Integral flow decomposition with minimum longest path length

•The shortest integral flow decomposition problem is NP-hard in the strong sense.•Two approximation algorithms LPE and BFP are proposed for the problem.•BFP has lower computational complexity and better worst-case performance than LPE.•For chain network flows the worst-case performance ratio of BFP...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:European journal of operational research Ročník 247; číslo 2; s. 414 - 420
Hlavní autoři: Pienkosz, Krzysztof, Koltys, Kamil
Médium: Journal Article
Jazyk:angličtina
Vydáno: Amsterdam Elsevier B.V 01.12.2015
Elsevier Sequoia S.A
Témata:
ISSN:0377-2217, 1872-6860
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:•The shortest integral flow decomposition problem is NP-hard in the strong sense.•Two approximation algorithms LPE and BFP are proposed for the problem.•BFP has lower computational complexity and better worst-case performance than LPE.•For chain network flows the worst-case performance ratio of BFP is less than 2. This paper concerns the problem of decomposing a network flow into an integral path flow such that the length of the longest path is minimized. It is shown that this problem is NP-hard in the strong sense. Two approximation algorithms are proposed for the problem: the longest path elimination (LPE) algorithm and the balanced flow propagation (BFP) algorithm. We analyze the properties of both algorithms and present the results of experimental studies examining their performance and efficiency.
Bibliografie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ISSN:0377-2217
1872-6860
DOI:10.1016/j.ejor.2015.06.012