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2018.11.005 – ident: 2692_CR8 – volume: 5 start-page: 4213 year: 2014 ident: 2692_CR22 publication-title: Nat. Commun. doi: 10.1038/ncomms5213 – volume: 58 start-page: 5355 year: 1998 ident: 2692_CR14 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.58.5355 – volume: 26 start-page: 1484 year: 1997 ident: 2692_CR4 publication-title: SIAM J. Comput. doi: 10.1137/S0097539795293172 – volume: 65 start-page: 012322 year: 2001 ident: 2692_CR16 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.65.012322 – ident: 2692_CR36 – ident: 2692_CR15 – volume: 51 start-page: 165 year: 1928 ident: 2692_CR2 publication-title: Z. Phys. doi: 10.1007/BF01343193 – ident: 2692_CR30 – volume-title: Numerical Recipes, 3rd Edition: The Art of Scientific Computing year: 2007 ident: 2692_CR34 – volume: 26 start-page: 601 year: 1985 ident: 2692_CR17 publication-title: J. Math. Phys. doi: 10.1063/1.526596 – volume: 7 start-page: 308 year: 1965 ident: 2692_CR33 publication-title: Comput. J. doi: 10.1093/comjnl/7.4.308 – volume: 42 start-page: 1115 year: 1995 ident: 2692_CR28 publication-title: J. ACM doi: 10.1145/227683.227684 – volume: 6 start-page: 031007 year: 2016 ident: 2692_CR23 publication-title: Phys. Rev. X – volume: 28 start-page: 3575 year: 1983 ident: 2692_CR38 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.28.3575 – ident: 2692_CR3 – volume: 97 start-page: 022304 year: 2018 ident: 2692_CR29 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.97.022304 – volume: 7 start-page: 021027 year: 2017 ident: 2692_CR25 publication-title: Phys. Rev. X – ident: 2692_CR1 – volume: 90 start-page: 015002 year: 2018 ident: 2692_CR19 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.90.015002 – volume: 549 start-page: 242 year: 2017 ident: 2692_CR24 publication-title: Nature doi: 10.1038/nature23879 – volume: 10 start-page: 545 year: 1959 ident: 2692_CR18 publication-title: Proc. Am. Math. Soc. doi: 10.1090/S0002-9939-1959-0108732-6 – ident: 2692_CR37 – ident: 2692_CR26 doi: 10.4208/cicp.OA-2018-0257 – volume-title: Computers and Intractability year: 2000 ident: 2692_CR9 – ident: 2692_CR31 – volume: 2 start-page: 56 year: 2014 ident: 2692_CR11 publication-title: Front. Phys. doi: 10.3389/fphy.2014.00056 – volume: 3 start-page: 21 year: 2017 ident: 2692_CR20 publication-title: NPJ Quantum Inf. doi: 10.1038/s41534-017-0022-6 – volume: 219 start-page: 343 year: 1994 ident: 2692_CR13 publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(94)00117-0 – volume: 9 start-page: 6903 year: 2019 ident: 2692_CR35 publication-title: Sci. Rep. doi: 10.1038/s41598-019-43176-9 |
| SSID | ssj0021686 |
| Score | 2.5948043 |
| Snippet | The performance of the quantum approximate optimization algorithm is evaluated by using three different measures: the probability of finding the ground state,... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Algorithms Computer simulation Data Structures and Information Theory Ground state Ising model Mathematical Physics Optimization Optimization algorithms Physics Physics and Astronomy Quantum computers Quantum Computing Quantum Information Technology Quantum Physics Simulators Spintronics |
