Efficient implementation of the continuous-time hybridization expansion quantum impurity solver
Strongly correlated quantum impurity problems appear in a wide variety of contexts ranging from nanoscience and surface physics to material science and the theory of strongly correlated lattice models, where they appear as auxiliary systems within dynamical mean-field theory. Accurate and unbiased s...
Uložené v:
| Vydané v: | Computer physics communications Ročník 184; číslo 4; s. 1280 - 1286 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier B.V
01.04.2013
|
| Predmet: | |
| ISSN: | 0010-4655, 1879-2944 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Strongly correlated quantum impurity problems appear in a wide variety of contexts ranging from nanoscience and surface physics to material science and the theory of strongly correlated lattice models, where they appear as auxiliary systems within dynamical mean-field theory. Accurate and unbiased solutions must usually be obtained numerically, and continuous-time quantum Monte Carlo algorithms, a family of algorithms based on the stochastic sampling of partition function expansions, perform well for such systems. With the present paper we provide an efficient and generic implementation of the hybridization expansion quantum impurity solver, based on the segment representation. We provide a complete implementation featuring most of the recently developed extensions and optimizations. Our implementation allows one to treat retarded interactions and provides generalized measurement routines based on improved estimators for the self-energy and for vertex functions. The solver is embedded in the ALPS-DMFT application package.
Program title: ct-hyb
Catalogue identifier: AEOL_v1_0
Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEOL_v1_0.html
Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland
Licensing provisions: Use of the hybridization expansion impurity solvers requires citation of this paper. Use of any ALPS program requires citation of the ALPS [1] paper.
No. of lines in distributed program, including test data, etc.: 650044
No. of bytes in distributed program, including test data, etc.: 20553265
Distribution format: tar.gz
Programming language: C++/Python.
Computer: Desktop PC, high-performance computers.
Operating system: Unix, Linux, OSX, Windows.
Has the code been vectorized or parallelized?: Yes, MPI parallelized.
RAM: 1 GB
Classification: 7.3.
External routines: ALPS [1, 2, 3], BLAS [4, 5], LAPACK [6], HDF5 [7]
Nature of problem:
Quantum impurity models were originally introduced to describe a magnetic transition metal ion in a non-magnetic host metal. They are widely used today. In nanoscience they serve as representations of quantum dots and molecular conductors. In condensed matter physics, they are playing an increasingly important role in the description of strongly correlated electron materials, where the complicated many-body problem is mapped onto an auxiliary quantum impurity model in the context of dynamical mean-field theory, and its cluster and diagrammatic extensions. They still constitutes a non-trivial many-body problem, which takes into account the (possibly retarded) interaction between electrons occupying the impurity site. Electrons are allowed to dynamically hop on and off the impurity site, which is described by a time-dependent hybridization function.
Solution method:
The quantum impurity model is solved using a continuous-time quantum Monte Carlo algorithm which is based on a perturbation expansion of the partition function in the impurity–bath hybridization. Monte Carlo configurations are represented as segments on the imaginary time interval and individual terms correspond to Feynman diagrams which are stochastically sampled to all orders using a Metropolis algorithm. For a detailed review on the method, we refer the reader to [8].
Running time:
1–8 h.
References:[1]B. Bauer, L. D. Carr, H. G. Evertz, A. Feiguin, J. Freire, S. Fuchs, L. Gamper, J. Gukelberger, E. Gull, S. Guertler, A. Hehn, R. Igarashi, S. V. Isakov, D. Koop, P. N. Ma, P. Mates, H. Matsuo, O. Parcollet, G. Pawlowski, J. D. Picon, L. Pollet, E. Santos, V. W. Scarola, U. Schollwöck, C. Silva, B. Surer, S. Todo, S. Trebst, M. Troyer, M. L. Wall, P. Werner and S. Wessel, Journal of Statistical Mechanics: Theory and Experiment 2011, P05001 (2011).[2]F. Alet, P. Dayal, A. Grzesik, A. Honecker, M. Körner, A. Läuchli, S. R. Manmana, I. P. McCulloch, F. Michel, R. M. Noack, G. Schmid, U. Schollwöck, F. Stöckli, S. Todo, S. Trebst, M. Troyer, P. Werner, S. Wessel, J. Phys. Soc. Japan 74S (2005) 30.