A Classification-Based Surrogate-Assisted Evolutionary Algorithm for Expensive Many-Objective Optimization
Surrogate-assisted evolutionary algorithms (SAEAs) have been developed mainly for solving expensive optimization problems where only a small number of real fitness evaluations are allowed. Most existing SAEAs are designed for solving low-dimensional single or multiobjective optimization problems, wh...
Uloženo v:
| Vydáno v: | IEEE transactions on evolutionary computation Ročník 23; číslo 1; s. 74 - 88 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
01.02.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 1089-778X, 1941-0026 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Surrogate-assisted evolutionary algorithms (SAEAs) have been developed mainly for solving expensive optimization problems where only a small number of real fitness evaluations are allowed. Most existing SAEAs are designed for solving low-dimensional single or multiobjective optimization problems, which are not well suited for many-objective optimization. This paper proposes a surrogate-assisted many-objective evolutionary algorithm that uses an artificial neural network to predict the dominance relationship between candidate solutions and reference solutions instead of approximating the objective values separately. The uncertainty information in prediction is taken into account together with the dominance relationship to select promising solutions to be evaluated using the real objective functions. Our simulation results demonstrate that the proposed algorithm outperforms the state-of-the-art evolutionary algorithms on a set of many-objective optimization test problems. |
|---|---|
| AbstractList | Surrogate-assisted evolutionary algorithms (SAEAs) have been developed mainly for solving expensive optimization problems where only a small number of real fitness evaluations are allowed. Most existing SAEAs are designed for solving low-dimensional single or multiobjective optimization problems, which are not well suited for many-objective optimization. This paper proposes a surrogate-assisted many-objective evolutionary algorithm that uses an artificial neural network to predict the dominance relationship between candidate solutions and reference solutions instead of approximating the objective values separately. The uncertainty information in prediction is taken into account together with the dominance relationship to select promising solutions to be evaluated using the real objective functions. Our simulation results demonstrate that the proposed algorithm outperforms the state-of-the-art evolutionary algorithms on a set of many-objective optimization test problems. |
| Author | Pan, Linqiang Wang, Handing Zhang, Xingyi Tian, Ye Jin, Yaochu He, Cheng |
| Author_xml | – sequence: 1 givenname: Linqiang orcidid: 0000-0002-4554-455X surname: Pan fullname: Pan, Linqiang email: lqpanhust@gmail.com organization: Key Laboratory of Image Information Processing and Intelligent Control of Education Ministry of China, School of Automation, University of Science and Technology, Wuhan, China – sequence: 2 givenname: Cheng orcidid: 0000-0003-4218-8454 surname: He fullname: He, Cheng email: chenghehust@gmail.com organization: Department of Computer Science, University of Surrey, Surrey, U.K – sequence: 3 givenname: Ye surname: Tian fullname: Tian, Ye email: field910921@gmail.com organization: Department of Computer Science, University of Surrey, Surrey, U.K – sequence: 4 givenname: Handing orcidid: 0000-0002-4805-3780 surname: Wang fullname: Wang, Handing email: wanghanding.patch@gmail.com