Tracking-by-Detection of 3D Human Shapes: From Surfaces to Volumes

3D Human shape tracking consists in fitting a template model to temporal sequences of visual observations. It usually comprises an association step, that finds correspondences between the model and the input data, and a deformation step, that fits the model to the observations given correspondences....

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on pattern analysis and machine intelligence Ročník 40; číslo 8; s. 1994 - 2008
Hlavní autoři: Huang, Chun-Hao Paul, Allain, Benjamin, Boyer, Edmond, Franco, Jean-Sebastien, Tombari, Federico, Navab, Nassir, Ilic, Slobodan
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States IEEE 01.08.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Institute of Electrical and Electronics Engineers
Témata:
ISSN:0162-8828, 1939-3539, 2160-9292, 1939-3539
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract 3D Human shape tracking consists in fitting a template model to temporal sequences of visual observations. It usually comprises an association step, that finds correspondences between the model and the input data, and a deformation step, that fits the model to the observations given correspondences. Most current approaches follow the Iterative-Closest-Point (ICP) paradigm, where the association step is carried out by searching for the nearest neighbors. It fails when large deformations occur and errors in the association tend to propagate over time. In this paper, we propose a discriminative alternative for the association, that leverages random forests to infer correspondences in one shot. Regardless the choice of shape parameterizations, being surface or volumetric meshes, we convert 3D shapes to volumetric distance fields and thereby design features to train the forest. We investigate two ways to draw volumetric samples: voxels of regular grids and cells from Centroidal Voronoi Tessellation (CVT). While the former consumes considerable memory and in turn limits us to learn only subject-specific correspondences, the latter yields much less memory footprint by compactly tessellating the interior space of a shape with optimal discretization. This facilitates the use of larger cross-subject training databases, generalizes to different human subjects and hence results in less overfitting and better detection. The discriminative correspondences are successfully integrated to both surface and volumetric deformation frameworks that recover human shape poses, which we refer to as 'tracking-by-detection of 3D human shapes.' It allows for large deformations and prevents tracking errors from being accumulated. When combined with ICP for refinement, it proves to yield better accuracy in registration and more stability when tracking over time. Evaluations on existing datasets demonstrate the benefits with respect to the state-of-the-art.
AbstractList 3D Human shape tracking consists in fitting a template model to temporal sequences of visual observations. It usually comprises an association step, that finds correspondences between the model and the input data, and a deformation step, that fits the model to the observations given correspondences. Most current approaches follow the Iterative-Closest-Point (ICP) paradigm, where the association step is carried out by searching for the nearest neighbors. It fails when large deformations occur and errors in the association tend to propagate over time. In this paper, we propose a discriminative alternative for the association, that leverages random forests to infer correspondences in one shot. Regardless the choice of shape parameterizations, being surface or volumetric meshes, we convert 3D shapes to volumetric distance fields and thereby design features to train the forest. We investigate two ways to draw volumetric samples: voxels of regular grids and cells from Centroidal Voronoi Tessellation (CVT). While the former consumes considerable memory and in turn limits us to learn only subject-specific correspondences, the latter yields much less memory footprint by compactly tessellating the interior space of a shape with optimal discretization. This facilitates the use of larger cross-subject training databases, generalizes to different human subjects and hence results in less overfitting and better detection. The discriminative correspondences are successfully integrated to both surface and volumetric deformation frameworks that recover human shape poses, which we refer to as ‘tracking-bydetection of 3D human shapes.’ It allows for large deformations and prevents tracking errors from being accumulated. When combined with ICP for refinement, it proves to yield better accuracy in registration and more stability when tracking over time. Evaluations on existing datasets demonstrate the benefits with respect to the state-of-the-art.