[3]A. Albuquerque, F. Alet, P. Corboz, P. Dayal, A. Feiguin, S. Fuchs, L. Gamper, E. Gull, S. Gürtler, A. Honecker, R. Igarashi, M. Körner, A. Kozhevnikov, A. Láuchli, S. Manmana, M. Matsumoto, I. McCulloch, F. Michel, R. Noack, G. Pawlowski, L. Pollet, T. Pruschke, U. Schollwöck, S. Todo, S. Trebst, M. Troyer, P. Werner and S. Wessel, J. Magn. Magn. Mater. 310, 1187 (2007), proceedings of the 17th International Conference on Magnetism The International Conference on Magnetism.[4]C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh, ACM Transactions on Mathematical Software 5, 324 (1979).[5]L. S. Blackford, J. Demmel, I. Du, G. Henry, M. Heroux, L. Kaufman, A. Lumsdaine, A. Petitet, and R. C. Whaley, ACM Trans. Math. Softw. 28, 135 (2002).[6]E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen, LAPACK Users’ Guide, 3rd ed. (Society for Industrial and Applied Mathematics, Philadelphia, PA, 1999).[7]The HDF Group, Hierarchical data format version 5, http://www.hdfgroup.org/HDF5 (2000–2010).[8]E. Gull, A. J. Millis, A. I. Lichtenstein, A. N. Rubtsov, M. Troyer and P. Werner, Rev. Mod. Phys. 83, 349 (2011). |
|---|---|
| AbstractList | Strongly correlated quantum impurity problems appear in a wide variety of contexts ranging from nanoscience and surface physics to material science and the theory of strongly correlated lattice models, where they appear as auxiliary systems within dynamical mean-field theory. Accurate and unbiased solutions must usually be obtained numerically, and continuous-time quantum Monte Carlo algorithms, a family of algorithms based on the stochastic sampling of partition function expansions, perform well for such systems. With the present paper we provide an efficient and generic implementation of the hybridization expansion quantum impurity solver, based on the segment representation. We provide a complete implementation featuring most of the recently developed extensions and optimizations. Our implementation allows one to treat retarded interactions and provides generalized measurement routines based on improved estimators for the self-energy and for vertex functions. The solver is embedded in the ALPS-DMFT application package. Program summary Program title: ct-hyb Catalogue identifier: AEOL_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEOL_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Use of the hybridization expansion impurity solvers requires citation of this paper. Use of any ALPS program requires citation of the ALPS [1] paper. No. of lines in distributed program, including test data, etc.: 650044 No. of bytes in distributed program, including test data, etc.: 20553265 Distribution format: tar.gz Programming language: C++/Python. Computer: Desktop PC, high-performance computers. Operating system: Unix, Linux, OSX, Windows. Has the code been vectorized or parallelized?: Yes, MPI parallelized. RAM: 1 GB Classification: 7.3. External routines: ALPS [1, 2, 3], BLAS [4, 5], LAPACK [6], HDF5 [7] Nature of problem: Quantum impurity models were originally introduced to describe a magnetic transition metal ion in a non-magnetic host metal. They are widely used today. In nanoscience they serve as representations of quantum dots and molecular conductors. In condensed matter physics, they are playing an increasingly important role in the description of strongly correlated electron materials, where the complicated many-body problem is mapped onto an auxiliary quantum impurity model in the context of dynamical mean-field theory, and its cluster and diagrammatic extensions. They still constitutes a non-trivial many-body problem, which takes into account the (possibly retarded) interaction between electrons occupying the impurity site. Electrons are allowed to dynamically hop on and off the impurity site, which is described by a time-dependent hybridization function. Solution method: The quantum impurity model is solved using a continuous-time quantum Monte Carlo algorithm which is based on a perturbation expansion of the partition function in the impurity-bath hybridization. Monte Carlo configurations are represented as segments on the imaginary time interval and individual terms correspond to Feynman diagrams which are stochastically sampled to all orders using a Metropolis algorithm. For a detailed review on the method, we refer the reader to [8]. Running time: 1-8 h. References: B. Bauer, L. D. Carr, H. G. Evertz, A. Feiguin, J. Freire, S. Fuchs, L. Gamper, J. Gukelberger, E. Gull, S. Guertler, A. Hehn, R. Igarashi, S. V. Isakov, D. Koop, P. N. Ma, P. Mates, H. Matsuo, O. Parcollet, G. Pawlowski, J. D. Picon, L. Pollet, E. Santos, V. W. Scarola, U. Schollwock, C. Silva, B. Surer, S. Todo, S. Trebst, M. Troyer, M. L. Wall, P. Werner and S. Wessel, Journal of Statistical Mechanics: Theory and Experiment 2011, P05001 (2011). F. Alet, P. Dayal, A. Grzesik, A. Honecker, M. Korner, A. Laeuchli, S. R. Manmana, I. P. McCulloch, F. Michel, R. M. Noack, G. Schmid, U. Schollwock, F. Stockli, S. Todo, S. Trebst, M. Troyer, P. Werner, S. Wessel, J. Phys. Soc. Japan 74S (2005) 30. A. Albuquerque, F. Alet, P. Corboz, P. Dayal, A. Feiguin, S. Fuchs, L. Gamper, E. Gull, S. Guertler, A. Honecker, R. Igarashi, M. Korner, A. Kozhevnikov, A. Lauchli, S. Manmana, M. Matsumoto, I. McCulloch, F. Michel, R. Noack, G. Pawlowski, L. Pollet, T. Pruschke, U. Schollwock, S. Todo, S. Trebst, M. Troyer, P. Werner and S. Wessel, J. Magn. Magn. Mater. 