organization: Department of Computer Science, University of Surrey, Surrey, U.K – sequence: 5 givenname: Xingyi orcidid: 0000-0002-5052-000X surname: Zhang fullname: Zhang, Xingyi email: xyzhanghust@gmail.com organization: Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Computer Science and Technology, Anhui University, Hefei, China – sequence: 6 givenname: Yaochu orcidid: 0000-0003-1100-0631 surname: Jin fullname: Jin, Yaochu email: yaochu.jin@surrey.ac.uk organization: Department of Computer Science, University of Surrey, Surrey, U.K |
| BookMark | eNp9kMtOwzAQRS0EEs8PQGwisU7xOG5sL0tVHhKoCwpiFznuGFylcbFdBHw9Ca1YsGA1r3tnRueQ7La-RUJOgQ4AqLqYTZ7GA0ZBDpikTEi-Qw5AccgpZeVul1OpciHk8z45jHFBKfAhqAOyGGXjRsforDM6Od_mlzriPHtYh-BfdMJ81A1j6lqTd9-se4kOn9moefHBpddlZn3IJh8rbKN7x-xet5_5tF6gSX05XSW3dF8_m4_JntVNxJNtPCKPV5PZ-Ca_m17fjkd3ueFMpXxeWyhLiWJeoAbQVBWFKmltFUUuheXCiporZrSoDceyBoPKWLS25lZoWhyR883eVfBva4ypWvh1aLuTFQMx5FBIVXYqsVGZ4GMMaCvj0s-fKWjXVECrHmzVg616sNUWbOeEP85VcMsOyr-es43HIeKvXjIJQ1YU3yiCiMQ |
| CODEN | ITEVF5 |
| CitedBy_id | crossref_primary_10_1007_s41965_024_00165_w crossref_primary_10_1016_j_knosys_2020_106030 crossref_primary_10_1007_s40747_025_01955_0 crossref_primary_10_1016_j_asoc_2021_107703 crossref_primary_10_1007_s10489_021_02709_4 crossref_primary_10_1016_j_ins_2023_02_044 crossref_primary_10_1016_j_ynexs_2024_100044 crossref_primary_10_1016_j_apenergy_2024_124325 crossref_primary_10_1007_s00500_023_08227_4 crossref_primary_10_1007_s40747_023_01113_4 crossref_primary_10_1109_TEVC_2020_2986348 crossref_primary_10_1016_j_swevo_2024_101516 crossref_primary_10_1109_TEVC_2023_3349313 crossref_primary_10_1109_JAS_2024_124947 crossref_primary_10_1109_TII_2019_2962137 crossref_primary_10_1016_j_conengprac_2025_106240 crossref_primary_10_1109_TEVC_2023_3237605 crossref_primary_10_1007_s10489_024_05612_w crossref_primary_10_1007_s40747_022_00717_6 crossref_primary_10_1016_j_knosys_2020_106262 crossref_primary_10_1016_j_swevo_2022_101074 crossref_primary_10_1016_j_swevo_2023_101252 crossref_primary_10_1007_s12293_021_00351_8 crossref_primary_10_1016_j_engappai_2024_109229 crossref_primary_10_1016_j_petrol_2020_107192 crossref_primary_10_26599_TST_2024_9010224 crossref_primary_10_1109_TEVC_2024_3383095 crossref_primary_10_1109_TEVC_2024_3409431 crossref_primary_10_1109_TEVC_2019_2899030 crossref_primary_10_1109_TCYB_2021_3126341 crossref_primary_10_1016_j_swevo_2025_101926 crossref_primary_10_1016_j_swevo_2024_101506 crossref_primary_10_1016_j_swevo_2025_101924 crossref_primary_10_1007_s12293_023_00404_0 crossref_primary_10_1109_TEVC_2022_3170638 crossref_primary_10_1109_TFUZZ_2020_2973121 crossref_primary_10_1016_j_swevo_2020_100774 crossref_primary_10_1016_j_swevo_2024_101741 crossref_primary_10_1016_j_eswa_2024_126103 crossref_primary_10_1111_coin_12315 crossref_primary_10_1080_08839514_2021_1901034 crossref_primary_10_3390_math12101431 crossref_primary_10_1109_TAP_2023_3316673 crossref_primary_10_1109_TEVC_2023_3250350 crossref_primary_10_1016_j_neucom_2024_127629 crossref_primary_10_1016_j_engappai_2023_107684 crossref_primary_10_1016_j_swevo_2024_101610 crossref_primary_10_1016_j_engappai_2024_109381 crossref_primary_10_1016_j_eswa_2023_121374 crossref_primary_10_1016_j_ins_2019_08_069 crossref_primary_10_1109_JIOT_2022_3150747 crossref_primary_10_1109_TCYB_2020_2985081 crossref_primary_10_1109_TSMC_2020_3044418 crossref_primary_10_1016_j_ins_2023_01_018 crossref_primary_10_1007_s40747_021_00506_7 crossref_primary_10_1007_s00521_022_07097_5 crossref_primary_10_1016_j_asoc_2025_113388 crossref_primary_10_1016_j_swevo_2025_101905 