3D Human shape tracking consists in fitting a template model to temporal sequences of visual observations. It usually comprises an association step, that finds correspondences between the model and the input data, and a deformation step, that fits the model to the observations given correspondences. Most current approaches follow the Iterative-Closest-Point (ICP) paradigm, where the association step is carried out by searching for the nearest neighbors. It fails when large deformations occur and errors in the association tend to propagate over time. In this paper, we propose a discriminative alternative for the association, that leverages random forests to infer correspondences in one shot. Regardless the choice of shape parameterizations, being surface or volumetric meshes, we convert 3D shapes to volumetric distance fields and thereby design features to train the forest. We investigate two ways to draw volumetric samples: voxels of regular grids and cells from Centroidal Voronoi Tessellation (CVT). While the former consumes considerable memory and in turn limits us to learn only subject-specific correspondences, the latter yields much less memory footprint by compactly tessellating the interior space of a shape with optimal discretization. This facilitates the use of larger cross-subject training databases, generalizes to different human subjects and hence results in less overfitting and better detection. The discriminative correspondences are successfully integrated to both surface and volumetric deformation frameworks that recover human shape poses, which we refer to as 'tracking-by-detection of 3D human shapes.' It allows for large deformations and prevents tracking errors from being accumulated. When combined with ICP for refinement, it proves to yield better accuracy in registration and more stability when tracking over time. Evaluations on existing datasets demonstrate the benefits with respect to the state-of-the-art.
3D Human shape tracking consists in fitting a template model to temporal sequences of visual observations. It usually comprises an association step, that finds correspondences between the model and the input data, and a deformation step, that fits the model to the observations given correspondences. Most current approaches follow the Iterative-Closest-Point (ICP) paradigm, where the association step is carried out by searching for the nearest neighbors. It fails when large deformations occur and errors in the association tend to propagate over time. In this paper, we propose a discriminative alternative for the association, that leverages random forests to infer correspondences in one shot. Regardless the choice of shape parameterizations, being surface or volumetric meshes, we convert 3D shapes to volumetric distance fields and thereby design features to train the forest. We investigate two ways to draw volumetric samples: voxels of regular grids and cells from Centroidal Voronoi Tessellation (CVT). While the former consumes considerable memory and in turn limits us to learn only subject-specific correspondences, the latter yields much less memory footprint by compactly tessellating the interior space of a shape with optimal discretization. This facilitates the use of larger cross-subject training databases, generalizes to different human subjects and hence results in less overfitting and better detection. The discriminative correspondences are successfully integrated to both surface and volumetric deformation frameworks that recover human shape poses, which we refer to as 'tracking-by-detection of 3D human shapes.' It allows for large deformations and prevents tracking errors from being accumulated. When combined with ICP for refinement, it proves to yield better accuracy in registration and more stability when tracking over time. Evaluations on existing datasets demonstrate the benefits with respect to the state-of-the-art.3D Human shape tracking consists in fitting a template model to temporal sequences of visual observations. It usually comprises an association step, that finds correspondences between the model and the input data, and a deformation step, that fits the model to the observations given correspondences. Most current approaches follow the Iterative-Closest-Point (ICP) paradigm, where the association step is carried out by searching for the nearest neighbors. It fails when large deformations occur and errors in the association tend to propagate over time. In this paper, we propose a discriminative alternative for the association, that leverages random forests to infer correspondences in one shot. Regardless the choice of shape parameterizations, being surface or volumetric meshes, we convert 3D shapes to volumetric distance fields and thereby design features to train the forest. We investigate two ways to draw volumetric samples: voxels of regular grids and cells from Centroidal Voronoi Tessellation (CVT). While the former consumes considerable memory and in turn limits us to learn only subject-specific correspondences, the latter yields much less memory footprint by compactly tessellating the interior space of a shape with optimal discretization. This facilitates the use of larger cross-subject training databases, generalizes to different human subjects and hence results in less overfitting and better detection. The discriminative correspondences are successfully integrated to both surface and volumetric deformation frameworks that recover human shape poses, which we refer to as 'tracking-by-detection of 3D human shapes.' It allows for large deformations and prevents tracking errors from being accumulated. When combined with ICP for refinement, it proves to yield better accuracy in registration and more stability when tracking over time. Evaluations on existing datasets demonstrate the benefits with respect to the state-of-the-art.
3D Human shape tracking consists in fitting a template model to temporal sequences of visual observations. It usually comprises an association step, that finds correspondences between the model and the input data, and a deformation step, that fits the model to the observations given correspondences. Most current approaches follow the Iterative-Closest-Point (ICP) paradigm, where the association step is carried out by searching for the nearest neighbors. It fails when large deformations occur and errors in the association tend to propagate overtime. In this paper, we propose a discriminative alternative for the association, that leverages random forests to infer correspondences in one shot. Regardless the choice of shape parameterizations, being surface or volumetric meshes, we convert 3D shapes to volumetric distance fields and thereby design features to train the forest. We investigate two ways to draw volumetric samples: voxels of regular grids and cells from Centroidal Voronoi Tessellation (CVT). While the former consumes considerable memory and in turn limits us to learn only subject-specific correspondences, the latter yields much less memory footprint by compactly tessellating the interior space of a shape with optimal discretization. This facilitates the use of larger cross-subject training databases, generalizes to different human subjects and hence results in less overfitting and better detection. The discriminative correspondences are successfully integrated to both surface and volumetric deformation frameworks that recover human shape poses, which we refer to as `tracking-by-detection of 3D human shapes.' It allows for large deformations and prevents tracking errors from being accumulated. When combined with ICP for refinement, it proves to yield better accuracy in registration and more stability when tracking overtime. Evaluations on existing datasets demonstrate the benefits with respect to the state-of-the-art.