| Title | Benchmarking the quantum approximate optimization algorithm |
| URI | https://link.springer.com/article/10.1007/s11128-020-02692-8 https://www.proquest.com/docview/2408866874 |
| Volume | 19 |
| WOSCitedRecordID | wos000538059200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLink Journals customDbUrl: eissn: 1573-1332 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0021686 issn: 1570-0755 databaseCode: RSV dateStart: 20020401 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZggMSFwQAxGKgHbtBDlyZNxAkQE6cJ8dJuVeqmbNK6wdohfj5u1lKBAAmOTdOosmP7c-IHwLHisoDlxiVTzVxfGOOqKFGuL9ELjA6kx9A2mwj6fTkYqJsyKSyrot2rK0mrqetkN4IG0i3cHfIbFMnxMqyQuZOFON7ePX64WZ6w_R09XrRUCTgvU2W-X-OzOaox5pdrUWttes3__ecmbJTo0jlfbIctWDKTFjSrzg1OKcgtWLOBn5htw9kFjQxTbY_MHUKDzsuciD1PHVtt_G1EiNY4U1IsaZmx6ejx03Q2yofpDjz0ru4vr92yoYKLZHZy15BmiyPkPvoJWerEREmiNKOBLsNYxyTNATNCaxJ8oelBagJgImGBjrlQyHahMZlOzB44DFUQRX6cCI4-eqh0oiVXEpEpjp5og1fRNcSy2njR9GIc1nWSCzqFRKfQ0imUbTj5-OZ5UWvj19mdil1hKXdZWBRsk0LIwG_DacWe-vXPq-3_bfoBrHcth4u43Q408tncHMIqvuajbHZk9-M7hwDYkQ |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZggODCeIrBgB64QQ8lTZqIEyAQiDEhGGi3KnVTmLRusG6In4-btUwgQIJj0zSq7Nj-nPgBsKe4zGG5cclUM9cXxrgqSpTrS_QCowPpMbTNJoJmU7bb6qZICsvKaPfyStJq6kmyG0ED6ebuDvkNiuR4GmZ8slh5IN_t3cOHm-UJ29_R43lLlYDzIlXm-zU-m6MJxvxyLWqtzXn1f_-5BIsFunSOx9thGaZMbwWqZecGpxDkFZizgZ-YrcLRCY08pdoemTuEBp2XERF7lDq22vhbhxCtcfqkWNIiY9PR3cf-oDN8Stfg_vysdXrhFg0VXCSzM3QNabY4Qu6jn5ClTkyUJEozGjhkGOuYpDlgRmhNgi80PUhNAEwkLNAxFwrZOlR6_Z7ZAIehCqLIjxPB0UcPlU605EoiMsXREzXwSrqGWFQbz5tedMNJneScTiHRKbR0CmUN9j--eR7X2vh1dr1kV1jIXRbmBdukEDLwa3BQsmfy-ufVNv82fRfmL1rXjbBx2bzagoVDy-08hrcOleFgZLZhFl-HnWywY_fmO7bn23U |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB6xZRdx4Y0ozxy4LRFKHTu2OPGqQKAKCVhxi5yJDZXogzZF_HzGbkJhBUirPcZxrGjG4_nG9swHsKu4dLDchOSqWRgLY0KVWRXGEqPE6ERGDD3ZRNJqybs7dfUui9_fdq-OJMc5Da5KU7fY7-d2f5L4RjBBhi70oRhCkU3_gOnYkQa5eP36z1vIFQnP9RhxR6-ScF6mzXw-xkfXNMGbfx2Res_TnP__f16AuRJ1BofjabIIU6a7BPMVo0NQGvgS_PIXQnG4DAdH1PLQ0X4rPSCUGDyNSAmjTuCrkL-0CemaoEcLTqfM5Az0431v0C4eOitw2zy9OT4LS6KFEMkdFaGhFS_PkMcYW_Lg1mTWKs2oocEw1zlZecKM0JoWBKHpQWoCZsKyROdcKGSrUOv2umYNAoYqybI4t4JjjBEqbbXkSiIyxTESdYgqGadYViF3ZBiP6aR-spNTSnJKvZxSWYffb9_0xzU4vu29WakuLe1xmLpCblIImcR12KtUNXn99Wjr_9Z9B2auTprp5XnrYgNmG17Z7mrvJtSKwchswU98LtrDwbafpq-0qeRZ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Benchmarking+the+quantum+approximate+optimization+algorithm&rft.jtitle=Quantum+information+processing&rft.au=Willsch%2C+Madita&rft.au=Willsch%2C+Dennis&rft.au=Jin%2C+Fengping&rft.au=De+Raedt%2C+Hans&rft.date=2020-07-01&rft.issn=1570-0755&rft.eissn=1573-1332&rft.volume=19&rft.issue=7&rft_id=info:doi/10.1007%2Fs11128-020-02692-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11128_020_02692_8 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1570-0755&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1570-0755&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1570-0755&client=summon |