crossref_primary_10_3390_math13162672 crossref_primary_10_1016_j_cja_2022_09_020 crossref_primary_10_2118_225411_PA crossref_primary_10_1016_j_asoc_2021_107268 crossref_primary_10_1109_TCYB_2022_3186591 crossref_primary_10_1007_s00500_023_09396_y crossref_primary_10_1007_s11227_025_07660_6 crossref_primary_10_1109_TCOMM_2023_3277878 crossref_primary_10_1109_MCI_2023_3304073 crossref_primary_10_1016_j_swevo_2021_100866 crossref_primary_10_1016_j_swevo_2021_100988 crossref_primary_10_1007_s11633_022_1317_4 crossref_primary_10_1016_j_ins_2018_04_062 crossref_primary_10_2118_206755_PA crossref_primary_10_1109_TCYB_2021_3105696 crossref_primary_10_1007_s10489_025_06266_y crossref_primary_10_1109_TETCI_2022_3221126 crossref_primary_10_1002_cpe_6566 crossref_primary_10_3390_app15094847 crossref_primary_10_1016_j_swevo_2024_101703 crossref_primary_10_1007_s40747_021_00362_5 crossref_primary_10_1109_TEVC_2022_3152582 crossref_primary_10_1016_j_ijmecsci_2025_110418 crossref_primary_10_1007_s40747_025_01905_w crossref_primary_10_1016_j_asoc_2022_108798 crossref_primary_10_1016_j_swevo_2024_101700 crossref_primary_10_1016_j_apenergy_2021_117894 crossref_primary_10_1109_TSMC_2023_3306085 crossref_primary_10_1007_s10462_020_09882_x crossref_primary_10_1109_TEVC_2023_3300181 crossref_primary_10_1007_s40747_023_00969_w crossref_primary_10_1016_j_eswa_2022_119495 crossref_primary_10_1109_TCYB_2022_3170344 crossref_primary_10_1109_TEVC_2019_2938531 crossref_primary_10_1109_TEVC_2021_3067015 crossref_primary_10_1007_s00500_019_04324_5 crossref_primary_10_1007_s00521_023_08661_3 crossref_primary_10_1109_TEVC_2023_3291614 crossref_primary_10_1109_TSMC_2020_3010052 crossref_primary_10_1109_TCYB_2018_2869674 crossref_primary_10_1007_s00366_019_00844_8 crossref_primary_10_1007_s12065_023_00882_8 crossref_primary_10_1109_TII_2023_3245687 crossref_primary_10_1109_TNNLS_2023_3297624 crossref_primary_10_1016_j_swevo_2024_101492 crossref_primary_10_1007_s11432_023_3909_x crossref_primary_10_1145_3637065 crossref_primary_10_1109_TCYB_2021_3125071 crossref_primary_10_1109_TAP_2024_3481663 crossref_primary_10_1109_TEVC_2023_3265347 crossref_primary_10_1109_TETCI_2024_3358377 crossref_primary_10_1109_TSMC_2024_3454051 crossref_primary_10_1007_s40747_022_00706_9 crossref_primary_10_1109_TCYB_2021_3120188 crossref_primary_10_3390_mca23020030 crossref_primary_10_1016_j_eswa_2025_128177 crossref_primary_10_1016_j_knosys_2022_109702 crossref_primary_10_1007_s12293_021_00328_7 crossref_primary_10_1016_j_ins_2021_03_002 crossref_primary_10_1049_gtd2_70147 crossref_primary_10_1007_s40747_022_00883_7 crossref_primary_10_1016_j_asoc_2025_113670 crossref_primary_10_1109_TCYB_2022_3175533 crossref_primary_10_1007_s00170_023_12595_4 crossref_primary_10_3390_drones9020106 crossref_primary_10_1109_TETCI_2019_2918509 crossref_primary_10_1007_s10898_021_01019_w crossref_primary_10_1007_s40747_022_00751_4 crossref_primary_10_1016_j_ins_2024_120405 crossref_primary_10_1080_19648189_2022_2049371 crossref_primary_10_1007_s40747_024_01737_0 crossref_primary_10_1016_j_knosys_2018_12_001 crossref_primary_10_1016_j_knosys_2023_110522 crossref_primary_10_1007_s41965_024_00172_x crossref_primary_10_1007_s00158_024_03748_4 crossref_primary_10_1109_TEVC_2021_3117990 crossref_primary_10_1016_j_engappai_2023_107745 crossref_primary_10_1016_j_engappai_2025_110475 crossref_primary_10_1016_j_ins_2024_121620 crossref_primary_10_1007_s13748_022_00283_5 crossref_primary_10_1016_j_swevo_2023_101401 crossref_primary_10_1016_j_swevo_2025_101980 crossref_primary_10_1016_j_ins_2023_03_101 crossref_primary_10_1038_s41598_023_40019_6 