Author Allain, Benjamin
Boyer, Edmond
Tombari, Federico
Franco, Jean-Sebastien
Navab, Nassir
Ilic, Slobodan
Huang, Chun-Hao Paul
Author_xml – sequence: 1
  givenname: Chun-Hao Paul
  orcidid: 0000-0002-1268-6527
  surname: Huang
  fullname: Huang, Chun-Hao Paul
  email: paulchhuang1109@gmail.com
  organization: Computer Aided Medical Procedures, Technische Universität München, München, Germany
– sequence: 2
  givenname: Benjamin
  surname: Allain
  fullname: Allain, Benjamin
  email: benjaminallain@hotmail.com
  organization: Inria, LJK, Grenoble, France
– sequence: 3
  givenname: Edmond
  surname: Boyer
  fullname: Boyer, Edmond
  email: edmond.boyer@inrialpes.fr
  organization: Inria, LJK, Grenoble, France
– sequence: 4
  givenname: Jean-Sebastien
  surname: Franco
  fullname: Franco, Jean-Sebastien
  email: jean-sebastien.franco@inria.fr
  organization: Inria, LJK, Grenoble, France
– sequence: 5
  givenname: Federico
  surname: Tombari
  fullname: Tombari, Federico
  email: federico.tombari@unibo.it
  organization: Computer Aided Medical Procedures, Technische Universität München, München, Germany
– sequence: 6
  givenname: Nassir
  surname: Navab
  fullname: Navab, Nassir
  email: navab@cs.tum.edu
  organization: Computer Aided Medical Procedures, Technische Universität München, München, Germany
– sequence: 7
  givenname: Slobodan
  surname: Ilic
  fullname: Ilic, Slobodan
  email: Slobodan.Ilic@in.tum.de
  organization: Siemens AG, Munich, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28816656$$D View this record in MEDLINE/PubMed
https://inria.hal.science/hal-01588272$$DView record in HAL
BookMark eNp9kU1v1DAQhi3Uim4LfwAkFIkLHLKMPxLbvS0tZSttBVIXrpbXGdOUJF7sBKn_noTd7qGHniyNn3fG4-eUHHWhQ0LeUJhTCvrT-vvi5nrOgMo5kwI4qBdkxmgJuWaaHZEZ0JLlSjF1Qk5TugegogD-kpwwpWhZFuWMfF5H637X3a9885BfYo-ur0OXBZ_xy2w5tLbLbu_sFtN5dhVDm90O0VuHKetD9jM0Q4vpFTn2tkn4en-ekR9XX9YXy3z17ev1xWKVO8F0n6P0hfYVU-gloKw4Q-W9tbKqxPhEbzdMeqRM0o1klQNQkjtVOq5kVWhZ8jPycdf3zjZmG-vWxgcTbG2Wi5WZakCLcVnJ_tKR_bBjtzH8GTD1pq2Tw6axHYYhGao5CEW1FiP6_gl6H4bYjZsYRqUQUotiot7tqWHTYnWY__iTI8B2gIshpYj-gFAwky7zX5eZdJm9rjGknoRc3dvJQB9t3TwffbuL1oh4mKWAjneK_wN6Up7O
CODEN ITPIDJ
CitedBy_id crossref_primary_10_1016_j_cviu_2020_103072
crossref_primary_10_1016_j_cag_2021_10_015
crossref_primary_10_1016_j_cag_2024_103943
crossref_primary_10_1016_j_cviu_2021_103275
Cites_doi 10.1145/2366145.2366207
10.1109/CVPR.2016.419
10.5244/C.27.4
10.1145/1057432.1057456
10.1109/CVPR.2012.6247664
10.1109/CVPR.2015.7298941
10.1007/978-3-642-33718-5_52
10.1109/ROBOT.1991.132043
10.1109/CVPR.2014.440
10.1145/344779.344862
10.1109/3DV.2013.45
10.1109/CVPR.2015.7299029
10.1109/34.121791
10.1109/ICCVW.2011.6130444
10.1145/2897824.2925969
10.1016/0262-8856(92)90066-C
10.1145/1015706.1015736
10.1109/ICCV.2007.4409108
10.1145/1360612.1360696
10.1145/1198555.1198747
10.1145/1618452.1618521
10.1162/neco.1989.1.4.541
10.1109/CVPR.2011.5995316
10.1007/s11263-015-0832-y
10.1007/978-3-642-15558-1_26
10.1111/cgf.12716
10.1007/978-1-4471-4929-3
10.1007/s11263-012-0528-5
10.1109/3DIMPVT.2012.51
10.1137/S0036144599352836
10.1109/CVPR.2014.532
