A new generalization of Mittag-Leffler function via q-calculus
The present paper deals with a new different generalization of the Mittag-Leffler function through q -calculus. We then investigate its remarkable properties like convergence, recurrence relation, integral representation, q -derivative formula, q -Laplace transformation, and image formula under q -d...
Uloženo v:
| Vydáno v: | Advances in difference equations Ročník 2020; číslo 1; s. 1 - 10 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Cham
Springer International Publishing
09.12.2020
Springer Nature B.V SpringerOpen |
| Témata: | |
| ISSN: | 1687-1847, 1687-1839, 1687-1847 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | The present paper deals with a new different generalization of the Mittag-Leffler function through
q
-calculus. We then investigate its remarkable properties like convergence, recurrence relation, integral representation,
q
-derivative formula,
q
-Laplace transformation, and image formula under
q
-derivative operator. In addition to this, we consider some specific cases to give the utilization of our main results. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1687-1847 1687-1839 1687-1847 |
| DOI: | 10.1186/s13662-020-03157-z |