crossref_primary_10_1080_0305215X_2023_2219610 crossref_primary_10_1109_TEVC_2022_3162993 crossref_primary_10_2118_201229_PA crossref_primary_10_1016_j_asoc_2023_110061 crossref_primary_10_1016_j_ins_2019_06_016 crossref_primary_10_1109_ACCESS_2019_2897597 crossref_primary_10_1007_s10489_024_05270_y crossref_primary_10_1080_0951192X_2020_1803506 crossref_primary_10_1016_j_swevo_2025_101978 crossref_primary_10_1016_j_asoc_2023_110733 crossref_primary_10_1145_3674152 crossref_primary_10_1109_TEVC_2024_3361000 crossref_primary_10_1109_TCYB_2024_3501360 crossref_primary_10_1007_s40747_022_00943_y crossref_primary_10_1109_TEVC_2018_2869001 crossref_primary_10_1007_s40747_025_01947_0 crossref_primary_10_1007_s40747_018_0080_1 crossref_primary_10_1109_TEVC_2022_3195668 crossref_primary_10_1109_TEVC_2022_3219062 crossref_primary_10_1016_j_knosys_2022_108141 crossref_primary_10_1016_j_eswa_2024_126050 crossref_primary_10_1016_j_ins_2024_121045 crossref_primary_10_1016_j_swevo_2025_101988 crossref_primary_10_1016_j_knosys_2023_110630 crossref_primary_10_3233_JIFS_201124 crossref_primary_10_1007_s11276_021_02677_0 crossref_primary_10_1109_TEVC_2020_3017865 crossref_primary_10_1007_s00500_021_06348_2 crossref_primary_10_1007_s40747_024_01715_6 crossref_primary_10_1016_j_swevo_2025_101982 crossref_primary_10_1007_s11227_025_07785_8 crossref_primary_10_1007_s00500_021_06390_0 crossref_primary_10_1109_ACCESS_2022_3188248 crossref_primary_10_1007_s40747_023_01010_w crossref_primary_10_1016_j_ins_2019_10_066 crossref_primary_10_1016_j_knosys_2022_108416 crossref_primary_10_1007_s40747_024_01499_9 crossref_primary_10_1109_TEVC_2022_3159000 crossref_primary_10_1016_j_engappai_2024_108505 crossref_primary_10_1109_TEVC_2021_3103936 crossref_primary_10_1016_j_asoc_2023_111175 crossref_primary_10_1016_j_asr_2023_04_043 crossref_primary_10_1109_TEVC_2023_3314766 crossref_primary_10_1109_TSMC_2022_3163129 crossref_primary_10_1007_s00158_025_03994_0 crossref_primary_10_1016_j_asoc_2023_110874 crossref_primary_10_1016_j_asoc_2024_111842 crossref_primary_10_1016_j_asoc_2024_111967 crossref_primary_10_1016_j_asoc_2023_110879 crossref_primary_10_1016_j_swevo_2023_101315 crossref_primary_10_1109_TEVC_2024_3380327 crossref_primary_10_1016_j_ins_2024_120449 crossref_primary_10_1016_j_swevo_2020_100741 crossref_primary_10_1016_j_ins_2020_01_048 crossref_primary_10_1016_j_compstruct_2021_113715 crossref_primary_10_1109_TCYB_2022_3200517 crossref_primary_10_1109_TEVC_2022_3214607 crossref_primary_10_1155_2021_7955909 crossref_primary_10_1016_j_engappai_2024_108616 crossref_primary_10_1016_j_swevo_2024_101666 crossref_primary_10_1109_TEVC_2022_3228516 crossref_primary_10_1016_j_eswa_2023_122575 crossref_primary_10_1016_j_swevo_2025_102019 crossref_primary_10_1016_j_eswa_2025_128670 crossref_primary_10_1016_j_swevo_2025_102016 crossref_primary_10_1016_j_swevo_2023_101323 crossref_primary_10_1007_s12293_022_00368_7 crossref_primary_10_1016_j_asoc_2023_111194 crossref_primary_10_1016_j_knosys_2022_108197 crossref_primary_10_1115_1_4069424 crossref_primary_10_1016_j_ins_2023_119946 crossref_primary_10_1016_j_neucom_2021_01_115 crossref_primary_10_1016_j_asoc_2023_110892 crossref_primary_10_1109_ACCESS_2024_3403889 crossref_primary_10_1016_j_ins_2024_121079 crossref_primary_10_1109_TEVC_2021_3109576 crossref_primary_10_1109_JAS_2025_125111 crossref_primary_10_1016_j_swevo_2022_101176 crossref_primary_10_1007_s40747_019_00126_2 crossref_primary_10_1109_TETCI_2024_3404020 crossref_primary_10_1109_TEVC_2020_3016049 crossref_primary_10_1109_TEVC_2021_3113923 crossref_primary_10_1109_TEVC_2022_3177936 crossref_primary_10_1109_JIOT_2025_3559690 crossref_primary_10_1016_j_swevo_2022_101170 crossref_primary_10_1016_j_swevo_2022_101173 crossref_primary_10_1109_TEVC_2021_3073648 crossref_primary_10_1162_evco_a_00354 crossref_primary_10_1109_ACCESS_2021_3131587 crossref_primary_10_1016_j_swevo_2025_101947 crossref_primary_10_1287_ijoc_2022_1260 crossref_primary_10_1109_TEVC_2021_3098257 crossref_primary_10_1109_TEVC_2023_3340678 |