10.1007/978-3-642-18421-5_11
10.1109/TPAMI.2008.104
10.1109/3DV.2015.49
10.1007/s11263-015-0824-y
10.1007/s11263-012-0549-0
10.1007/978-3-642-33765-9_53
10.1109/3DIMPVT.2012.29
10.1109/TPAMI.2016.2557783
10.1109/ICCV.2011.6126503
10.1109/CVPR.2014.491
10.1007/s11263-009-0296-z
10.1145/2601097.2601165
10.1016/j.cviu.2006.08.002
10.1111/j.1467-8659.2009.01515.x
10.1109/ICCV.2015.236
10.1007/978-3-319-46487-9_11
10.1109/CVPR.2010.5539838
10.1109/TPAMI.2010.223
10.1145/2766945
10.1109/34.1000236
10.1109/TPAMI.2013.47
10.1023/B:VISI.0000013087.49260.fb
10.1145/1276377.1276467
10.1109/CVPR.2016.171
10.1111/j.2517-6161.1977.tb01600.x
10.1109/CVPR.2015.7298623
10.1109/ISMAR.2011.6092378
10.1023/A:1007981719186
10.1007/s11263-009-0284-3
10.1145/1399504.1360697
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
1XC
VOOES
DOI 10.1109/TPAMI.2017.2740308
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList

PubMed
MEDLINE - Academic
Technology Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 2160-9292
1939-3539
EndPage 2008
ExternalDocumentID oai:HAL:hal-01588272v1
28816656
10_1109_TPAMI_2017_2740308
8010838
Genre orig-research
Journal Article
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
UHB
~02
AAYXX
CITATION
5VS
9M8
AAYOK
ABFSI
ADRHT
AETIX
AGSQL
AI.
AIBXA
ALLEH
FA8
H~9
IBMZZ
ICLAB
IFJZH
NPM
PKN
RIC
RIG
RNI
RZB
VH1
XJT
Z5M
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
1XC
VOOES
ID FETCH-LOGICAL-c429t-e7f59fd28ef70e7d32e8ffaa7dd4828fab27fe1271b72dc00873c86c387d59763
IEDL.DBID RIE
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000437271100015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0162-8828
1939-3539
IngestDate Tue Oct 14 20:50:46 EDT 2025
Wed Oct 01 14:43:52 EDT 2025
Sun Jun 29 12:38:02 EDT 2025
Wed Feb 19 02:31:47 EST 2025
Sat Nov 29 05:15:58 EST 2025
Tue Nov 18 22:11:38 EST 2025
Wed Aug 27 02:47:52 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords 3D tracking-by-detection
centroidal Voronoi tessellation
random forest
Shape tracking
discriminative associations
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c429t-e7f59fd28ef70e7d32e8ffaa7dd4828fab27fe1271b72dc00873c86c387d59763
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1268-6527
0000-0002-4721-1441
0000-0002-1182-3729
OpenAccessLink https://inria.hal.science/hal-01588272
PMID 28816656
PQID 2174479454
PQPubID 85458
PageCount 15
ParticipantIDs crossref_primary_10_1109_TPAMI_2017_2740308
ieee_primary_8010838
proquest_miscellaneous_1930481994
crossref_citationtrail_10_1109_TPAMI_2017_2740308
proquest_journals_2174479454
hal_primary_oai_HAL_hal_01588272v1
pubmed_primary_28816656
PublicationCentury 2000
PublicationDate 2018-08-01
PublicationDateYYYYMMDD 2018-08-01
PublicationDate_xml – month: 08
  year: 2018
  text: 2018-08-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationTitleAlternate IEEE Trans Pattern Anal Mach Intell
PublicationYear 2018
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Institute of Electrical and Electronics Engineers
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
– name: Institute of Electrical and Electronics Engineers