310, 1187 (2007), proceedings of the 17th International Conference on Magnetism The International Conference on Magnetism. C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh, ACM Transactions on Mathematical Software 5, 324 (1979). L. S. Blackford, J. Demmel, I. Du, G. Henry, M. Heroux, L. Kaufman, A. Lumsdaine, A. Petitet, and R. C. Whaley, ACM Trans. Math. Softw. 28, 135 (2002). E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen, LAPACK Users' Guide, 3rd ed. (Society for Industrial and Applied Mathematics, Philadelphia, PA, 1999). The HDF Group, Hierarchical data format version 5, http://www.hdfgroup.org/HDF5 (2000-2010). E. Gull, A. J. Millis, A. I. Lichtenstein, A. N. Rubtsov, M. Troyer and P. Werner, Rev. Mod. Phys. 83, 349 (2011). Strongly correlated quantum impurity problems appear in a wide variety of contexts ranging from nanoscience and surface physics to material science and the theory of strongly correlated lattice models, where they appear as auxiliary systems within dynamical mean-field theory. Accurate and unbiased solutions must usually be obtained numerically, and continuous-time quantum Monte Carlo algorithms, a family of algorithms based on the stochastic sampling of partition function expansions, perform well for such systems. With the present paper we provide an efficient and generic implementation of the hybridization expansion quantum impurity solver, based on the segment representation. We provide a complete implementation featuring most of the recently developed extensions and optimizations. Our implementation allows one to treat retarded interactions and provides generalized measurement routines based on improved estimators for the self-energy and for vertex functions. The solver is embedded in the ALPS-DMFT application package. Program title: ct-hyb Catalogue identifier: AEOL_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEOL_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Use of the hybridization expansion impurity solvers requires citation of this paper. Use of any ALPS program requires citation of the ALPS [1] paper. No. of lines in distributed program, including test data, etc.: 650044 No. of bytes in distributed program, including test data, etc.: 20553265 Distribution format: tar.gz Programming language: C++/Python. Computer: Desktop PC, high-performance computers. Operating system: Unix, Linux, OSX, Windows. Has the code been vectorized or parallelized?: Yes, MPI parallelized. RAM: 1 GB Classification: 7.3. External routines: ALPS [1, 2, 3], BLAS [4, 5], LAPACK [6], HDF5 [7] Nature of problem: Quantum impurity models were originally introduced to describe a magnetic transition metal ion in a non-magnetic host metal. They are widely used today. In nanoscience they serve as representations of quantum dots and molecular conductors. In condensed matter physics, they are playing an increasingly important role in the description of strongly correlated electron materials, where the complicated many-body problem is mapped onto an auxiliary quantum impurity model in the context of dynamical mean-field theory, and its cluster and diagrammatic extensions. They still constitutes a non-trivial many-body problem, which takes into account the (possibly retarded) interaction between electrons occupying the impurity site. Electrons are allowed to dynamically hop on and off the impurity site, which is described by a time-dependent hybridization function. Solution method: The quantum impurity model is solved using a continuous-time quantum Monte Carlo algorithm which is based on a perturbation expansion of the partition function in the impurity–bath hybridization. Monte Carlo configurations are represented as segments on the imaginary time interval and individual terms correspond to Feynman diagrams which are stochastically sampled to all orders using a Metropolis algorithm. For a detailed review on the method, we refer the reader to [8]. Running time: 1–8 h. References:[1]B. Bauer, L. D. Carr, H. G. Evertz, A. Feiguin, J. Freire, S. Fuchs, L. Gamper, J. Gukelberger, E. Gull, S. Guertler, A. Hehn, R. Igarashi, S. V. Isakov, D. Koop, P. N. Ma, P. Mates, H. Matsuo, O. Parcollet, G. Pawlowski, J. D. Picon, L. Pollet, E. Santos, V. W. Scarola, U. Schollwöck, C. Silva, B. Surer, S. Todo, S. Trebst, M. Troyer, M. L. Wall, P. Werner and S. Wessel, Journal of Statistical Mechanics: Theory and Experiment 2011, P05001 (2011).[2]F. Alet, P. Dayal, A. Grzesik, A. Honecker, M. Körner, A. Läuchli, S. R. Manmana, I. P. McCulloch, F. Michel, R. M. Noack, G. Schmid, U. Schollwöck, F. Stöckli, S. Todo, S. Trebst, M. Troyer, P. Werner, S. Wessel, J. Phys. Soc. Japan 74S (2005) 30.[3]A. Albuquerque, F. Alet, P. Corboz, P. Dayal, A. Feiguin, S. Fuchs, L. Gamper, E. Gull, S. Gürtler, A. Honecker, R. Igarashi, M. Körner, A. Kozhevnikov, A. Láuchli, S. Manmana, M. Matsumoto, I. McCulloch, F. Michel, R. Noack, G. Pawlowski, L. Pollet, T. Pruschke, U. Schollwöck, S. Todo, S. Trebst, M. Troyer, P. Werner and S. Wessel, J. Magn. Magn. Mater. 310, 1187 (2007), proceedings of the 17th International Conference on Magnetism The International Conference on Magnetism.[4]C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh, ACM Transactions on Mathematical Software 5, 324 (1979).[5]L. S. Blackford, J. Demmel, I. Du, G. Henry, M. Heroux, L. Kaufman, A. Lumsdaine, A. Petitet, and R. C. Whaley, ACM Trans. Math. Softw. 28, 135 (2002).[6]E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen, LAPACK Users’ Guide, 3rd ed. (Society for Industrial and Applied Mathematics, Philadelphia, PA, 1999).[7]The HDF Group, Hierarchical data format version 5, http://www.hdfgroup.org/HDF5 (2000–2010).[8]E. Gull, A. J. Millis, A. I. Lichtenstein, A. N. Rubtsov, M. Troyer and P. Werner, Rev. Mod. Phys. 83, 349 (2011). |
| Author | Gull, Emanuel Hafermann, Hartmut Werner, Philipp |
| Author_xml | – sequence: 1 givenname: Hartmut surname: Hafermann fullname: Hafermann, Hartmut email: hartmut.hafermann@cpht.polytechnique.fr organization: École Polytechnique, CNRS, 91128 Palaiseau Cedex, France – sequence: 2 givenname: Philipp surname: Werner fullname: Werner, Philipp email: philipp.werner@unifr.ch organization: Department of Physics, University of Fribourg, 1700 Fribourg, Switzerland – sequence: 3 givenname: Emanuel surname: Gull fullname: Gull, Emanuel email: gull@phys.columbia.edu, egull@umich.edu organization: University of Michigan, Ann Arbor, MI 48109, USA |
| BookMark | eNqNkU1LxDAQhoMouH78AG89eumapN2kwZOIX7DgRc8hm07YLG3STVJx_fWm1JMHEQZmDu8zDM-coWPnHSB0RfCSYMJudks96CXFhC5zYVIdoQVpuCipqOtjtMCY4LJmq9UpOotxhzHmXFQLJB-MsdqCS4Xthw76PKlkvSu8KdIWCu1dsm70YyyT7aHYHjbBtvZrDsHnoFycpv2oXBr7acsYbDoU0XcfEC7QiVFdhMuffo7eHx_e7p_L9evTy_3dutQ1FamEim6AqpUgnOm24XgjOGsFpaRmxIBpcc1w03DDTSvq3IXgmApjFFOgmKjO0fW8dwh-P0JMsrdRQ9cpB_l2SZioRYMb8Z8oEw2vSENzlM9RHXyMAYzUdtaTgrKdJFhO9uVOZvtysi9zZfuZJL_IIdhehcOfzO3MQBb1YSHIOH1GQ2sD6CRbb_-gvwGIYaD_ |
| CitedBy_id | crossref_primary_10_1088_1742_6596_1136_1_012006 crossref_primary_10_1038_s41535_018_0128_x crossref_primary_10_1103_PhysRevResearch_2_013191 crossref_primary_10_21105_joss_07425 crossref_primary_10_1038_s41535_018_0105_4 crossref_primary_10_1103_PhysRevB_107_245135 crossref_primary_10_1016_j_cpc_2015_04_020 crossref_primary_10_1016_j_phpro_2015_07_107 crossref_primary_10_1103_PhysRevX_11_041007 crossref_primary_10_1103_PhysRevX_11_011058 crossref_primary_10_1038_s41699_023_00408_x crossref_primary_10_1016_j_cpc_2017_01_003 crossref_primary_10_1103_PhysRevX_10_041047 crossref_primary_10_1103_RevModPhys_90_025003 crossref_primary_10_1140_epjb_e2016_70133_4 crossref_primary_10_1038_s41524_022_00798_4 crossref_primary_10_1140_epjst_e2017_70042_4 |
| Cites_doi | 10.1103/PhysRevLett.97.076405 10.1103/PhysRevB.61.5184 10.1103/RevModPhys.78.865 10.1134/1.1800216 10.1080/00018730701619647 10.1103/PhysRevLett.62.324 10.1016/j.jmmm.2006.10.304 10.1103/PhysRevB.75.155113 10.1103/PhysRevB.63.115110 10.1103/PhysRevB.72.035122 10.1103/PhysRevB.84.075145 10.1103/PhysRevB.85.205106 10.1103/PhysRevLett.104.146401 10.1016/j.aop.2012.01.002 10.1088/1742-5468/2011/05/P05001 10.1103/PhysRevLett.102.206401 10.1002/pssb.200642053 10.1103/PhysRevB.77.033101 10.1143/JPSJS.74S.30 10.1103/PhysRevB.74.155107 10.1209/0295-5075/82/57003 10.1016/0003-4916(59)90002-8 10.1103/RevModPhys.83.349 10.1103/RevModPhys.79.1217 10.1103/RevModPhys.68.13 10.1103/PhysRevB.83.075122 10.1103/RevModPhys.77.1027 10.1103/PhysRevB.75.045118 10.1103/PhysRevB.80.235117 10.1103/PhysRev.124.41 10.1103/PhysRevLett.99.146404 10.1088/0022-3719/14/21/023 10.1103/PhysRevLett.69.1240 10.1103/PhysRevB.86.155158 |
| ContentType | Journal Article |
| Copyright | 2012 Elsevier B.V. |
| Copyright_xml | – notice: 2012 Elsevier B.V. |
| DBID | AAYXX CITATION 7SC 7U5 8FD H8D JQ2 L7M L~C L~D 7TN F1W H95 L.G |
| DOI | 10.1016/j.cpc.2012.12.013 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Technology Research Database Aerospace Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Oceanic Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional |
| DatabaseTitle | CrossRef Aerospace Database Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional Aquatic Science & Fisheries Abstracts (ASFA) Professional Oceanic Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts |
| DatabaseTitleList | Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) Professional |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1879-2944 |
| EndPage | 1286 |
| ExternalDocumentID | 10_1016_j_cpc_2012_12_013 S0010465512004092 |
| GeographicLocations | British Isles, Northern Ireland, Belfast USA, New Mexico, Albuquerque USA, Pennsylvania, Philadelphia Japan Eire |
| GeographicLocations_xml | – name: USA, Pennsylvania, Philadelphia – name: USA, New Mexico, Albuquerque – name: British Isles, Northern Ireland, Belfast – name: Japan – name: Eire |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARLI AAXUO AAYFN ABBOA ABFNM ABMAC ABNEU ABQEM ABQYD ABXDB ABYKQ ACDAQ ACFVG ACGFS ACLVX ACNNM ACRLP ACSBN ACZNC ADBBV ADECG ADEZE ADJOM ADMUD AEBSH AEKER AENEX AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHZHX AI. AIALX AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG ATOGT AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HME HMV HVGLF HZ~ IHE IMUCA J1W KOM LG9 LZ4 M38 M41 MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SCB SDF SDG SES SEW SHN SPC SPCBC SPD SPG SSE SSK SSQ SSV SSZ T5K TN5 UPT VH1 WUQ ZMT ~02 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7SC 7U5 8FD H8D JQ2 L7M L~C L~D 7TN F1W H95 L.G |
| ID | FETCH-LOGICAL-c429t-e32be2a59176cd870b976d9221461fefd0460887f7fd9487f997029ffa6aea693 |
| ISICitedReferencesCount | 63 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000315974100021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0010-4655 |
| IngestDate | Sat Sep 27 20:01:23 EDT 2025 Mon Sep 29 06:26:09 EDT 2025 Tue Nov 18 22:12:44 EST 2025 Sat Nov 29 07:56:18 EST 2025 Fri Feb 23 02:30:55 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Dynamical mean-field theory CT-QMC CT-HYB DMFT |
| Language | English |
| License | https://www.elsevier.com/tdm/userlicense/1.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c429t-e32be2a59176cd870b976d9221461fefd0460887f7fd9487f997029ffa6aea693 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 1669873182 |
| PQPubID | 23500 |
| PageCount | 7 |
| ParticipantIDs | proquest_miscellaneous_1694980899 proquest_miscellaneous_1669873182 crossref_citationtrail_10_1016_j_cpc_2012_12_013 crossref_primary_10_1016_j_cpc_2012_12_013 elsevier_sciencedirect_doi_10_1016_j_cpc_2012_12_013 |
| PublicationCentury | 2000 |
| PublicationDate | April 2013 2013-04-00 20130401 |
| PublicationDateYYYYMMDD | 2013-04-01 |
| PublicationDate_xml | – month: 04 year: 2013 text: April 2013 |
| PublicationDecade | 2010 |
| PublicationTitle | Computer physics communications |
| PublicationYear | 2013 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Metzner, Vollhardt (br000020) 1989; 62 Albuquerque, Alet, Corboz, Dayal, Feiguin, Fuchs, Gamper, Gull, Gürtler, Honecker, Igarashi, Körner, Kozhevnikov, Läuchli, Manmana, Matsumoto, McCulloch, Michel, Noack, Pawlowski, Pollet, Pruschke, Schollwöck, Todo, Trebst, Troyer, Werner, Wessel (br000110) 2007; 310 Werner, Millis (br000120) 2006; 74 Rubtsov, Savkin, Lichtenstein (br000065) 2005; 72 Werner, Comanac, de’ Medici (br000075) 2006; 97 Holstein (br000150) 1959; 8 Kotliar, Savrasov, Haule (br000050) 2006; 78 Werner, Millis (br000090) 2007; 99 Chitra, Kotliar (br000160) 2001; 63 Hafermann, Li, Rubtsov, Katsnelson, Lichtenstein, Monien (br000185) 2009; 102 The HDF Group Hierarchical data format version 5 Bulla, Hewson, Pruschke (br000170) 1998; 10 Bauer, Carr, Evertz, Feiguin, Freire, Fuchs, Gamper, Gukelberger, Gull, Guertler, Hehn, Igarashi, Isakov, Koop, Ma, Mates, Matsuo, Parcollet, Pawlowski, Picon, Pollet, Santos, Scarola, Schollwöck, Silva, Surer, Todo, Trebst, Troyer, Wall, Werner, Wessel (br000100) 2011; 2011 Gull, Werner, Parcollet, Troyer (br000130) 2008; 82 Smith, Si (br000155) 2000; 61 Georges, Kotliar, Krauth, Rozenberg (br000030) 1996; 68 Boehnke, Hafermann, Ferrero, Lechermann, Parcollet (br000085) 2011; 84 Gull, Millis, Lichtenstein, Rubtsov, Troyer, Werner (br000070) 2011; 83 Held, Nekrasov, Keller, Eyert, Bluemer, McMahan, Scalettar, Pruschke, Anisimov, Vollhardt (br000040) 2006; 243 Georges, Krauth (br000025) 1992; 69 2000–2010. Georges (br000035) 2004 Hafermann, Patton, Werner (br000080) 2012; 85 Werner, Millis (br000095) 2010; 104 Rubtsov, Katsnelson, Lichtenstein (br000165) 2012; 327 Held (br000045) 2007; 56 Läuchli, Werner (br000135) 2009; 80 Rubtsov, Lichtenstein (br000060) 2004; 80 Brako, Newns (br000015) 1981; 14 Toschi, Katanin, Held (br000175) 2007; 75 Alet, Dayal, Grzesik, Honecker, Körner, Läuchli, Manmana, McCulloch, Michel, Noack, Schmid, Schollwöck, Stöckli, Todo, Trebst, Troyer, Werner, Wessel (br000105) 2005; 74S Maier, Jarrell, Pruschke, Hettler (br000055) 2005; 77 Rubtsov, Katsnelson, Lichtenstein (br000180) 2008; 77 L. Huang, X. Dai, ArXiv e-prints, 2012. Haule (br000125) 2007; 75 Gull, Staar, Fuchs, Nukala, Summers, Pruschke, Schulthess, Maier (br000115) 2011; 83 Anderson (br000005) 1961; 124 Hanson, Kouwenhoven, Petta, Tarucha, Vandersypen (br000010) 2007; 79 Parragh, Toschi, Held, Sangiovanni (br000145) 2012; 86 Toschi (10.1016/j.cpc.2012.12.013_br000175) 2007; 75 Albuquerque (10.1016/j.cpc.2012.12.013_br000110) 2007; 310 Werner (10.1016/j.cpc.2012.12.013_br000120) 2006; 74 Georges (10.1016/j.cpc.2012.12.013_br000035) 2004 Kotliar (10.1016/j.cpc.2012.12.013_br000050) 2006; 78 Held (10.1016/j.cpc.2012.12.013_br000040) 2006; 243 Rubtsov (10.1016/j.cpc.2012.12.013_br000060) 2004; 80 Rubtsov (10.1016/j.cpc.2012.12.013_br000165) 2012; 327 10.1016/j.cpc.2012.12.013_br000190 Rubtsov (10.1016/j.cpc.2012.12.013_br000180) 2008; 77 Gull (10.1016/j.cpc.2012.12.013_br000130) 2008; 82 Hanson (10.1016/j.cpc.2012.12.013_br000010) 2007; 79 Brako (10.1016/j.cpc.2012.12.013_br000015) 1981; 14 Bulla (10.1016/j.cpc.2012.12.013_br000170) 1998; 10 Georges (10.1016/j.cpc.2012.12.013_br000025) 1992; 69 Hafermann (10.1016/j.cpc.2012.12.013_br000080) 2012; 85 Boehnke (10.1016/j.cpc.2012.12.013_br000085) 2011; 84 Metzner (10.1016/j.cpc.2012.12.013_br000020) 1989; 62 Maier (10.1016/j.cpc.2012.12.013_br000055) 2005; 77 Parragh (10.1016/j.cpc.2012.12.013_br000145) 2012; 86 Werner (10.1016/j.cpc.2012.12.013_br000075) 2006; 97 Gull (10.1016/j.cpc.2012.12.013_br000115) 2011; 83 Läuchli (10.1016/j.cpc.2012.12.013_br000135) 2009; 80 Georges (10.1016/j.cpc.2012.12.013_br000030) 1996; 68 Anderson (10.1016/j.cpc.2012.12.013_br000005) 1961; 124 Werner (10.1016/j.cpc.2012.12.013_br000090) 2007; 99 Chitra (10.1016/j.cpc.2012.12.013_br000160) 2001; 63 Alet (10.1016/j.cpc.2012.12.013_br000105) 2005; 74S Hafermann (10.1016/j.cpc.2012.12.013_br000185) 2009; 102 Rubtsov (10.1016/j.cpc.2012.12.013_br000065) 2005; 72 Werner (10.1016/j.cpc.2012.12.013_br000095) 2010; 104 Smith (10.1016/j.cpc.2012.12.013_br000155) 2000; 61 Holstein (10.1016/j.cpc.2012.12.013_br000150) 1959; 8 10.1016/j.cpc.2012.12.013_br000140 Gull (10.1016/j.cpc.2012.12.013_br000070) 2011; 83 Held (10.1016/j.cpc.2012.12.013_br000045) 2007; 56 Bauer (10.1016/j.cpc.2012.12.013_br000100) 2011; 2011 Haule (10.1016/j.cpc.2012.12.013_br000125) 2007; 75 |
| References_xml | – volume: 84 start-page: 075145 year: 2011 ident: br000085 publication-title: Phys. Rev. B – volume: 243 start-page: 2599 year: 2006 ident: br000040 publication-title: Phys. Status Solidi – volume: 62 start-page: 324 year: 1989 ident: br000020 publication-title: Phys. Rev. Lett. – volume: 72 start-page: 035122 year: 2005 ident: br000065 publication-title: Phys. Rev. B – volume: 99 start-page: 146404 year: 2007 ident: br000090 publication-title: Phys. Rev. Lett. – volume: 74S start-page: 30 year: 2005 ident: br000105 publication-title: J. Phys. Soc. Japan – volume: 82 start-page: 57003 year: 2008 ident: br000130 publication-title: Europhys. Lett. – volume: 104 start-page: 146401 year: 2010 ident: br000095 publication-title: Phys. Rev. Lett. – volume: 80 start-page: 235117 year: 2009 ident: br000135 publication-title: Phys. Rev. B – volume: 69 start-page: 1240 year: 1992 ident: br000025 publication-title: Phys. Rev. Lett. – volume: 77 start-page: 1027 year: 2005 ident: br000055 publication-title: Rev. Modern Phys. – volume: 63 start-page: 115110 year: 2001 ident: br000160 publication-title: Phys. Rev. B – volume: 75 start-page: 155113 year: 2007 ident: br000125 publication-title: Phys. Rev. B – volume: 97 start-page: 076405 year: 2006 ident: br000075 publication-title: Phys. Rev. Lett. – volume: 85 start-page: 205106 year: 2012 ident: br000080 publication-title: Phys. Rev. B – volume: 310 start-page: 1187 year: 2007 ident: br000110 publication-title: Proceedings of The 17th International Conference on Magnetism—The International Conference on Magnetism – reference: , 2000–2010. – reference: L. Huang, X. Dai, ArXiv e-prints, 2012. – volume: 327 start-page: 1320 year: 2012 ident: br000165 publication-title: Ann. Physics – volume: 80 start-page: 61 year: 2004 ident: br000060 publication-title: JETP Lett. – volume: 14 start-page: 3065 year: 1981 ident: br000015 publication-title: J. Phys. C: Solid State Phys. – volume: 68 start-page: 13 year: 1996 ident: br000030 publication-title: Rev. Modern Phys. – volume: 75 start-page: 045118 year: 2007 ident: br000175 publication-title: Phys. Rev. B – volume: 78 start-page: 865 year: 2006 ident: br000050 publication-title: Rev. Modern Phys. – year: 2004 ident: br000035 article-title: Lectures on the Physics of Highly Correlated Electron Systems VIII: Eighth Training Course in the Physics of Correlated Electron Systems and High-Tc Superconductors, Vol. 715 – volume: 124 start-page: 41 year: 1961 ident: br000005 publication-title: Phys. Rev. – volume: 61 start-page: 5184 year: 2000 ident: br000155 publication-title: Phys. Rev. B – reference: The HDF Group Hierarchical data format version 5, – volume: 2011 start-page: P05001 year: 2011 ident: br000100 publication-title: J. Stat. Mech. Theory Exp. – volume: 10 start-page: 8365 year: 1998 ident: br000170 publication-title: J. Phys.: Condens. Matter – volume: 77 start-page: 033101 year: 2008 ident: br000180 publication-title: Phys. Rev. B – volume: 83 start-page: 349 year: 2011 ident: br000070 publication-title: Rev. Modern Phys. – volume: 8 start-page: 325 year: 1959 ident: br000150 publication-title: Ann. Physics – volume: 74 start-page: 155107 year: 2006 ident: br000120 publication-title: Phys. Rev. B – volume: 83 start-page: 075122 year: 2011 ident: br000115 publication-title: Phys. Rev. B – volume: 102 start-page: 206401 year: 2009 ident: br000185 publication-title: Phys. Rev. Lett. – volume: 79 start-page: 1217 year: 2007 ident: br000010 publication-title: Rev. Modern Phys. – volume: 56 start-page: 829 year: 2007 ident: br000045 publication-title: Adv. Phys. – volume: 86 start-page: 155158 year: 2012 ident: br000145 publication-title: Phys. Rev. B – volume: 97 start-page: 076405 year: 2006 ident: 10.1016/j.cpc.2012.12.013_br000075 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.97.076405 – volume: 61 start-page: 5184 year: 2000 ident: 10.1016/j.cpc.2012.12.013_br000155 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.61.5184 – volume: 78 start-page: 865 year: 2006 ident: 10.1016/j.cpc.2012.12.013_br000050 publication-title: Rev. Modern Phys. doi: 10.1103/RevModPhys.78.865 – volume: 80 start-page: 61 year: 2004 ident: 10.1016/j.cpc.2012.12.013_br000060 publication-title: JETP Lett. doi: 10.1134/1.1800216 – volume: 56 start-page: 829 year: 2007 ident: 10.1016/j.cpc.2012.12.013_br000045 publication-title: Adv. Phys. doi: 10.1080/00018730701619647 – volume: 62 start-page: 324 year: 1989 ident: 10.1016/j.cpc.2012.12.013_br000020 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.62.324 – volume: 310 start-page: 1187 year: 2007 ident: 10.1016/j.cpc.2012.12.013_br000110 publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2006.10.304 – volume: 75 start-page: 155113 year: 2007 ident: 10.1016/j.cpc.2012.12.013_br000125 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.75.155113 – volume: 63 start-page: 115110 year: 2001 ident: 10.1016/j.cpc.2012.12.013_br000160 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.63.115110 – volume: 72 start-page: 035122 year: 2005 ident: 10.1016/j.cpc.2012.12.013_br000065 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.72.035122 – volume: 84 start-page: 075145 year: 2011 ident: 10.1016/j.cpc.2012.12.013_br000085 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.84.075145 – volume: 85 start-page: 205106 year: 2012 ident: 10.1016/j.cpc.2012.12.013_br000080 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.85.205106 – volume: 104 start-page: 146401 year: 2010 ident: 10.1016/j.cpc.2012.12.013_br000095 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.104.146401 – ident: 10.1016/j.cpc.2012.12.013_br000190 – volume: 327 start-page: 1320 year: 2012 ident: 10.1016/j.cpc.2012.12.013_br000165 publication-title: Ann. Physics doi: 10.1016/j.aop.2012.01.002 – volume: 2011 start-page: P05001 year: 2011 ident: 10.1016/j.cpc.2012.12.013_br000100 publication-title: J. Stat. Mech. Theory Exp. doi: 10.1088/1742-5468/2011/05/P05001 – volume: 102 start-page: 206401 year: 2009 ident: 10.1016/j.cpc.2012.12.013_br000185 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.102.206401 – volume: 243 start-page: 2599 year: 2006 ident: 10.1016/j.cpc.2012.12.013_br000040 publication-title: Phys. Status Solidi doi: 10.1002/pssb.200642053 – volume: 77 start-page: 033101 year: 2008 ident: 10.1016/j.cpc.2012.12.013_br000180 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.77.033101 – volume: 74S start-page: 30 year: 2005 ident: 10.1016/j.cpc.2012.12.013_br000105 publication-title: J. Phys. Soc. Japan doi: 10.1143/JPSJS.74S.30 – volume: 74 start-page: 155107 year: 2006 ident: 10.1016/j.cpc.2012.12.013_br000120 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.74.155107 – volume: 82 start-page: 57003 year: 2008 ident: 10.1016/j.cpc.2012.12.013_br000130 publication-title: Europhys. Lett. doi: 10.1209/0295-5075/82/57003 – volume: 8 start-page: 325 year: 1959 ident: 10.1016/j.cpc.2012.12.013_br000150 publication-title: Ann. Physics doi: 10.1016/0003-4916(59)90002-8 – volume: 83 start-page: 349 year: 2011 ident: 10.1016/j.cpc.2012.12.013_br000070 publication-title: Rev. Modern Phys. doi: 10.1103/RevModPhys.83.349 – ident: 10.1016/j.cpc.2012.12.013_br000140 – volume: 79 start-page: 1217 year: 2007 ident: 10.1016/j.cpc.2012.12.013_br000010 publication-title: Rev. Modern Phys. doi: 10.1103/RevModPhys.79.1217 – year: 2004 ident: 10.1016/j.cpc.2012.12.013_br000035 – volume: 68 start-page: 13 year: 1996 ident: 10.1016/j.cpc.2012.12.013_br000030 publication-title: Rev. Modern Phys. doi: 10.1103/RevModPhys.68.13 – volume: 83 start-page: 075122 year: 2011 ident: 10.1016/j.cpc.2012.12.013_br000115 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.83.075122 – volume: 77 start-page: 1027 year: 2005 ident: 10.1016/j.cpc.2012.12.013_br000055 publication-title: Rev. Modern Phys. doi: 10.1103/RevModPhys.77.1027 – volume: 75 start-page: 045118 year: 2007 ident: 10.1016/j.cpc.2012.12.013_br000175 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.75.045118 – volume: 80 start-page: 235117 year: 2009 ident: 10.1016/j.cpc.2012.12.013_br000135 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.80.235117 – volume: 10 start-page: 8365 year: 1998 ident: 10.1016/j.cpc.2012.12.013_br000170 publication-title: J. Phys.: Condens. Matter – volume: 124 start-page: 41 year: 1961 ident: 10.1016/j.cpc.2012.12.013_br000005 publication-title: Phys. Rev. doi: 10.1103/PhysRev.124.41 – volume: 99 start-page: 146404 year: 2007 ident: 10.1016/j.cpc.2012.12.013_br000090 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.99.146404 – volume: 14 start-page: 3065 year: 1981 ident: 10.1016/j.cpc.2012.12.013_br000015 publication-title: J. Phys. C: Solid State Phys. doi: 10.1088/0022-3719/14/21/023 – volume: 69 start-page: 1240 year: 1992 ident: 10.1016/j.cpc.2012.12.013_br000025 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.69.1240 – volume: 86 start-page: 155158 year: 2012 ident: 10.1016/j.cpc.2012.12.013_br000145 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.86.155158 |
| SSID | ssj0007793 |
| Score | 2.4021082 |
| Snippet | Strongly correlated quantum impurity problems appear in a wide variety of contexts ranging from nanoscience and surface physics to material science and the... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1280 |
| SubjectTerms | Algorithms Alps Computer simulation Correlation CT-HYB CT-QMC DMFT Dynamical mean-field theory Impurities Mathematical analysis Mathematical models Monte Carlo methods Solvers |
| Title | Efficient implementation of the continuous-time hybridization expansion quantum impurity solver |
| URI | https://dx.doi.org/10.1016/j.cpc.2012.12.013 https://www.proquest.com/docview/1669873182 https://www.proquest.com/docview/1694980899 |
| Volume | 184 |
| WOSCitedRecordID | wos000315974100021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-2944 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007793 issn: 0010-4655 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9swEBdZu8FeSvdFu25Fg7GHFQ_HdiTrsQyXbpSsDynLm3BkiaU0rpvEWfff786SnA-20D0MgnGMLYu7n-9Oui9C3vOR0JoXOkh7hmMLMxYIkxeBTnqc5zHXhSqaZhO830-HQ3HZ6fz0uTCLG16W6f29qP4rq-EaMBtTZ_-B3e2gcAHOgelwBLbD8UGMz5qiEOjiH098cLg3C9HKxOD0cVnDij_AxvInP35h0pZLx8SK_6C88OyuBqLXExyl6XB3AtNeuFheX9rAtYRw-yMzDFBfppvMltLNoPy3lvI5THlSt8E23_XUpdzYrZ2qDQiqrUMkgwdrF9fvdiewU0Qb1OIkLsh5rNG2LnGTFWglK_ITtGW4oovhL_ujnLdbDtefVIVlKLtRs6Vrk1rXa2r3v8mzq4sLOciGgw_VXYDtxtAt73qvPCK7Ee8JkOi7p1-y4ddWiXPu6jW76XuHeBMauPHWv5k0G8q9sVgG-2TPLTXoqYXIM9LR5XPy5NKy6gWRLVDoOlDoraEAFLoBFLoGFNoChTqgUA8UaoHyklydZYPP54FrtxEoMErmgY6jkY5yoAZnqgA5PoIvtxBR0_rdaFOgDx10kuGmELDONULwMBLG5CzXORPxK7JT3pb6gNARY5GJ4l6YdLFdg8oNWL6qG3KhwrSI1SEJPcWkcrXosSXKjfRBh9cSiCyRyBJ-QORD8rF9pLKFWLbdnHg2SGdJWgtRAoC2PfbOs0yClEXXWV5qILPsMiZSDvov2naPSESKbvTXDxjniDxdfi9vyM58Wuu35LFazMez6bGD429Wv7Hn |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+implementation+of+the+continuous-time+hybridization+expansion+quantum+impurity+solver&rft.jtitle=Computer+physics+communications&rft.au=Hafermann%2C+Hartmut&rft.au=Werner%2C+Philipp&rft.au=Gull%2C+Emanuel&rft.date=2013-04-01&rft.issn=0010-4655&rft.volume=184&rft.issue=4&rft.spage=1280&rft.epage=1286&rft_id=info:doi/10.1016%2Fj.cpc.2012.12.013&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4655&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4655&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4655&client=summon |