| Cites_doi | 10.1145/1830483.1830571 10.1007/3-540-59497-3_175 10.1109/MCI.2006.1597059 10.1109/TEVC.2005.861417 10.1007/978-3-540-24653-4_23 10.3233/ICA-170542 10.1016/S0169-7439(97)00061-0 10.1109/CEC.2015.7257247 10.1023/A:1008202821328 10.1002/mcda.1605 10.1109/TEVC.2013.2281535 10.1109/TEVC.2005.851275 10.1007/s00500-014-1283-z 10.1023/A:1011818803494 10.1007/978-3-540-87700-4_78 10.1109/TNN.2002.1031951 10.1007/978-3-662-49014-3_56 10.1007/s40747-017-0039-7 10.1109/4235.996017 10.1201/b12207 10.1007/s00500-003-0328-5 10.1109/5.58337 10.1029/2010WR009194 10.1162/106365600568202 10.1109/TEVC.2016.2519378 10.1007/978-3-642-37140-0_48 10.1109/MCI.2017.2742868 10.1007/s40747-017-0057-5 10.1109/TEVC.2007.892759 10.1016/j.swevo.2011.05.001 10.1109/CEC.2008.4631121 10.1109/TEVC.2016.2622301 10.1080/00401706.2000.10485979 10.1109/MCI.2009.933094 10.1029/2005WR004303 10.1109/TEVC.2014.2378512 10.1109/TEVC.2005.851274 10.1007/1-84628-137-7_6 10.1093/nar/gkq322 10.3233/ICA-130452 10.1016/j.swevo.2011.03.001 10.1007/BF00994018 10.1162/EVCO_a_00009 10.1109/TEVC.2002.800884 10.1023/A:1008306431147 10.1016/j.asoc.2017.08.024 10.1109/TEVC.2014.2308305 10.1109/TEVC.2015.2449293 10.1109/TEVC.2007.894202 10.1016/S0893-6080(05)80131-5 10.1111/mice.12125 10.1109/CEC.2014.6900641 10.1007/978-3-540-31880-4_49 10.1109/CEC.2013.6557879 10.1007/s11390-012-1282-4 10.1109/CEC.2012.6256450 10.1109/TEVC.2014.2350987 10.1109/TEVC.2009.2039141 10.1109/TEVC.2009.2027359 10.1109/TEVC.2009.2033671 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TEVC.2018.2802784 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1941-0026 |
| EndPage | 88 |
| ExternalDocumentID | 10_1109_TEVC_2018_2802784 8281523 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61320106005; 61502004; 61502001; 61772214; 61672033 funderid: 10.13039/501100001809 – fundername: EPSRC grantid: EP/M017869/1 – fundername: Innovation Scientists and Technicians Troop Construction Projects of Henan Province grantid: 154200510012 |
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IF 6IK 6IL 6IN 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ADZIZ AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CHZPO CS3 EBS EJD HZ~ H~9 IEGSK IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RIL RNS TN5 VH1 AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c429t-dbf1668e7d3ea11a0933960bf90e487f47f7b492ca7bc4e6b1ce9cfeffb4f7a03 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 306 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000457825100006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1089-778X |
| IngestDate | Sun Sep 07 03:48:04 EDT 2025 Sat Nov 29 03:13:47 EST 2025 Tue Nov 18 22:18:52 EST 2025 Wed Aug 27 03:06:24 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c429t-dbf1668e7d3ea11a0933960bf90e487f47f7b492ca7bc4e6b1ce9cfeffb4f7a03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-4218-8454 0000-0002-4805-3780 0000-0002-5052-000X 0000-0002-4554-455X 0000-0003-1100-0631 |
| PQID | 2175413896 |
| PQPubID | 85418 |
| PageCount | 15 |
| ParticipantIDs | ieee_primary_8281523 proquest_journals_2175413896 crossref_citationtrail_10_1109_TEVC_2018_2802784 crossref_primary_10_1109_TEVC_2018_2802784 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-02-01 |