References ref57
ref56
ref59
ref15
ref14
ref53
ref52
ref55
ref11
ref10
vlasic (ref1) 2008; 27
li (ref25) 2009; 28
ref17
ref19
novatnack (ref49) 2008
ref18
collet (ref12) 2015; 34
criminisi (ref39) 2013
ref51
ref50
ref46
ref45
ref48
ref47
baran (ref58) 2007; 26
ref42
ref41
ref44
ref8
ref7
liu (ref4) 2013; 35
ref9
ref3
ref6
wei (ref26) 2012; 31
ref5
ref35
kehl (ref43) 2014
ref34
ref36
ref31
ref30
ref33
ref32
boyer (ref28) 2011
ref2
ref38
boscaini (ref37) 2016
zollhöfer (ref60) 2014; 33
sumner (ref54) 2004; 23
ref24
ref23
osher (ref16) 2006
ref64
ref20
ref63
ref66
ref22
ref65
ref21
dou (ref13) 2016; 35
ref27
ref29
criminisi (ref40) 2011
ref62
ref61
References_xml – volume: 31
  year: 2012
  ident: ref26
  article-title: Accurate realtime full-body motion capture using a single depth camera
  publication-title: ACM Trans Graph
  doi: 10.1145/2366145.2366207
– ident: ref53
  doi: 10.1109/CVPR.2016.419
– ident: ref5
  doi: 10.5244/C.27.4
– start-page: 440
  year: 2008
  ident: ref49
  article-title: Scale-dependent/invariant local 3D shape descriptors for fully automatic registration of multiple sets of range images
  publication-title: Proc Eur Conf Comput Vis
– ident: ref59
  doi: 10.1145/1057432.1057456
– ident: ref6
  doi: 10.1109/CVPR.2012.6247664
– ident: ref27
  doi: 10.1109/CVPR.2015.7298941
– ident: ref20
  doi: 10.1007/978-3-642-33718-5_52
– ident: ref21
  doi: 10.1109/ROBOT.1991.132043
– ident: ref3
  doi: 10.1109/CVPR.2014.440
– ident: ref57
  doi: 10.1145/344779.344862
– ident: ref66
  doi: 10.1109/3DV.2013.45
– ident: ref14
  doi: 10.1109/CVPR.2015.7299029
– ident: ref7
  doi: 10.1109/34.121791
– ident: ref31
  doi: 10.1109/ICCVW.2011.6130444
– volume: 35
  year: 2016
  ident: ref13
  article-title: Fusion4D: Real-time performance capture of challenging scenes
  publication-title: ACM Trans Graph
  doi: 10.1145/2897824.2925969
– ident: ref8
  doi: 10.1016/0262-8856(92)90066-C
– volume: 23
  start-page: 399
  year: 2004
  ident: ref54
  article-title: Deformation transfer for triangle meshes
  publication-title: ACM Trans Graph
  doi: 10.1145/1015706.1015736
– ident: ref35
  doi: 10.1109/ICCV.2007.4409108
– volume: 27
  year: 2008
  ident: ref1
  article-title: Articulated mesh animation from multi-view silhouettes
  publication-title: ACM Trans Graph
  doi: 10.1145/1360612.1360696
– ident: ref42
  doi: 10.1145/1198555.1198747
– volume: 28
  year: 2009
  ident: ref25
  article-title: Robust single-view geometry and motion reconstruction
  publication-title: ACM Trans Graph
  doi: 10.1145/1618452.1618521
– start-page: 71
  year: 2011
  ident: ref28
  article-title: SHREC 2011: Robust feature detection and description benchmark
  publication-title: Proc Eurographics Workshop 3D Object Retrieval
– ident: ref36
  doi: 10.1162/neco.1989.1.4.541
– ident: ref11
  doi: 10.1109/CVPR.2011.5995316
– ident: ref2
  doi: 10.1007/s11263-015-0832-y
– ident: ref33
  doi: 10.1007/978-3-642-15558-1_26
– ident: ref63
  doi: 10.1111/cgf.12716
– year: 2013
  ident: ref39
  publication-title: Decision Forests for Computer Vision and Medical Image Analysis
  doi: 10.1007/978-1-4471-4929-3
– ident: ref32
  doi: 10.1007/s11263-012-0528-5
– ident: ref48
  doi: 10.1109/3DIMPVT.2012.51
– ident: ref17
  doi: 10.1137/S0036144599352836
– ident: ref9
  doi: 10.1109/CVPR.2014.532
– year: 2011
  ident: ref40
  article-title: Regression forests for efficient anatomy detection and localization in CT studies
  publication-title: Medical Computer Vision Recognition Techniques and Applications in Medical Imaging
  doi: 10.1007/978-3-642-18421-5_11
– ident: ref38
  doi: 10.1109/TPAMI.2008.104
– ident: ref50
  doi: 10.1109/3DV.2015.49
– ident: ref29
  doi: 10.1007/s11263-015-0824-y
– ident: ref56
  doi: 10.1007/s11263-012-0549-0
– ident: ref22
  doi: 10.1007/978-3-642-33765-9_53
– ident: ref62
  doi: 10.1109/3DIMPVT.2012.29
– ident: ref61
  doi: 10.1109/TPAMI.2016.2557783
– ident: ref45
  doi: 10.1109/ICCV.2011.6126503
– ident: ref65
  doi: 10.1109/CVPR.2014.491
– start-page: 3189
  year: 2016
  ident: ref37
  article-title: Learning shape correspondence with anisotropic convolutional neural networks
  publication-title: Proc Conf Neural Inf Process Syst
– ident: ref47
  doi: 10.1007/s11263-009-0296-z
– volume: 33
  year: 2014
  ident: ref60
  article-title: Real-time non-rigid reconstruction using an RGB-D camera
  publication-title: ACM Trans Graph
  doi: 10.1145/2601097.2601165
– ident: ref19
  doi: 10.1016/j.cviu.2006.08.002
– ident: ref30
  doi: 10.1111/j.1467-8659.2009.01515.x
– ident: ref34
  doi: 10.1109/ICCV.2015.236
– ident: ref52
  doi: 10.1007/978-3-319-46487-9_11
– ident: ref64
  doi: 10.1109/CVPR.2010.5539838
– ident: ref24
  doi: 10.1109/TPAMI.2010.223
– volume: 34
  year: 2015
  ident: ref12
  article-title: High-quality streamable free-viewpoint video
  publication-title: ACM Trans Graph
  doi: 10.1145/2766945
– ident: ref55
  doi: 10.1109/34.1000236
– volume: 35
  start-page: 2720
  year: 2013
  ident: ref4
  article-title: Markerless motion capture of multiple characters using multiview image segmentation
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2013.47
– ident: ref41
  doi: 10.1023/B:VISI.0000013087.49260.fb
– volume: 26
  year: 2007
  ident: ref58
  article-title: Automatic rigging and animation of 3d characters
  publication-title: ACM Trans Graph
  doi: 10.1145/1276377.1276467
– year: 2006
  ident: ref16
  publication-title: Level Set Methods and Dynamic Implicit Surfaces
– year: 2014
  ident: ref43
  article-title: Coloured signed distance fields for full 3D object reconstruction
  publication-title: Proc British Mach Vis Conf
– ident: ref10
  doi: 10.1109/CVPR.2016.171
– ident: ref23
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– ident: ref51
  doi: 10.1109/CVPR.2015.7298623
– ident: ref44
  doi: 10.1109/ISMAR.2011.6092378
– ident: ref46
  doi: 10.1023/A:1007981719186
– ident: ref18
  doi: 10.1007/s11263-009-0284-3
– ident: ref15
  doi: 10.1145/1399504.1360697
SSID ssj0014503
Score 2.3325515
Snippet 3D Human shape tracking consists in fitting a template model to temporal sequences of visual observations. It usually comprises an association step, that finds...
SourceID hal
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1994
SubjectTerms 3D tracking-by-detection
centroidal Voronoi tessellation
Computer Science
Computer Vision and Pattern Recognition
Data models
Deformable models
Deformation
discriminative associations
Iterative closest point algorithm
Iterative methods
random forest
Robustness
Shape
Shape memory
Shape recognition
Shape tracking
Stability analysis
State of the art
Surface reconstruction
Tessellation
Three-dimensional displays
Tracking
Tracking errors
Visual observation
Title Tracking-by-Detection of 3D Human Shapes: From Surfaces to Volumes
URI https://ieeexplore.ieee.org/document/8010838
https://www.ncbi.nlm.nih.gov/pubmed/28816656
https://www.proquest.com/docview/2174479454
https://www.proquest.com/docview/1930481994
https://inria.hal.science/hal-01588272
Volume 40
WOSCitedRecordID wos000437271100015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2160-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014503
  issn: 0162-8828
  databaseCode: RIE
  dateStart: 19790101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9RADLa6FQc4tNACDZRqQNwgbV6bmeG2UFZFgqpSC9rbKPNSkSCpNtlK_HvsyUM9ABK3KHGS0dge22PPZ4DXHI2mSDIbZ9oWcaE9j6Wel3GJ1l2bUugq86HZBD8_F6uVvNiCt9NZGOdcKD5zx3QZcvm2MRvaKjvB1RQ9BjGDGedlf1ZryhgU89AFGT0Y1HAMI8YDMok8ubpYfPlEVVz8GGMwAmghCGBBGTPqW33HHs2uqRoytFn5u8cZLM9y9__G_BB2Bg-TLXqReARbrt6D3bF7AxuUeQ8e3IEi3If3aLQMbZvH-ld86rpQoVWzxrP8lIWdfnZ5Xd249h1brpuf7HKz9lTNxbqGfQsrXPsYvi4_Xn04i4f-CrFBK9TFjvu59DYTzvPEcZtnTnhfVdzaAmfQVzrj3qUZTzXPrCH0utyI0uSCW4xDyvwJbNdN7Q6AFVbIqvQ8d8YXzmptpDQJLp06lZXjIoJ0nGVlBvBx6oHxQ4UgJJEqMEkRk9TApAjeTO_c9NAb_6R-hcybCAk1-2zxWdE99HhQInh2m0awTxyaqAbmRHA48loNKtwqitUIfn9eRPByeozKRxmVqnbNplXo_RLejpRI87SXkenbo4A9-_M_n8N9HL7oawkPYbtbb9wLuGduu-_t-gglfCWOgoT_BoII8mE
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB61BQk4UGh5BAoYxA3SZp2HbW4LZbUV21WlLqg3K36pSJBUm2wl_j1j56EeAIlblExenhnPjGf8DcBbhkaTJ9TEVJkszpRjsVB5ERdo3ZUuuCqpC80m2HLJLy7E2Ra8H_fCWGtD8Zk99Ichl29qvfFLZUc4m6LHwLfhVp5lNOl2a405gywPfZDRh0Edx0Bi2CKTiKPV2fT0xNdxsUOMwjxEiwcB5j5n5jtX37BI25e-HjI0Wvm7zxlsz2z3_776AdzvfUwy7YTiIWzZag92h_4NpFfnPbh3A4xwHz6i2dJ-4TxWv-Jj24YarYrUjqTHJKz1k_PL8so2H8hsXf8k55u18_VcpK3JtzDHNY_g6-zz6tM87jssxBrtUBtb5nLhDOXWscQyk1LLnStLZkyGI-hKRZmzE8omilGjPX5dqnmhU84MRiJF-hh2qrqyT4FkhouycCy12mXWKKWF0AlOnmoiSst4BJNhlKXu4cd9F4wfMoQhiZCBSdIzSfZMiuDdeM9VB77xT-o3yLyR0ONmz6cL6c-hz4MSwej1JIJ9z6GRqmdOBAcDr2WvxI300ZoH4M-zCF6Pl1H9fE6lrGy9aST6vx5xRwikedLJyPjsQcCe_fmdr-DOfHW6kIuT5ZfncBd_hXeVhQew06439gXc1tft92b9Msj5b40G9MA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tracking-by-Detection+of+3D+Human+Shapes%3A+From+Surfaces+to+Volumes&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Huang%2C+Chun-Hao+Paul&rft.au=Allain%2C+Benjamin&rft.au=Boyer%2C+Edmond&rft.au=Franco%2C+Jean-Sebastien&rft.date=2018-08-01&rft.eissn=1939-3539&rft.volume=40&rft.issue=8&rft.spage=1994&rft_id=info:doi/10.1109%2FTPAMI.2017.2740308&rft_id=info%3Apmid%2F28816656&rft.externalDocID=28816656
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon