Efficient implementation of the continuous-time hybridization expansion quantum impurity solver

Strongly correlated quantum impurity problems appear in a wide variety of contexts ranging from nanoscience and surface physics to material science and the theory of strongly correlated lattice models, where they appear as auxiliary systems within dynamical mean-field theory. Accurate and unbiased s...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Computer physics communications Ročník 184; číslo 4; s. 1280 - 1286
Hlavní autori: Hafermann, Hartmut, Werner, Philipp, Gull, Emanuel
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 01.04.2013
Predmet:
ISSN:0010-4655, 1879-2944
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Strongly correlated quantum impurity problems appear in a wide variety of contexts ranging from nanoscience and surface physics to material science and the theory of strongly correlated lattice models, where they appear as auxiliary systems within dynamical mean-field theory. Accurate and unbiased solutions must usually be obtained numerically, and continuous-time quantum Monte Carlo algorithms, a family of algorithms based on the stochastic sampling of partition function expansions, perform well for such systems. With the present paper we provide an efficient and generic implementation of the hybridization expansion quantum impurity solver, based on the segment representation. We provide a complete implementation featuring most of the recently developed extensions and optimizations. Our implementation allows one to treat retarded interactions and provides generalized measurement routines based on improved estimators for the self-energy and for vertex functions. The solver is embedded in the ALPS-DMFT application package. Program title: ct-hyb Catalogue identifier: AEOL_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEOL_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Use of the hybridization expansion impurity solvers requires citation of this paper. Use of any ALPS program requires citation of the ALPS [1] paper. No. of lines in distributed program, including test data, etc.: 650044 No. of bytes in distributed program, including test data, etc.: 20553265 Distribution format: tar.gz Programming language: C++/Python. Computer: Desktop PC, high-performance computers. Operating system: Unix, Linux, OSX, Windows. Has the code been vectorized or parallelized?: Yes, MPI parallelized. RAM: 1 GB Classification: 7.3. External routines: ALPS [1, 2, 3], BLAS [4, 5], LAPACK [6], HDF5 [7] Nature of problem: Quantum impurity models were originally introduced to describe a magnetic transition metal ion in a non-magnetic host metal. They are widely used today. In nanoscience they serve as representations of quantum dots and molecular conductors. In condensed matter physics, they are playing an increasingly important role in the description of strongly correlated electron materials, where the complicated many-body problem is mapped onto an auxiliary quantum impurity model in the context of dynamical mean-field theory, and its cluster and diagrammatic extensions. They still constitutes a non-trivial many-body problem, which takes into account the (possibly retarded) interaction between electrons occupying the impurity site. Electrons are allowed to dynamically hop on and off the impurity site, which is described by a time-dependent hybridization function. Solution method: The quantum impurity model is solved using a continuous-time quantum Monte Carlo algorithm which is based on a perturbation expansion of the partition function in the impurity–bath hybridization. Monte Carlo configurations are represented as segments on the imaginary time interval and individual terms correspond to Feynman diagrams which are stochastically sampled to all orders using a Metropolis algorithm. For a detailed review on the method, we refer the reader to [8]. Running time: 1–8 h. References:[1]B. Bauer, L. D. Carr, H. G. Evertz, A. Feiguin, J. Freire, S. Fuchs, L. Gamper, J. Gukelberger, E. Gull, S. Guertler, A. Hehn, R. Igarashi, S. V. Isakov, D. Koop, P. N. Ma, P. Mates, H. Matsuo, O. Parcollet, G. Pawlowski, J. D. Picon, L. Pollet, E. Santos, V. W. Scarola, U. Schollwöck, C. Silva, B. Surer, S. Todo, S. Trebst, M. Troyer, M. L. Wall, P. Werner and S. Wessel, Journal of Statistical Mechanics: Theory and Experiment 2011, P05001 (2011).[2]F. Alet, P. Dayal, A. Grzesik, A. Honecker, M. Körner, A. Läuchli, S. R. Manmana, I. P. McCulloch, F. Michel, R. M. Noack, G. Schmid, U. Schollwöck, F. Stöckli, S. Todo, S. Trebst, M. Troyer, P. Werner, S. Wessel, J. Phys. Soc. Japan 74S (2005) 30.[3]A. Albuquerque, F. Alet, P. Corboz, P. Dayal, A. Feiguin, S. Fuchs, L. Gamper, E. Gull, S. Gürtler, A. Honecker, R. Igarashi, M. Körner, A. Kozhevnikov, A. Láuchli, S. Manmana, M. Matsumoto, I. McCulloch, F. Michel, R. Noack, G. Pawlowski, L. Pollet, T. Pruschke, U. Schollwöck, S. Todo, S. Trebst, M. Troyer, P. Werner and S. Wessel, J. Magn. Magn. Mater. 310, 1187 (2007), proceedings of the 17th International Conference on Magnetism The International Conference on Magnetism.[4]C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh, ACM Transactions on Mathematical Software 5, 324 (1979).[5]L. S. Blackford, J. Demmel, I. Du, G. Henry, M. Heroux, L. Kaufman, A. Lumsdaine, A. Petitet, and R. C. Whaley, ACM Trans. Math. Softw. 28, 135 (2002).[6]E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen, LAPACK Users’ Guide, 3rd ed. (Society for Industrial and Applied Mathematics, Philadelphia, PA, 1999).[7]The HDF Group, Hierarchical data format version 5, http://www.hdfgroup.org/HDF5 (2000–2010).[8]E. Gull, A. J. Millis, A. I. Lichtenstein, A. N. Rubtsov, M. Troyer and P. Werner, Rev. Mod. Phys. 83, 349 (2011).
AbstractList Strongly correlated quantum impurity problems appear in a wide variety of contexts ranging from nanoscience and surface physics to material science and the theory of strongly correlated lattice models, where they appear as auxiliary systems within dynamical mean-field theory. Accurate and unbiased solutions must usually be obtained numerically, and continuous-time quantum Monte Carlo algorithms, a family of algorithms based on the stochastic sampling of partition function expansions, perform well for such systems. With the present paper we provide an efficient and generic implementation of the hybridization expansion quantum impurity solver, based on the segment representation. We provide a complete implementation featuring most of the recently developed extensions and optimizations. Our implementation allows one to treat retarded interactions and provides generalized measurement routines based on improved estimators for the self-energy and for vertex functions. The solver is embedded in the ALPS-DMFT application package. Program summary Program title: ct-hyb Catalogue identifier: AEOL_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEOL_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Use of the hybridization expansion impurity solvers requires citation of this paper. Use of any ALPS program requires citation of the ALPS [1] paper. No. of lines in distributed program, including test data, etc.: 650044 No. of bytes in distributed program, including test data, etc.: 20553265 Distribution format: tar.gz Programming language: C++/Python. Computer: Desktop PC, high-performance computers. Operating system: Unix, Linux, OSX, Windows. Has the code been vectorized or parallelized?: Yes, MPI parallelized. RAM: 1 GB Classification: 7.3. External routines: ALPS [1, 2, 3], BLAS [4, 5], LAPACK [6], HDF5 [7] Nature of problem: Quantum impurity models were originally introduced to describe a magnetic transition metal ion in a non-magnetic host metal. They are widely used today. In nanoscience they serve as representations of quantum dots and molecular conductors. In condensed matter physics, they are playing an increasingly important role in the description of strongly correlated electron materials, where the complicated many-body problem is mapped onto an auxiliary quantum impurity model in the context of dynamical mean-field theory, and its cluster and diagrammatic extensions. They still constitutes a non-trivial many-body problem, which takes into account the (possibly retarded) interaction between electrons occupying the impurity site. Electrons are allowed to dynamically hop on and off the impurity site, which is described by a time-dependent hybridization function. Solution method: The quantum impurity model is solved using a continuous-time quantum Monte Carlo algorithm which is based on a perturbation expansion of the partition function in the impurity-bath hybridization. Monte Carlo configurations are represented as segments on the imaginary time interval and individual terms correspond to Feynman diagrams which are stochastically sampled to all orders using a Metropolis algorithm. For a detailed review on the method, we refer the reader to [8]. Running time: 1-8 h. References: B. Bauer, L. D. Carr, H. G. Evertz, A. Feiguin, J. Freire, S. Fuchs, L. Gamper, J. Gukelberger, E. Gull, S. Guertler, A. Hehn, R. Igarashi, S. V. Isakov, D. Koop, P. N. Ma, P. Mates, H. Matsuo, O. Parcollet, G. Pawlowski, J. D. Picon, L. Pollet, E. Santos, V. W. Scarola, U. Schollwock, C. Silva, B. Surer, S. Todo, S. Trebst, M. Troyer, M. L. Wall, P. Werner and S. Wessel, Journal of Statistical Mechanics: Theory and Experiment 2011, P05001 (2011). F. Alet, P. Dayal, A. Grzesik, A. Honecker, M. Korner, A. Laeuchli, S. R. Manmana, I. P. McCulloch, F. Michel, R. M. Noack, G. Schmid, U. Schollwock, F. Stockli, S. Todo, S. Trebst, M. Troyer, P. Werner, S. Wessel, J. Phys. Soc. Japan 74S (2005) 30. A. Albuquerque, F. Alet, P. Corboz, P. Dayal, A. Feiguin, S. Fuchs, L. Gamper, E. Gull, S. Guertler, A. Honecker, R. Igarashi, M. Korner, A. Kozhevnikov, A. Lauchli, S. Manmana, M. Matsumoto, I. McCulloch, F. Michel, R. Noack, G. Pawlowski, L. Pollet, T. Pruschke, U. Schollwock, S. Todo, S. Trebst, M. Troyer, P. Werner and S. Wessel, J. Magn. Magn. Mater. 310, 1187 (2007), proceedings of the 17th International Conference on Magnetism The International Conference on Magnetism. C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh, ACM Transactions on Mathematical Software 5, 324 (1979). L. S. Blackford, J. Demmel, I. Du, G. Henry, M. Heroux, L. Kaufman, A. Lumsdaine, A. Petitet, and R. C. Whaley, ACM Trans. Math. Softw. 28, 135 (2002). E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen, LAPACK Users' Guide, 3rd ed. (Society for Industrial and Applied Mathematics, Philadelphia, PA, 1999). The HDF Group, Hierarchical data format version 5, http://www.hdfgroup.org/HDF5 (2000-2010). E. Gull, A. J. Millis, A. I. Lichtenstein, A. N. Rubtsov, M. Troyer and P. Werner, Rev. Mod. Phys. 83, 349 (2011).
Strongly correlated quantum impurity problems appear in a wide variety of contexts ranging from nanoscience and surface physics to material science and the theory of strongly correlated lattice models, where they appear as auxiliary systems within dynamical mean-field theory. Accurate and unbiased solutions must usually be obtained numerically, and continuous-time quantum Monte Carlo algorithms, a family of algorithms based on the stochastic sampling of partition function expansions, perform well for such systems. With the present paper we provide an efficient and generic implementation of the hybridization expansion quantum impurity solver, based on the segment representation. We provide a complete implementation featuring most of the recently developed extensions and optimizations. Our implementation allows one to treat retarded interactions and provides generalized measurement routines based on improved estimators for the self-energy and for vertex functions. The solver is embedded in the ALPS-DMFT application package. Program title: ct-hyb Catalogue identifier: AEOL_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEOL_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Use of the hybridization expansion impurity solvers requires citation of this paper. Use of any ALPS program requires citation of the ALPS [1] paper. No. of lines in distributed program, including test data, etc.: 650044 No. of bytes in distributed program, including test data, etc.: 20553265 Distribution format: tar.gz Programming language: C++/Python. Computer: Desktop PC, high-performance computers. Operating system: Unix, Linux, OSX, Windows. Has the code been vectorized or parallelized?: Yes, MPI parallelized. RAM: 1 GB Classification: 7.3. External routines: ALPS [1, 2, 3], BLAS [4, 5], LAPACK [6], HDF5 [7] Nature of problem: Quantum impurity models were originally introduced to describe a magnetic transition metal ion in a non-magnetic host metal. They are widely used today. In nanoscience they serve as representations of quantum dots and molecular conductors. In condensed matter physics, they are playing an increasingly important role in the description of strongly correlated electron materials, where the complicated many-body problem is mapped onto an auxiliary quantum impurity model in the context of dynamical mean-field theory, and its cluster and diagrammatic extensions. They still constitutes a non-trivial many-body problem, which takes into account the (possibly retarded) interaction between electrons occupying the impurity site. Electrons are allowed to dynamically hop on and off the impurity site, which is described by a time-dependent hybridization function. Solution method: The quantum impurity model is solved using a continuous-time quantum Monte Carlo algorithm which is based on a perturbation expansion of the partition function in the impurity–bath hybridization. Monte Carlo configurations are represented as segments on the imaginary time interval and individual terms correspond to Feynman diagrams which are stochastically sampled to all orders using a Metropolis algorithm. For a detailed review on the method, we refer the reader to [8]. Running time: 1–8 h. References:[1]B. Bauer, L. D. Carr, H. G. Evertz, A. Feiguin, J. Freire, S. Fuchs, L. Gamper, J. Gukelberger, E. Gull, S. Guertler, A. Hehn, R. Igarashi, S. V. Isakov, D. Koop, P. N. Ma, P. Mates, H. Matsuo, O. Parcollet, G. Pawlowski, J. D. Picon, L. Pollet, E. Santos, V. W. Scarola, U. Schollwöck, C. Silva, B. Surer, S. Todo, S. Trebst, M. Troyer, M. L. Wall, P. Werner and S. Wessel, Journal of Statistical Mechanics: Theory and Experiment 2011, P05001 (2011).[2]F. Alet, P. Dayal, A. Grzesik, A. Honecker, M. Körner, A. Läuchli, S. R. Manmana, I. P. McCulloch, F. Michel, R. M. Noack, G. Schmid, U. Schollwöck, F. Stöckli, S. Todo, S. Trebst, M. Troyer, P. Werner, S. Wessel, J. Phys. Soc. Japan 74S (2005) 30.[3]A. Albuquerque, F. Alet, P. Corboz, P. Dayal, A. Feiguin, S. Fuchs, L. Gamper, E. Gull, S. Gürtler, A. Honecker, R. Igarashi, M. Körner, A. Kozhevnikov, A. Láuchli, S. Manmana, M. Matsumoto, I. McCulloch, F. Michel, R. Noack, G. Pawlowski, L. Pollet, T. Pruschke, U. Schollwöck, S. Todo, S. Trebst, M. Troyer, P. Werner and S. Wessel, J. Magn. Magn. Mater. 310, 1187 (2007), proceedings of the 17th International Conference on Magnetism The International Conference on Magnetism.[4]C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh, ACM Transactions on Mathematical Software 5, 324 (1979).[5]L. S. Blackford, J. Demmel, I. Du, G. Henry, M. Heroux, L. Kaufman, A. Lumsdaine, A. Petitet, and R. C. Whaley, ACM Trans. Math. Softw. 28, 135 (2002).[6]E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen, LAPACK Users’ Guide, 3rd ed. (Society for Industrial and Applied Mathematics, Philadelphia, PA, 1999).[7]The HDF Group, Hierarchical data format version 5, http://www.hdfgroup.org/HDF5 (2000–2010).[8]E. Gull, A. J. Millis, A. I. Lichtenstein, A. N. Rubtsov, M. Troyer and P. Werner, Rev. Mod. Phys. 83, 349 (2011).
Author Gull, Emanuel
Hafermann, Hartmut
Werner, Philipp
Author_xml – sequence: 1
  givenname: Hartmut
  surname: Hafermann
  fullname: Hafermann, Hartmut
  email: hartmut.hafermann@cpht.polytechnique.fr
  organization: École Polytechnique, CNRS, 91128 Palaiseau Cedex, France
– sequence: 2
  givenname: Philipp
  surname: Werner
  fullname: Werner, Philipp
  email: philipp.werner@unifr.ch
  organization: Department of Physics, University of Fribourg, 1700 Fribourg, Switzerland
– sequence: 3
  givenname: Emanuel
  surname: Gull
  fullname: Gull, Emanuel
  email: gull@phys.columbia.edu, egull@umich.edu
  organization: University of Michigan, Ann Arbor, MI 48109, USA
BookMark eNqNkU1LxDAQhoMouH78AG89eumapN2kwZOIX7DgRc8hm07YLG3STVJx_fWm1JMHEQZmDu8zDM-coWPnHSB0RfCSYMJudks96CXFhC5zYVIdoQVpuCipqOtjtMCY4LJmq9UpOotxhzHmXFQLJB-MsdqCS4Xthw76PKlkvSu8KdIWCu1dsm70YyyT7aHYHjbBtvZrDsHnoFycpv2oXBr7acsYbDoU0XcfEC7QiVFdhMuffo7eHx_e7p_L9evTy_3dutQ1FamEim6AqpUgnOm24XgjOGsFpaRmxIBpcc1w03DDTSvq3IXgmApjFFOgmKjO0fW8dwh-P0JMsrdRQ9cpB_l2SZioRYMb8Z8oEw2vSENzlM9RHXyMAYzUdtaTgrKdJFhO9uVOZvtysi9zZfuZJL_IIdhehcOfzO3MQBb1YSHIOH1GQ2sD6CRbb_-gvwGIYaD_
CitedBy_id crossref_primary_10_1088_1742_6596_1136_1_012006
crossref_primary_10_1038_s41535_018_0128_x
crossref_primary_10_1103_PhysRevResearch_2_013191
crossref_primary_10_21105_joss_07425
crossref_primary_10_1038_s41535_018_0105_4
crossref_primary_10_1103_PhysRevB_107_245135
crossref_primary_10_1016_j_cpc_2015_04_020
crossref_primary_10_1016_j_phpro_2015_07_107
crossref_primary_10_1103_PhysRevX_11_041007
crossref_primary_10_1103_PhysRevX_11_011058
crossref_primary_10_1038_s41699_023_00408_x
crossref_primary_10_1016_j_cpc_2017_01_003
crossref_primary_10_1103_PhysRevX_10_041047
crossref_primary_10_1103_RevModPhys_90_025003
crossref_primary_10_1140_epjb_e2016_70133_4
crossref_primary_10_1038_s41524_022_00798_4
crossref_primary_10_1140_epjst_e2017_70042_4
Cites_doi 10.1103/PhysRevLett.97.076405
10.1103/PhysRevB.61.5184
10.1103/RevModPhys.78.865
10.1134/1.1800216
10.1080/00018730701619647
10.1103/PhysRevLett.62.324
10.1016/j.jmmm.2006.10.304
10.1103/PhysRevB.75.155113
10.1103/PhysRevB.63.115110
10.1103/PhysRevB.72.035122
10.1103/PhysRevB.84.075145
10.1103/PhysRevB.85.205106
10.1103/PhysRevLett.104.146401
10.1016/j.aop.2012.01.002
10.1088/1742-5468/2011/05/P05001
10.1103/PhysRevLett.102.206401
10.1002/pssb.200642053
10.1103/PhysRevB.77.033101
10.1143/JPSJS.74S.30
10.1103/PhysRevB.74.155107
10.1209/0295-5075/82/57003
10.1016/0003-4916(59)90002-8
10.1103/RevModPhys.83.349
10.1103/RevModPhys.79.1217
10.1103/RevModPhys.68.13
10.1103/PhysRevB.83.075122
10.1103/RevModPhys.77.1027
10.1103/PhysRevB.75.045118
10.1103/PhysRevB.80.235117
10.1103/PhysRev.124.41
10.1103/PhysRevLett.99.146404
10.1088/0022-3719/14/21/023
10.1103/PhysRevLett.69.1240
10.1103/PhysRevB.86.155158
ContentType Journal Article
Copyright 2012 Elsevier B.V.
Copyright_xml – notice: 2012 Elsevier B.V.
DBID AAYXX
CITATION
7SC
7U5
8FD
H8D
JQ2
L7M
L~C
L~D
7TN
F1W
H95
L.G
DOI 10.1016/j.cpc.2012.12.013
DatabaseName CrossRef
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Oceanic Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Oceanic Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
DatabaseTitleList Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional

DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1879-2944
EndPage 1286
ExternalDocumentID 10_1016_j_cpc_2012_12_013
S0010465512004092
GeographicLocations British Isles, Northern Ireland, Belfast
USA, New Mexico, Albuquerque
USA, Pennsylvania, Philadelphia
Japan
Eire
GeographicLocations_xml – name: USA, Pennsylvania, Philadelphia
– name: USA, New Mexico, Albuquerque
– name: British Isles, Northern Ireland, Belfast
– name: Japan
– name: Eire
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARLI
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABNEU
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFS
ACLVX
ACNNM
ACRLP
ACSBN
ACZNC
ADBBV
ADECG
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AI.
AIALX
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HME
HMV
HVGLF
HZ~
IHE
IMUCA
J1W
KOM
LG9
LZ4
M38
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SCB
SDF
SDG
SES
SEW
SHN
SPC
SPCBC
SPD
SPG
SSE
SSK
SSQ
SSV
SSZ
T5K
TN5
UPT
VH1
WUQ
ZMT
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SC
7U5
8FD
H8D
JQ2
L7M
L~C
L~D
7TN
F1W
H95
L.G
ID FETCH-LOGICAL-c429t-e32be2a59176cd870b976d9221461fefd0460887f7fd9487f997029ffa6aea693
ISICitedReferencesCount 63
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000315974100021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0010-4655
IngestDate Sat Sep 27 20:01:23 EDT 2025
Mon Sep 29 06:26:09 EDT 2025
Tue Nov 18 22:12:44 EST 2025
Sat Nov 29 07:56:18 EST 2025
Fri Feb 23 02:30:55 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Dynamical mean-field theory
CT-QMC
CT-HYB
DMFT
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c429t-e32be2a59176cd870b976d9221461fefd0460887f7fd9487f997029ffa6aea693
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1669873182
PQPubID 23500
PageCount 7
ParticipantIDs proquest_miscellaneous_1694980899
proquest_miscellaneous_1669873182
crossref_citationtrail_10_1016_j_cpc_2012_12_013
crossref_primary_10_1016_j_cpc_2012_12_013
elsevier_sciencedirect_doi_10_1016_j_cpc_2012_12_013
PublicationCentury 2000
PublicationDate April 2013
2013-04-00
20130401
PublicationDateYYYYMMDD 2013-04-01
PublicationDate_xml – month: 04
  year: 2013
  text: April 2013
PublicationDecade 2010
PublicationTitle Computer physics communications
PublicationYear 2013
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Metzner, Vollhardt (br000020) 1989; 62
Albuquerque, Alet, Corboz, Dayal, Feiguin, Fuchs, Gamper, Gull, Gürtler, Honecker, Igarashi, Körner, Kozhevnikov, Läuchli, Manmana, Matsumoto, McCulloch, Michel, Noack, Pawlowski, Pollet, Pruschke, Schollwöck, Todo, Trebst, Troyer, Werner, Wessel (br000110) 2007; 310
Werner, Millis (br000120) 2006; 74
Rubtsov, Savkin, Lichtenstein (br000065) 2005; 72
Werner, Comanac, de’ Medici (br000075) 2006; 97
Holstein (br000150) 1959; 8
Kotliar, Savrasov, Haule (br000050) 2006; 78
Werner, Millis (br000090) 2007; 99
Chitra, Kotliar (br000160) 2001; 63
Hafermann, Li, Rubtsov, Katsnelson, Lichtenstein, Monien (br000185) 2009; 102
The HDF Group Hierarchical data format version 5
Bulla, Hewson, Pruschke (br000170) 1998; 10
Bauer, Carr, Evertz, Feiguin, Freire, Fuchs, Gamper, Gukelberger, Gull, Guertler, Hehn, Igarashi, Isakov, Koop, Ma, Mates, Matsuo, Parcollet, Pawlowski, Picon, Pollet, Santos, Scarola, Schollwöck, Silva, Surer, Todo, Trebst, Troyer, Wall, Werner, Wessel (br000100) 2011; 2011
Gull, Werner, Parcollet, Troyer (br000130) 2008; 82
Smith, Si (br000155) 2000; 61
Georges, Kotliar, Krauth, Rozenberg (br000030) 1996; 68
Boehnke, Hafermann, Ferrero, Lechermann, Parcollet (br000085) 2011; 84
Gull, Millis, Lichtenstein, Rubtsov, Troyer, Werner (br000070) 2011; 83
Held, Nekrasov, Keller, Eyert, Bluemer, McMahan, Scalettar, Pruschke, Anisimov, Vollhardt (br000040) 2006; 243
Georges, Krauth (br000025) 1992; 69
2000–2010.
Georges (br000035) 2004
Hafermann, Patton, Werner (br000080) 2012; 85
Werner, Millis (br000095) 2010; 104
Rubtsov, Katsnelson, Lichtenstein (br000165) 2012; 327
Held (br000045) 2007; 56
Läuchli, Werner (br000135) 2009; 80
Rubtsov, Lichtenstein (br000060) 2004; 80
Brako, Newns (br000015) 1981; 14
Toschi, Katanin, Held (br000175) 2007; 75
Alet, Dayal, Grzesik, Honecker, Körner, Läuchli, Manmana, McCulloch, Michel, Noack, Schmid, Schollwöck, Stöckli, Todo, Trebst, Troyer, Werner, Wessel (br000105) 2005; 74S
Maier, Jarrell, Pruschke, Hettler (br000055) 2005; 77
Rubtsov, Katsnelson, Lichtenstein (br000180) 2008; 77
L. Huang, X. Dai, ArXiv e-prints, 2012.
Haule (br000125) 2007; 75
Gull, Staar, Fuchs, Nukala, Summers, Pruschke, Schulthess, Maier (br000115) 2011; 83
Anderson (br000005) 1961; 124
Hanson, Kouwenhoven, Petta, Tarucha, Vandersypen (br000010) 2007; 79
Parragh, Toschi, Held, Sangiovanni (br000145) 2012; 86
Toschi (10.1016/j.cpc.2012.12.013_br000175) 2007; 75
Albuquerque (10.1016/j.cpc.2012.12.013_br000110) 2007; 310
Werner (10.1016/j.cpc.2012.12.013_br000120) 2006; 74
Georges (10.1016/j.cpc.2012.12.013_br000035) 2004
Kotliar (10.1016/j.cpc.2012.12.013_br000050) 2006; 78
Held (10.1016/j.cpc.2012.12.013_br000040) 2006; 243
Rubtsov (10.1016/j.cpc.2012.12.013_br000060) 2004; 80
Rubtsov (10.1016/j.cpc.2012.12.013_br000165) 2012; 327
10.1016/j.cpc.2012.12.013_br000190
Rubtsov (10.1016/j.cpc.2012.12.013_br000180) 2008; 77
Gull (10.1016/j.cpc.2012.12.013_br000130) 2008; 82
Hanson (10.1016/j.cpc.2012.12.013_br000010) 2007; 79
Brako (10.1016/j.cpc.2012.12.013_br000015) 1981; 14
Bulla (10.1016/j.cpc.2012.12.013_br000170) 1998; 10
Georges (10.1016/j.cpc.2012.12.013_br000025) 1992; 69
Hafermann (10.1016/j.cpc.2012.12.013_br000080) 2012; 85
Boehnke (10.1016/j.cpc.2012.12.013_br000085) 2011; 84
Metzner (10.1016/j.cpc.2012.12.013_br000020) 1989; 62
Maier (10.1016/j.cpc.2012.12.013_br000055) 2005; 77
Parragh (10.1016/j.cpc.2012.12.013_br000145) 2012; 86
Werner (10.1016/j.cpc.2012.12.013_br000075) 2006; 97
Gull (10.1016/j.cpc.2012.12.013_br000115) 2011; 83
Läuchli (10.1016/j.cpc.2012.12.013_br000135) 2009; 80
Georges (10.1016/j.cpc.2012.12.013_br000030) 1996; 68
Anderson (10.1016/j.cpc.2012.12.013_br000005) 1961; 124
Werner (10.1016/j.cpc.2012.12.013_br000090) 2007; 99
Chitra (10.1016/j.cpc.2012.12.013_br000160) 2001; 63
Alet (10.1016/j.cpc.2012.12.013_br000105) 2005; 74S
Hafermann (10.1016/j.cpc.2012.12.013_br000185) 2009; 102
Rubtsov (10.1016/j.cpc.2012.12.013_br000065) 2005; 72
Werner (10.1016/j.cpc.2012.12.013_br000095) 2010; 104
Smith (10.1016/j.cpc.2012.12.013_br000155) 2000; 61
Holstein (10.1016/j.cpc.2012.12.013_br000150) 1959; 8
10.1016/j.cpc.2012.12.013_br000140
Gull (10.1016/j.cpc.2012.12.013_br000070) 2011; 83
Held (10.1016/j.cpc.2012.12.013_br000045) 2007; 56
Bauer (10.1016/j.cpc.2012.12.013_br000100) 2011; 2011
Haule (10.1016/j.cpc.2012.12.013_br000125) 2007; 75
References_xml – volume: 84
  start-page: 075145
  year: 2011
  ident: br000085
  publication-title: Phys. Rev. B
– volume: 243
  start-page: 2599
  year: 2006
  ident: br000040
  publication-title: Phys. Status Solidi
– volume: 62
  start-page: 324
  year: 1989
  ident: br000020
  publication-title: Phys. Rev. Lett.
– volume: 72
  start-page: 035122
  year: 2005
  ident: br000065
  publication-title: Phys. Rev. B
– volume: 99
  start-page: 146404
  year: 2007
  ident: br000090
  publication-title: Phys. Rev. Lett.
– volume: 74S
  start-page: 30
  year: 2005
  ident: br000105
  publication-title: J. Phys. Soc. Japan
– volume: 82
  start-page: 57003
  year: 2008
  ident: br000130
  publication-title: Europhys. Lett.
– volume: 104
  start-page: 146401
  year: 2010
  ident: br000095
  publication-title: Phys. Rev. Lett.
– volume: 80
  start-page: 235117
  year: 2009
  ident: br000135
  publication-title: Phys. Rev. B
– volume: 69
  start-page: 1240
  year: 1992
  ident: br000025
  publication-title: Phys. Rev. Lett.
– volume: 77
  start-page: 1027
  year: 2005
  ident: br000055
  publication-title: Rev. Modern Phys.
– volume: 63
  start-page: 115110
  year: 2001
  ident: br000160
  publication-title: Phys. Rev. B
– volume: 75
  start-page: 155113
  year: 2007
  ident: br000125
  publication-title: Phys. Rev. B
– volume: 97
  start-page: 076405
  year: 2006
  ident: br000075
  publication-title: Phys. Rev. Lett.
– volume: 85
  start-page: 205106
  year: 2012
  ident: br000080
  publication-title: Phys. Rev. B
– volume: 310
  start-page: 1187
  year: 2007
  ident: br000110
  publication-title: Proceedings of The 17th International Conference on Magnetism—The International Conference on Magnetism
– reference: , 2000–2010.
– reference: L. Huang, X. Dai, ArXiv e-prints, 2012.
– volume: 327
  start-page: 1320
  year: 2012
  ident: br000165
  publication-title: Ann. Physics
– volume: 80
  start-page: 61
  year: 2004
  ident: br000060
  publication-title: JETP Lett.
– volume: 14
  start-page: 3065
  year: 1981
  ident: br000015
  publication-title: J. Phys. C: Solid State Phys.
– volume: 68
  start-page: 13
  year: 1996
  ident: br000030
  publication-title: Rev. Modern Phys.
– volume: 75
  start-page: 045118
  year: 2007
  ident: br000175
  publication-title: Phys. Rev. B
– volume: 78
  start-page: 865
  year: 2006
  ident: br000050
  publication-title: Rev. Modern Phys.
– year: 2004
  ident: br000035
  article-title: Lectures on the Physics of Highly Correlated Electron Systems VIII: Eighth Training Course in the Physics of Correlated Electron Systems and High-Tc Superconductors, Vol. 715
– volume: 124
  start-page: 41
  year: 1961
  ident: br000005
  publication-title: Phys. Rev.
– volume: 61
  start-page: 5184
  year: 2000
  ident: br000155
  publication-title: Phys. Rev. B
– reference: The HDF Group Hierarchical data format version 5,
– volume: 2011
  start-page: P05001
  year: 2011
  ident: br000100
  publication-title: J. Stat. Mech. Theory Exp.
– volume: 10
  start-page: 8365
  year: 1998
  ident: br000170
  publication-title: J. Phys.: Condens. Matter
– volume: 77
  start-page: 033101
  year: 2008
  ident: br000180
  publication-title: Phys. Rev. B
– volume: 83
  start-page: 349
  year: 2011
  ident: br000070
  publication-title: Rev. Modern Phys.
– volume: 8
  start-page: 325
  year: 1959
  ident: br000150
  publication-title: Ann. Physics
– volume: 74
  start-page: 155107
  year: 2006
  ident: br000120
  publication-title: Phys. Rev. B
– volume: 83
  start-page: 075122
  year: 2011
  ident: br000115
  publication-title: Phys. Rev. B
– volume: 102
  start-page: 206401
  year: 2009
  ident: br000185
  publication-title: Phys. Rev. Lett.
– volume: 79
  start-page: 1217
  year: 2007
  ident: br000010
  publication-title: Rev. Modern Phys.
– volume: 56
  start-page: 829
  year: 2007
  ident: br000045
  publication-title: Adv. Phys.
– volume: 86
  start-page: 155158
  year: 2012
  ident: br000145
  publication-title: Phys. Rev. B
– volume: 97
  start-page: 076405
  year: 2006
  ident: 10.1016/j.cpc.2012.12.013_br000075
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.97.076405
– volume: 61
  start-page: 5184
  year: 2000
  ident: 10.1016/j.cpc.2012.12.013_br000155
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.61.5184
– volume: 78
  start-page: 865
  year: 2006
  ident: 10.1016/j.cpc.2012.12.013_br000050
  publication-title: Rev. Modern Phys.
  doi: 10.1103/RevModPhys.78.865
– volume: 80
  start-page: 61
  year: 2004
  ident: 10.1016/j.cpc.2012.12.013_br000060
  publication-title: JETP Lett.
  doi: 10.1134/1.1800216
– volume: 56
  start-page: 829
  year: 2007
  ident: 10.1016/j.cpc.2012.12.013_br000045
  publication-title: Adv. Phys.
  doi: 10.1080/00018730701619647
– volume: 62
  start-page: 324
  year: 1989
  ident: 10.1016/j.cpc.2012.12.013_br000020
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.62.324
– volume: 310
  start-page: 1187
  year: 2007
  ident: 10.1016/j.cpc.2012.12.013_br000110
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2006.10.304
– volume: 75
  start-page: 155113
  year: 2007
  ident: 10.1016/j.cpc.2012.12.013_br000125
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.75.155113
– volume: 63
  start-page: 115110
  year: 2001
  ident: 10.1016/j.cpc.2012.12.013_br000160
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.63.115110
– volume: 72
  start-page: 035122
  year: 2005
  ident: 10.1016/j.cpc.2012.12.013_br000065
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.72.035122
– volume: 84
  start-page: 075145
  year: 2011
  ident: 10.1016/j.cpc.2012.12.013_br000085
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.84.075145
– volume: 85
  start-page: 205106
  year: 2012
  ident: 10.1016/j.cpc.2012.12.013_br000080
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.85.205106
– volume: 104
  start-page: 146401
  year: 2010
  ident: 10.1016/j.cpc.2012.12.013_br000095
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.104.146401
– ident: 10.1016/j.cpc.2012.12.013_br000190
– volume: 327
  start-page: 1320
  year: 2012
  ident: 10.1016/j.cpc.2012.12.013_br000165
  publication-title: Ann. Physics
  doi: 10.1016/j.aop.2012.01.002
– volume: 2011
  start-page: P05001
  year: 2011
  ident: 10.1016/j.cpc.2012.12.013_br000100
  publication-title: J. Stat. Mech. Theory Exp.
  doi: 10.1088/1742-5468/2011/05/P05001
– volume: 102
  start-page: 206401
  year: 2009
  ident: 10.1016/j.cpc.2012.12.013_br000185
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.102.206401
– volume: 243
  start-page: 2599
  year: 2006
  ident: 10.1016/j.cpc.2012.12.013_br000040
  publication-title: Phys. Status Solidi
  doi: 10.1002/pssb.200642053
– volume: 77
  start-page: 033101
  year: 2008
  ident: 10.1016/j.cpc.2012.12.013_br000180
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.77.033101
– volume: 74S
  start-page: 30
  year: 2005
  ident: 10.1016/j.cpc.2012.12.013_br000105
  publication-title: J. Phys. Soc. Japan
  doi: 10.1143/JPSJS.74S.30
– volume: 74
  start-page: 155107
  year: 2006
  ident: 10.1016/j.cpc.2012.12.013_br000120
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.74.155107
– volume: 82
  start-page: 57003
  year: 2008
  ident: 10.1016/j.cpc.2012.12.013_br000130
  publication-title: Europhys. Lett.
  doi: 10.1209/0295-5075/82/57003
– volume: 8
  start-page: 325
  year: 1959
  ident: 10.1016/j.cpc.2012.12.013_br000150
  publication-title: Ann. Physics
  doi: 10.1016/0003-4916(59)90002-8
– volume: 83
  start-page: 349
  year: 2011
  ident: 10.1016/j.cpc.2012.12.013_br000070
  publication-title: Rev. Modern Phys.
  doi: 10.1103/RevModPhys.83.349
– ident: 10.1016/j.cpc.2012.12.013_br000140
– volume: 79
  start-page: 1217
  year: 2007
  ident: 10.1016/j.cpc.2012.12.013_br000010
  publication-title: Rev. Modern Phys.
  doi: 10.1103/RevModPhys.79.1217
– year: 2004
  ident: 10.1016/j.cpc.2012.12.013_br000035
– volume: 68
  start-page: 13
  year: 1996
  ident: 10.1016/j.cpc.2012.12.013_br000030
  publication-title: Rev. Modern Phys.
  doi: 10.1103/RevModPhys.68.13
– volume: 83
  start-page: 075122
  year: 2011
  ident: 10.1016/j.cpc.2012.12.013_br000115
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.83.075122
– volume: 77
  start-page: 1027
  year: 2005
  ident: 10.1016/j.cpc.2012.12.013_br000055
  publication-title: Rev. Modern Phys.
  doi: 10.1103/RevModPhys.77.1027
– volume: 75
  start-page: 045118
  year: 2007
  ident: 10.1016/j.cpc.2012.12.013_br000175
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.75.045118
– volume: 80
  start-page: 235117
  year: 2009
  ident: 10.1016/j.cpc.2012.12.013_br000135
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.80.235117
– volume: 10
  start-page: 8365
  year: 1998
  ident: 10.1016/j.cpc.2012.12.013_br000170
  publication-title: J. Phys.: Condens. Matter
– volume: 124
  start-page: 41
  year: 1961
  ident: 10.1016/j.cpc.2012.12.013_br000005
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.124.41
– volume: 99
  start-page: 146404
  year: 2007
  ident: 10.1016/j.cpc.2012.12.013_br000090
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.99.146404
– volume: 14
  start-page: 3065
  year: 1981
  ident: 10.1016/j.cpc.2012.12.013_br000015
  publication-title: J. Phys. C: Solid State Phys.
  doi: 10.1088/0022-3719/14/21/023
– volume: 69
  start-page: 1240
  year: 1992
  ident: 10.1016/j.cpc.2012.12.013_br000025
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.69.1240
– volume: 86
  start-page: 155158
  year: 2012
  ident: 10.1016/j.cpc.2012.12.013_br000145
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.86.155158
SSID ssj0007793
Score 2.4021082
Snippet Strongly correlated quantum impurity problems appear in a wide variety of contexts ranging from nanoscience and surface physics to material science and the...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1280
SubjectTerms Algorithms
Alps
Computer simulation
Correlation
CT-HYB
CT-QMC
DMFT
Dynamical mean-field theory
Impurities
Mathematical analysis
Mathematical models
Monte Carlo methods
Solvers
Title Efficient implementation of the continuous-time hybridization expansion quantum impurity solver
URI https://dx.doi.org/10.1016/j.cpc.2012.12.013
https://www.proquest.com/docview/1669873182
https://www.proquest.com/docview/1694980899
Volume 184
WOSCitedRecordID wos000315974100021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2944
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007793
  issn: 0010-4655
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9swEBdZu8FeSvdFu25Fg7GHFQ_HdiTrsQyXbpSsDynLm3BkiaU0rpvEWfff786SnA-20D0MgnGMLYu7n-9Oui9C3vOR0JoXOkh7hmMLMxYIkxeBTnqc5zHXhSqaZhO830-HQ3HZ6fz0uTCLG16W6f29qP4rq-EaMBtTZ_-B3e2gcAHOgelwBLbD8UGMz5qiEOjiH098cLg3C9HKxOD0cVnDij_AxvInP35h0pZLx8SK_6C88OyuBqLXExyl6XB3AtNeuFheX9rAtYRw-yMzDFBfppvMltLNoPy3lvI5THlSt8E23_XUpdzYrZ2qDQiqrUMkgwdrF9fvdiewU0Qb1OIkLsh5rNG2LnGTFWglK_ITtGW4oovhL_ujnLdbDtefVIVlKLtRs6Vrk1rXa2r3v8mzq4sLOciGgw_VXYDtxtAt73qvPCK7Ee8JkOi7p1-y4ddWiXPu6jW76XuHeBMauPHWv5k0G8q9sVgG-2TPLTXoqYXIM9LR5XPy5NKy6gWRLVDoOlDoraEAFLoBFLoGFNoChTqgUA8UaoHyklydZYPP54FrtxEoMErmgY6jkY5yoAZnqgA5PoIvtxBR0_rdaFOgDx10kuGmELDONULwMBLG5CzXORPxK7JT3pb6gNARY5GJ4l6YdLFdg8oNWL6qG3KhwrSI1SEJPcWkcrXosSXKjfRBh9cSiCyRyBJ-QORD8rF9pLKFWLbdnHg2SGdJWgtRAoC2PfbOs0yClEXXWV5qILPsMiZSDvov2naPSESKbvTXDxjniDxdfi9vyM58Wuu35LFazMez6bGD429Wv7Hn
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+implementation+of+the+continuous-time+hybridization+expansion+quantum+impurity+solver&rft.jtitle=Computer+physics+communications&rft.au=Hafermann%2C+Hartmut&rft.au=Werner%2C+Philipp&rft.au=Gull%2C+Emanuel&rft.date=2013-04-01&rft.issn=0010-4655&rft.volume=184&rft.issue=4&rft.spage=1280&rft.epage=1286&rft_id=info:doi/10.1016%2Fj.cpc.2012.12.013&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4655&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4655&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4655&client=summon