| PublicationDateYYYYMMDD | 2019-02-01 |
| PublicationDate_xml | – month: 02 year: 2019 text: 2019-02-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on evolutionary computation |
| PublicationTitleAbbrev | TEVC |
| PublicationYear | 2019 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref57 ref13 ref56 ref12 ref15 ref58 ref52 lygoe (ref14) 2013 ref55 ref11 sapna (ref59) 2012; 2 ref54 ref10 zitzler (ref6) 2001 ref17 ref16 ref19 ref18 seah (ref38) 2012 loshchilov (ref50) 2010 yun (ref49) 2004 ref51 box (ref27) 1987; 424 ref46 ref45 ref47 ref42 ref41 ref44 ref43 chugh (ref77) 2015 krige (ref29) 1951 ref7 ref9 ref4 ref3 broomhead (ref28) 1988 ref80 ref35 ref78 deb (ref74) 2001; 16 ref37 ref36 ref75 ref31 nielsen (ref76) 2002 ref33 ref32 ref2 ref1 ref39 han (ref64) 1995 deb (ref68) 1996; 26 zitzler (ref8) 2004 ref71 ref70 ref73 ref72 sun (ref79) 2016 ref24 zhang (ref53) 2015 ref23 ref26 ref69 ref25 he (ref60) 2017; 61 ref20 zurada (ref30) 1992; 8 ref63 ref66 ref22 corne (ref5) 2001 ref65 ref21 deb (ref67) 2001 bhattacharjee (ref48) 2015 ref62 chugh (ref40) 2016 ref61 handoko (ref34) 2011 |
| References_xml | – ident: ref45 doi: 10.1145/1830483.1830571 – start-page: 195 year: 1995 ident: ref64 article-title: The influence of the sigmoid function parameters on the speed of backpropagation learning publication-title: From Natural to Artificial Neural Computation doi: 10.1007/3-540-59497-3_175 – ident: ref4 doi: 10.1109/MCI.2006.1597059 – ident: ref71 doi: 10.1109/TEVC.2005.861417 – volume: 8 year: 1992 ident: ref30 publication-title: Introduction to Artificial Neural Systems – ident: ref3 doi: 10.1007/978-3-540-24653-4_23 – ident: ref19 doi: 10.3233/ICA-170542 – year: 1951 ident: ref29 article-title: A statistical approach to some mine valuation and allied problems on the witwatersrand – ident: ref55 doi: 10.1016/S0169-7439(97)00061-0 – ident: ref46 doi: 10.1109/CEC.2015.7257247 – ident: ref75 doi: 10.1023/A:1008202821328 – ident: ref41 doi: 10.1002/mcda.1605 – volume: 16 year: 2001 ident: ref74 publication-title: Multi-Objective Optimization Using Evolutionary Algorithms – ident: ref11 doi: 10.1109/TEVC.2013.2281535 – ident: ref73 doi: 10.1109/TEVC.2005.851275 – ident: ref35 doi: 10.1007/s00500-014-1283-z – ident: ref20 doi: 10.1023/A:1011818803494 – ident: ref51 doi: 10.1007/978-3-540-87700-4_78 – ident: ref65 doi: 10.1109/TNN.2002.1031951 – year: 2004 ident: ref49 article-title: Generation of Pareto frontiers using support vector machine publication-title: Proc MCD – start-page: 631 year: 2015 ident: ref53 article-title: A multiobjective evolutionary algorithm based on decomposition and preselection publication-title: Bio-Inspired Computing Theories and Applications doi: 10.1007/978-3-662-49014-3_56 – ident: ref72 doi: 10.1007/s40747-017-0039-7 – ident: ref7 doi: 10.1109/4235.996017 – ident: ref66 doi: 10.1201/b12207 – ident: ref25 doi: 10.1007/s00500-003-0328-5 – ident: ref58 doi: 10.1109/5.58337 – year: 2001 ident: ref67 publication-title: Multi-Objective Optimization Using Evolutionary Algorithms – ident: ref15 doi: 10.1029/2010WR009194 – ident: ref80 doi: 10.1162/106365600568202 – start-page: 832 year: 2004 ident: ref8 article-title: Indicator-based selection in multiobjective search publication-title: Proc Int Conf Parallel Problem Solving Nat – ident: ref13 doi: 10.1109/TEVC.2016.2519378 – start-page: 641 year: 2013 ident: ref14 article-title: A real-world application of a many-objective optimisation complexity reduction process publication-title: Evolutionary Multi-Criterion Optimization doi: 10.1007/978-3-642-37140-0_48 – ident: ref69 doi: 10.1109/MCI.2017.2742868 – ident: ref63 doi: 10.1007/s40747-017-0057-5 – start-page: 230 year: 2010 ident: ref50 article-title: Dominance-based Pareto-surrogate for multi-objective optimization publication-title: Proc IEEE Simulation Conf – ident: ref9 doi: 10.1109/TEVC.2007.892759 – ident: ref26 doi: 10.1016/j.swevo.2011.05.001 – ident: ref12 doi: 10.1109/CEC.2008.4631121 – ident: ref39 doi: 10.1109/TEVC.2016.2622301 – ident: ref61 doi: 10.1080/00401706.2000.10485979 – ident: ref22 doi: 10.1109/MCI.2009.933094 – start-page: 1041 year: 2015 ident: ref48 article-title: A novel constraint handling strategy for expensive optimization problems publication-title: Proc 11th World Congr Struct Multidiscipl Optim – year: 2015 ident: ref77 article-title: Handling computationally expensive multiobjective optimization problems with evolutionary algorithms-a survey – ident: ref56 doi: 10.1029/2005WR004303 – ident: ref17 doi: 10.1109/TEVC.2014.2378512 – ident: ref37 doi: 10.1109/TEVC.2005.851274 – start-page: 214 year: 2016 ident: ref40 article-title: On constraint handling in surrogate-assisted evolutionary many-objective optimization publication-title: Proc Int Conf Parallel Problem Solving Nat – ident: ref70 doi: 10.1007/1-84628-137-7_6 – volume: 2 start-page: 393 year: 2012 ident: ref59 article-title: Backpropagation learning algorithm based on Levenberg Marquardt algorithm publication-title: Proc Comput Sci Inf Technol (CS and IT) – start-page: 283 year: 2001 ident: ref5 article-title: PESA-II: Region-based selection in evolutionary multi-objective optimization publication-title: Proc Genet Evol Comput Conf (GECCO) – start-page: 391 year: 2011 ident: ref34 article-title: Classification-assisted memetic algorithms for equality-constrained optimization problems with restricted constraint function mapping publication-title: Proc IEEE Congr Evol Comput (CEC) – ident: ref23 doi: 10.1093/nar/gkq322 – ident: ref2 doi: 10.3233/ICA-130452 – ident: ref10 doi: 10.1016/j.swevo.2011.03.001 – ident: ref31 doi: 10.1007/BF00994018 – ident: ref16 doi: 10.1162/EVCO_a_00009 – ident: ref32 doi: 10.1109/TEVC.2002.800884 – ident: ref78 doi: 10.1023/A:1008306431147 – volume: 61 start-page: 603 year: 2017 ident: ref60 article-title: A radial space division based evolutionary algorithm for many-objective optimization publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2017.08.024 – ident: ref62 doi: 10.1109/TEVC.2014.2308305 – ident: ref43 doi: 10.1109/TEVC.2015.2449293 – volume: 424 year: 1987 ident: ref27 publication-title: Empirical Model-Building and Response Surfaces – volume: 26 start-page: 30 year: 1996 ident: ref68 article-title: A combined genetic adaptive search (GeneAS) for engineering design publication-title: J Inform Comput Sci – ident: ref54 doi: 10.1109/TEVC.2007.894202 – start-page: 95 year: 2001 ident: ref6 article-title: SPEA2: Improving the strength Pareto evolutionary algorithm for multiobjective optimization publication-title: Proc 5th Conf Evol Methods Design Optim Control Appl Ind Problems – ident: ref57 doi: 10.1016/S0893-6080(05)80131-5 – ident: ref24 doi: 10.1111/mice.12125 – start-page: 1 year: 2012 ident: ref38 article-title: Pareto rank learning in multi-objective evolutionary algorithms publication-title: Proc IEEE Congr Evol Comput (CEC) – ident: ref52 doi: 10.1109/CEC.2014.6900641 – ident: ref1 doi: 10.1007/978-3-540-31880-4_49 – ident: ref44 doi: 10.1109/CEC.2013.6557879 – start-page: 1 year: 2016 ident: ref79 article-title: A fitness approximation assisted competitive swarm optimizer for large scale expensive optimization problems publication-title: Memetic Comput – ident: ref47 doi: 10.1007/s11390-012-1282-4 – year: 2002 ident: ref76 article-title: DACE, a MATLAB Kriging toolbox – ident: ref42 doi: 10.1109/CEC.2012.6256450 – ident: ref18 doi: 10.1109/TEVC.2014.2350987 – ident: ref33 doi: 10.1109/TEVC.2009.2039141 – ident: ref36 doi: 10.1109/TEVC.2009.2027359 – year: 1988 ident: ref28 publication-title: Radial Basis Functions Multi-variable Functional Interpolation and Adaptive Networks – ident: ref21 doi: 10.1109/TEVC.2009.2033671 |
| SSID | ssj0014519 |
| Score | 2.680239 |
| Snippet | Surrogate-assisted evolutionary algorithms (SAEAs) have been developed mainly for solving expensive optimization problems where only a small number of real... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 74 |
| SubjectTerms | Artificial neural networks Classification Computer simulation Evolutionary algorithms Evolutionary computation expensive many-objective optimization Fitness Genetic algorithms Linear programming Multiple objective analysis Neural networks Neurons Optimization Pareto dominance Prediction algorithms Signal processing algorithms State of the art surrogate-assisted evolutionary optimization Uncertainty |
| Title | A Classification-Based Surrogate-Assisted Evolutionary Algorithm for Expensive Many-Objective Optimization |
| URI | https://ieeexplore.ieee.org/document/8281523 https://www.proquest.com/docview/2175413896 |
| Volume | 23 |
| WOSCitedRecordID | wos000457825100006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0026 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014519 issn: 1089-778X databaseCode: RIE dateStart: 19970101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NbxMxEB01FQc4NJCCCITKB04IJ_vt9TGtUvVQEiRClNtqbY-hVZtU26QS_56x14moqJC4rPbgsVb77BmP580MwEedq0gnacYLQw8XaeIlOUI8xRhLmScYe8r_4lJMp-VyKb8ewOd9LgwievIZDt2rj-Wbtd66q7IReQdkbtIOdIQQba7WPmLgyqS0ZHpJJ8ZyGSKYcSRH88nizJG4ymFS-kDbIxvkm6r8pYm9eTnv_t-HvYSjcIxk4xb3V3CAqx50dy0aWNixPXjxR73BY7geM98E09GDPCL8lIyYYd-2TbN292mc0HK4GzZ5CGuybn6x8c2PdXO1-XnL6IjLXHVkz3pnX0iT8Jm6bpUmm5H6uQ15na_h-_lkfnbBQ7MFrskkbbhRNi6KEoVJsY7j2t10kHejrIyQnBqbCStUJhNdC6UzLFSsUWqL1qrMijpK38Dhar3Ct8BkatCYEm2u6izJlDQkk9JIG1lSwKYP0e73VzpUIncNMW4q75FEsnKIVQ6xKiDWh097kbu2DMe_Bh87iPYDAzp9GOwwrsJGva_II8szF6wt3j0t9R6e09yyJWoP4HDTbPEDPNMPm6v75sSvwd-oLtwb |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxsxEB5RqFQ4QMtDpEDrQ09VDfvwPnxMURBVQ6jUFOW2WtvjFgQJWhIk_n3HXidqBUListqDR17tZ894PN_MAHzSmYp0kgqeG3q4SBMvyRHiKcZYyizB2FP-L_rFYFCORvLHEnxZ5MIgoief4aF79bF8M9Ezd1V2RN4BmZv0FaxkQiRxm621iBm4QiktnV7SmbEchRhmHMmjYe_i2NG4ysOk9KG2_6yQb6vySBd7A3Oy8bJPewvr4SDJui3y72AJx5uwMW_SwMKe3YS1fyoObsFVl_k2mI4g5DHhX8mMGfZz1jQTd6PGCS-HvGG9-7Aq6-aBda9_T5rL6Z8bRodc5uoje947OyNdws_VVas22TkpoJuQ2bkNv056w-NTHtotcE1GacqNsnGel1iYFOs4rt1dB_k3ysoIya2xorCFEjLRdaG0wFzFGqW2aK0StqijdAeWx5Mx7gKTqUFjSrSZqkUilDQkk9JIG1lSwaYD0fz3VzrUInctMa4r75NEsnKIVQ6xKiDWgc8Lkdu2EMdzg7ccRIuBAZ0O7M8xrsJWvavIJ8uEC9fm75-W-ghvTodn_ar_bfB9D1ZpHtnStvdhedrM8ABe6_vp5V3zwa_Hvzxq32I |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Classification-Based+Surrogate-Assisted+Evolutionary+Algorithm+for+Expensive+Many-Objective+Optimization&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Pan%2C+Linqiang&rft.au=He%2C+Cheng&rft.au=Tian%2C+Ye&rft.au=Wang%2C+Handing&rft.date=2019-02-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1089-778X&rft.eissn=1941-0026&rft.volume=23&rft.issue=1&rft.spage=74&rft_id=info:doi/10.1109%2FTEVC.2018.2802784&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon |