A Classification-Based Surrogate-Assisted Evolutionary Algorithm for Expensive Many-Objective Optimization

Surrogate-assisted evolutionary algorithms (SAEAs) have been developed mainly for solving expensive optimization problems where only a small number of real fitness evaluations are allowed. Most existing SAEAs are designed for solving low-dimensional single or multiobjective optimization problems, wh...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on evolutionary computation Ročník 23; číslo 1; s. 74 - 88
Hlavní autoři: Pan, Linqiang, He, Cheng, Tian, Ye, Wang, Handing, Zhang, Xingyi, Jin, Yaochu
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.02.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1089-778X, 1941-0026
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Surrogate-assisted evolutionary algorithms (SAEAs) have been developed mainly for solving expensive optimization problems where only a small number of real fitness evaluations are allowed. Most existing SAEAs are designed for solving low-dimensional single or multiobjective optimization problems, which are not well suited for many-objective optimization. This paper proposes a surrogate-assisted many-objective evolutionary algorithm that uses an artificial neural network to predict the dominance relationship between candidate solutions and reference solutions instead of approximating the objective values separately. The uncertainty information in prediction is taken into account together with the dominance relationship to select promising solutions to be evaluated using the real objective functions. Our simulation results demonstrate that the proposed algorithm outperforms the state-of-the-art evolutionary algorithms on a set of many-objective optimization test problems.
AbstractList Surrogate-assisted evolutionary algorithms (SAEAs) have been developed mainly for solving expensive optimization problems where only a small number of real fitness evaluations are allowed. Most existing SAEAs are designed for solving low-dimensional single or multiobjective optimization problems, which are not well suited for many-objective optimization. This paper proposes a surrogate-assisted many-objective evolutionary algorithm that uses an artificial neural network to predict the dominance relationship between candidate solutions and reference solutions instead of approximating the objective values separately. The uncertainty information in prediction is taken into account together with the dominance relationship to select promising solutions to be evaluated using the real objective functions. Our simulation results demonstrate that the proposed algorithm outperforms the state-of-the-art evolutionary algorithms on a set of many-objective optimization test problems.
Author Pan, Linqiang
Wang, Handing
Zhang, Xingyi
Tian, Ye
Jin, Yaochu
He, Cheng
Author_xml – sequence: 1
  givenname: Linqiang
  orcidid: 0000-0002-4554-455X
  surname: Pan
  fullname: Pan, Linqiang
  email: lqpanhust@gmail.com
  organization: Key Laboratory of Image Information Processing and Intelligent Control of Education Ministry of China, School of Automation, University of Science and Technology, Wuhan, China
– sequence: 2
  givenname: Cheng
  orcidid: 0000-0003-4218-8454
  surname: He
  fullname: He, Cheng
  email: chenghehust@gmail.com
  organization: Department of Computer Science, University of Surrey, Surrey, U.K
– sequence: 3
  givenname: Ye
  surname: Tian
  fullname: Tian, Ye
  email: field910921@gmail.com
  organization: Department of Computer Science, University of Surrey, Surrey, U.K
– sequence: 4
  givenname: Handing
  orcidid: 0000-0002-4805-3780
  surname: Wang
  fullname: Wang, Handing
  email: wanghanding.patch@gmail.com
  organization: Department of Computer Science, University of Surrey, Surrey, U.K
– sequence: 5
  givenname: Xingyi
  orcidid: 0000-0002-5052-000X
  surname: Zhang
  fullname: Zhang, Xingyi
  email: xyzhanghust@gmail.com
  organization: Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Computer Science and Technology, Anhui University, Hefei, China
– sequence: 6
  givenname: Yaochu
  orcidid: 0000-0003-1100-0631
  surname: Jin
  fullname: Jin, Yaochu
  email: yaochu.jin@surrey.ac.uk
  organization: Department of Computer Science, University of Surrey, Surrey, U.K
BookMark eNp9kMtOwzAQRS0EEs8PQGwisU7xOG5sL0tVHhKoCwpiFznuGFylcbFdBHw9Ca1YsGA1r3tnRueQ7La-RUJOgQ4AqLqYTZ7GA0ZBDpikTEi-Qw5AccgpZeVul1OpciHk8z45jHFBKfAhqAOyGGXjRsforDM6Od_mlzriPHtYh-BfdMJ81A1j6lqTd9-se4kOn9moefHBpddlZn3IJh8rbKN7x-xet5_5tF6gSX05XSW3dF8_m4_JntVNxJNtPCKPV5PZ-Ca_m17fjkd3ueFMpXxeWyhLiWJeoAbQVBWFKmltFUUuheXCiporZrSoDceyBoPKWLS25lZoWhyR883eVfBva4ypWvh1aLuTFQMx5FBIVXYqsVGZ4GMMaCvj0s-fKWjXVECrHmzVg616sNUWbOeEP85VcMsOyr-es43HIeKvXjIJQ1YU3yiCiMQ
CODEN ITEVF5
CitedBy_id crossref_primary_10_1007_s41965_024_00165_w
crossref_primary_10_1016_j_knosys_2020_106030
crossref_primary_10_1007_s40747_025_01955_0
crossref_primary_10_1016_j_asoc_2021_107703
crossref_primary_10_1007_s10489_021_02709_4
crossref_primary_10_1016_j_ins_2023_02_044
crossref_primary_10_1016_j_ynexs_2024_100044
crossref_primary_10_1016_j_apenergy_2024_124325
crossref_primary_10_1007_s00500_023_08227_4
crossref_primary_10_1007_s40747_023_01113_4
crossref_primary_10_1109_TEVC_2020_2986348
crossref_primary_10_1016_j_swevo_2024_101516
crossref_primary_10_1109_TEVC_2023_3349313
crossref_primary_10_1109_JAS_2024_124947
crossref_primary_10_1109_TII_2019_2962137
crossref_primary_10_1016_j_conengprac_2025_106240
crossref_primary_10_1109_TEVC_2023_3237605
crossref_primary_10_1007_s10489_024_05612_w
crossref_primary_10_1007_s40747_022_00717_6
crossref_primary_10_1016_j_knosys_2020_106262
crossref_primary_10_1016_j_swevo_2022_101074
crossref_primary_10_1016_j_swevo_2023_101252
crossref_primary_10_1007_s12293_021_00351_8
crossref_primary_10_1016_j_engappai_2024_109229
crossref_primary_10_1016_j_petrol_2020_107192
crossref_primary_10_26599_TST_2024_9010224
crossref_primary_10_1109_TEVC_2024_3383095
crossref_primary_10_1109_TEVC_2024_3409431
crossref_primary_10_1109_TEVC_2019_2899030
crossref_primary_10_1109_TCYB_2021_3126341
crossref_primary_10_1016_j_swevo_2025_101926
crossref_primary_10_1016_j_swevo_2024_101506
crossref_primary_10_1016_j_swevo_2025_101924
crossref_primary_10_1007_s12293_023_00404_0
crossref_primary_10_1109_TEVC_2022_3170638
crossref_primary_10_1109_TFUZZ_2020_2973121
crossref_primary_10_1016_j_swevo_2020_100774
crossref_primary_10_1016_j_swevo_2024_101741
crossref_primary_10_1016_j_eswa_2024_126103
crossref_primary_10_1111_coin_12315
crossref_primary_10_1080_08839514_2021_1901034
crossref_primary_10_3390_math12101431
crossref_primary_10_1109_TAP_2023_3316673
crossref_primary_10_1109_TEVC_2023_3250350
crossref_primary_10_1016_j_neucom_2024_127629
crossref_primary_10_1016_j_engappai_2023_107684
crossref_primary_10_1016_j_swevo_2024_101610
crossref_primary_10_1016_j_engappai_2024_109381
crossref_primary_10_1016_j_eswa_2023_121374
crossref_primary_10_1016_j_ins_2019_08_069
crossref_primary_10_1109_JIOT_2022_3150747
crossref_primary_10_1109_TCYB_2020_2985081
crossref_primary_10_1109_TSMC_2020_3044418
crossref_primary_10_1016_j_ins_2023_01_018
crossref_primary_10_1007_s40747_021_00506_7
crossref_primary_10_1007_s00521_022_07097_5
crossref_primary_10_1016_j_asoc_2025_113388
crossref_primary_10_1016_j_swevo_2025_101905
crossref_primary_10_3390_math13162672
crossref_primary_10_1016_j_cja_2022_09_020
crossref_primary_10_2118_225411_PA
crossref_primary_10_1016_j_asoc_2021_107268
crossref_primary_10_1109_TCYB_2022_3186591
crossref_primary_10_1007_s00500_023_09396_y
crossref_primary_10_1007_s11227_025_07660_6
crossref_primary_10_1109_TCOMM_2023_3277878
crossref_primary_10_1109_MCI_2023_3304073
crossref_primary_10_1016_j_swevo_2021_100866
crossref_primary_10_1016_j_swevo_2021_100988
crossref_primary_10_1007_s11633_022_1317_4
crossref_primary_10_1016_j_ins_2018_04_062
crossref_primary_10_2118_206755_PA
crossref_primary_10_1109_TCYB_2021_3105696
crossref_primary_10_1007_s10489_025_06266_y
crossref_primary_10_1109_TETCI_2022_3221126
crossref_primary_10_1002_cpe_6566
crossref_primary_10_3390_app15094847
crossref_primary_10_1016_j_swevo_2024_101703
crossref_primary_10_1007_s40747_021_00362_5
crossref_primary_10_1109_TEVC_2022_3152582
crossref_primary_10_1016_j_ijmecsci_2025_110418
crossref_primary_10_1007_s40747_025_01905_w
crossref_primary_10_1016_j_asoc_2022_108798
crossref_primary_10_1016_j_swevo_2024_101700
crossref_primary_10_1016_j_apenergy_2021_117894
crossref_primary_10_1109_TSMC_2023_3306085
crossref_primary_10_1007_s10462_020_09882_x
crossref_primary_10_1109_TEVC_2023_3300181
crossref_primary_10_1007_s40747_023_00969_w
crossref_primary_10_1016_j_eswa_2022_119495
crossref_primary_10_1109_TCYB_2022_3170344
crossref_primary_10_1109_TEVC_2019_2938531
crossref_primary_10_1109_TEVC_2021_3067015
crossref_primary_10_1007_s00500_019_04324_5
crossref_primary_10_1007_s00521_023_08661_3
crossref_primary_10_1109_TEVC_2023_3291614
crossref_primary_10_1109_TSMC_2020_3010052
crossref_primary_10_1109_TCYB_2018_2869674
crossref_primary_10_1007_s00366_019_00844_8
crossref_primary_10_1007_s12065_023_00882_8
crossref_primary_10_1109_TII_2023_3245687
crossref_primary_10_1109_TNNLS_2023_3297624
crossref_primary_10_1016_j_swevo_2024_101492
crossref_primary_10_1007_s11432_023_3909_x
crossref_primary_10_1145_3637065
crossref_primary_10_1109_TCYB_2021_3125071
crossref_primary_10_1109_TAP_2024_3481663
crossref_primary_10_1109_TEVC_2023_3265347
crossref_primary_10_1109_TETCI_2024_3358377
crossref_primary_10_1109_TSMC_2024_3454051
crossref_primary_10_1007_s40747_022_00706_9
crossref_primary_10_1109_TCYB_2021_3120188
crossref_primary_10_3390_mca23020030
crossref_primary_10_1016_j_eswa_2025_128177
crossref_primary_10_1016_j_knosys_2022_109702
crossref_primary_10_1007_s12293_021_00328_7
crossref_primary_10_1016_j_ins_2021_03_002
crossref_primary_10_1049_gtd2_70147
crossref_primary_10_1007_s40747_022_00883_7
crossref_primary_10_1016_j_asoc_2025_113670
crossref_primary_10_1109_TCYB_2022_3175533
crossref_primary_10_1007_s00170_023_12595_4
crossref_primary_10_3390_drones9020106
crossref_primary_10_1109_TETCI_2019_2918509
crossref_primary_10_1007_s10898_021_01019_w
crossref_primary_10_1007_s40747_022_00751_4
crossref_primary_10_1016_j_ins_2024_120405
crossref_primary_10_1080_19648189_2022_2049371
crossref_primary_10_1007_s40747_024_01737_0
crossref_primary_10_1016_j_knosys_2018_12_001
crossref_primary_10_1016_j_knosys_2023_110522
crossref_primary_10_1007_s41965_024_00172_x
crossref_primary_10_1007_s00158_024_03748_4
crossref_primary_10_1109_TEVC_2021_3117990
crossref_primary_10_1016_j_engappai_2023_107745
crossref_primary_10_1016_j_engappai_2025_110475
crossref_primary_10_1016_j_ins_2024_121620
crossref_primary_10_1007_s13748_022_00283_5
crossref_primary_10_1016_j_swevo_2023_101401
crossref_primary_10_1016_j_swevo_2025_101980
crossref_primary_10_1016_j_ins_2023_03_101
crossref_primary_10_1038_s41598_023_40019_6
crossref_primary_10_1080_0305215X_2023_2219610
crossref_primary_10_1109_TEVC_2022_3162993
crossref_primary_10_2118_201229_PA
crossref_primary_10_1016_j_asoc_2023_110061
crossref_primary_10_1016_j_ins_2019_06_016
crossref_primary_10_1109_ACCESS_2019_2897597
crossref_primary_10_1007_s10489_024_05270_y
crossref_primary_10_1080_0951192X_2020_1803506
crossref_primary_10_1016_j_swevo_2025_101978
crossref_primary_10_1016_j_asoc_2023_110733
crossref_primary_10_1145_3674152
crossref_primary_10_1109_TEVC_2024_3361000
crossref_primary_10_1109_TCYB_2024_3501360
crossref_primary_10_1007_s40747_022_00943_y
crossref_primary_10_1109_TEVC_2018_2869001
crossref_primary_10_1007_s40747_025_01947_0
crossref_primary_10_1007_s40747_018_0080_1
crossref_primary_10_1109_TEVC_2022_3195668
crossref_primary_10_1109_TEVC_2022_3219062
crossref_primary_10_1016_j_knosys_2022_108141
crossref_primary_10_1016_j_eswa_2024_126050
crossref_primary_10_1016_j_ins_2024_121045
crossref_primary_10_1016_j_swevo_2025_101988
crossref_primary_10_1016_j_knosys_2023_110630
crossref_primary_10_3233_JIFS_201124
crossref_primary_10_1007_s11276_021_02677_0
crossref_primary_10_1109_TEVC_2020_3017865
crossref_primary_10_1007_s00500_021_06348_2
crossref_primary_10_1007_s40747_024_01715_6
crossref_primary_10_1016_j_swevo_2025_101982
crossref_primary_10_1007_s11227_025_07785_8
crossref_primary_10_1007_s00500_021_06390_0
crossref_primary_10_1109_ACCESS_2022_3188248
crossref_primary_10_1007_s40747_023_01010_w
crossref_primary_10_1016_j_ins_2019_10_066
crossref_primary_10_1016_j_knosys_2022_108416
crossref_primary_10_1007_s40747_024_01499_9
crossref_primary_10_1109_TEVC_2022_3159000
crossref_primary_10_1016_j_engappai_2024_108505
crossref_primary_10_1109_TEVC_2021_3103936
crossref_primary_10_1016_j_asoc_2023_111175
crossref_primary_10_1016_j_asr_2023_04_043
crossref_primary_10_1109_TEVC_2023_3314766
crossref_primary_10_1109_TSMC_2022_3163129
crossref_primary_10_1007_s00158_025_03994_0
crossref_primary_10_1016_j_asoc_2023_110874
crossref_primary_10_1016_j_asoc_2024_111842
crossref_primary_10_1016_j_asoc_2024_111967
crossref_primary_10_1016_j_asoc_2023_110879
crossref_primary_10_1016_j_swevo_2023_101315
crossref_primary_10_1109_TEVC_2024_3380327
crossref_primary_10_1016_j_ins_2024_120449
crossref_primary_10_1016_j_swevo_2020_100741
crossref_primary_10_1016_j_ins_2020_01_048
crossref_primary_10_1016_j_compstruct_2021_113715
crossref_primary_10_1109_TCYB_2022_3200517
crossref_primary_10_1109_TEVC_2022_3214607
crossref_primary_10_1155_2021_7955909
crossref_primary_10_1016_j_engappai_2024_108616
crossref_primary_10_1016_j_swevo_2024_101666
crossref_primary_10_1109_TEVC_2022_3228516
crossref_primary_10_1016_j_eswa_2023_122575
crossref_primary_10_1016_j_swevo_2025_102019
crossref_primary_10_1016_j_eswa_2025_128670
crossref_primary_10_1016_j_swevo_2025_102016
crossref_primary_10_1016_j_swevo_2023_101323
crossref_primary_10_1007_s12293_022_00368_7
crossref_primary_10_1016_j_asoc_2023_111194
crossref_primary_10_1016_j_knosys_2022_108197
crossref_primary_10_1115_1_4069424
crossref_primary_10_1016_j_ins_2023_119946
crossref_primary_10_1016_j_neucom_2021_01_115
crossref_primary_10_1016_j_asoc_2023_110892
crossref_primary_10_1109_ACCESS_2024_3403889
crossref_primary_10_1016_j_ins_2024_121079
crossref_primary_10_1109_TEVC_2021_3109576
crossref_primary_10_1109_JAS_2025_125111
crossref_primary_10_1016_j_swevo_2022_101176
crossref_primary_10_1007_s40747_019_00126_2
crossref_primary_10_1109_TETCI_2024_3404020
crossref_primary_10_1109_TEVC_2020_3016049
crossref_primary_10_1109_TEVC_2021_3113923
crossref_primary_10_1109_TEVC_2022_3177936
crossref_primary_10_1109_JIOT_2025_3559690
crossref_primary_10_1016_j_swevo_2022_101170
crossref_primary_10_1016_j_swevo_2022_101173
crossref_primary_10_1109_TEVC_2021_3073648
crossref_primary_10_1162_evco_a_00354
crossref_primary_10_1109_ACCESS_2021_3131587
crossref_primary_10_1016_j_swevo_2025_101947
crossref_primary_10_1287_ijoc_2022_1260
crossref_primary_10_1109_TEVC_2021_3098257
crossref_primary_10_1109_TEVC_2023_3340678
Cites_doi 10.1145/1830483.1830571
10.1007/3-540-59497-3_175
10.1109/MCI.2006.1597059
10.1109/TEVC.2005.861417
10.1007/978-3-540-24653-4_23
10.3233/ICA-170542
10.1016/S0169-7439(97)00061-0
10.1109/CEC.2015.7257247
10.1023/A:1008202821328
10.1002/mcda.1605
10.1109/TEVC.2013.2281535
10.1109/TEVC.2005.851275
10.1007/s00500-014-1283-z
10.1023/A:1011818803494
10.1007/978-3-540-87700-4_78
10.1109/TNN.2002.1031951
10.1007/978-3-662-49014-3_56
10.1007/s40747-017-0039-7
10.1109/4235.996017
10.1201/b12207
10.1007/s00500-003-0328-5
10.1109/5.58337
10.1029/2010WR009194
10.1162/106365600568202
10.1109/TEVC.2016.2519378
10.1007/978-3-642-37140-0_48
10.1109/MCI.2017.2742868
10.1007/s40747-017-0057-5
10.1109/TEVC.2007.892759
10.1016/j.swevo.2011.05.001
10.1109/CEC.2008.4631121
10.1109/TEVC.2016.2622301
10.1080/00401706.2000.10485979
10.1109/MCI.2009.933094
10.1029/2005WR004303
10.1109/TEVC.2014.2378512
10.1109/TEVC.2005.851274
10.1007/1-84628-137-7_6
10.1093/nar/gkq322
10.3233/ICA-130452
10.1016/j.swevo.2011.03.001
10.1007/BF00994018
10.1162/EVCO_a_00009
10.1109/TEVC.2002.800884
10.1023/A:1008306431147
10.1016/j.asoc.2017.08.024
10.1109/TEVC.2014.2308305
10.1109/TEVC.2015.2449293
10.1109/TEVC.2007.894202
10.1016/S0893-6080(05)80131-5
10.1111/mice.12125
10.1109/CEC.2014.6900641
10.1007/978-3-540-31880-4_49
10.1109/CEC.2013.6557879
10.1007/s11390-012-1282-4
10.1109/CEC.2012.6256450
10.1109/TEVC.2014.2350987
10.1109/TEVC.2009.2039141
10.1109/TEVC.2009.2027359
10.1109/TEVC.2009.2033671
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TEVC.2018.2802784
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1941-0026
EndPage 88
ExternalDocumentID 10_1109_TEVC_2018_2802784
8281523
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61320106005; 61502004; 61502001; 61772214; 61672033
  funderid: 10.13039/501100001809
– fundername: EPSRC
  grantid: EP/M017869/1
– fundername: Innovation Scientists and Technicians Troop Construction Projects of Henan Province
  grantid: 154200510012
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IF
6IK
6IL
6IN
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ADZIZ
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
EBS
EJD
HZ~
H~9
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RIL
RNS
TN5
VH1
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c429t-dbf1668e7d3ea11a0933960bf90e487f47f7b492ca7bc4e6b1ce9cfeffb4f7a03
IEDL.DBID RIE
ISICitedReferencesCount 306
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000457825100006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1089-778X
IngestDate Sun Sep 07 03:48:04 EDT 2025
Sat Nov 29 03:13:47 EST 2025
Tue Nov 18 22:18:52 EST 2025
Wed Aug 27 03:06:24 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c429t-dbf1668e7d3ea11a0933960bf90e487f47f7b492ca7bc4e6b1ce9cfeffb4f7a03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4218-8454
0000-0002-4805-3780
0000-0002-5052-000X
0000-0002-4554-455X
0000-0003-1100-0631
PQID 2175413896
PQPubID 85418
PageCount 15
ParticipantIDs ieee_primary_8281523
proquest_journals_2175413896
crossref_citationtrail_10_1109_TEVC_2018_2802784
crossref_primary_10_1109_TEVC_2018_2802784
PublicationCentury 2000
PublicationDate 2019-02-01
PublicationDateYYYYMMDD 2019-02-01
PublicationDate_xml – month: 02
  year: 2019
  text: 2019-02-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on evolutionary computation
PublicationTitleAbbrev TEVC
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref56
ref12
ref15
ref58
ref52
lygoe (ref14) 2013
ref55
ref11
sapna (ref59) 2012; 2
ref54
ref10
zitzler (ref6) 2001
ref17
ref16
ref19
ref18
seah (ref38) 2012
loshchilov (ref50) 2010
yun (ref49) 2004
ref51
box (ref27) 1987; 424
ref46
ref45
ref47
ref42
ref41
ref44
ref43
chugh (ref77) 2015
krige (ref29) 1951
ref7
ref9
ref4
ref3
broomhead (ref28) 1988
ref80
ref35
ref78
deb (ref74) 2001; 16
ref37
ref36
ref75
ref31
nielsen (ref76) 2002
ref33
ref32
ref2
ref1
ref39
han (ref64) 1995
deb (ref68) 1996; 26
zitzler (ref8) 2004
ref71
ref70
ref73
ref72
sun (ref79) 2016
ref24
zhang (ref53) 2015
ref23
ref26
ref69
ref25
he (ref60) 2017; 61
ref20
zurada (ref30) 1992; 8
ref63
ref66
ref22
corne (ref5) 2001
ref65
ref21
deb (ref67) 2001
bhattacharjee (ref48) 2015
ref62
chugh (ref40) 2016
ref61
handoko (ref34) 2011
References_xml – ident: ref45
  doi: 10.1145/1830483.1830571
– start-page: 195
  year: 1995
  ident: ref64
  article-title: The influence of the sigmoid function parameters on the speed of backpropagation learning
  publication-title: From Natural to Artificial Neural Computation
  doi: 10.1007/3-540-59497-3_175
– ident: ref4
  doi: 10.1109/MCI.2006.1597059
– ident: ref71
  doi: 10.1109/TEVC.2005.861417
– volume: 8
  year: 1992
  ident: ref30
  publication-title: Introduction to Artificial Neural Systems
– ident: ref3
  doi: 10.1007/978-3-540-24653-4_23
– ident: ref19
  doi: 10.3233/ICA-170542
– year: 1951
  ident: ref29
  article-title: A statistical approach to some mine valuation and allied problems on the witwatersrand
– ident: ref55
  doi: 10.1016/S0169-7439(97)00061-0
– ident: ref46
  doi: 10.1109/CEC.2015.7257247
– ident: ref75
  doi: 10.1023/A:1008202821328
– ident: ref41
  doi: 10.1002/mcda.1605
– volume: 16
  year: 2001
  ident: ref74
  publication-title: Multi-Objective Optimization Using Evolutionary Algorithms
– ident: ref11
  doi: 10.1109/TEVC.2013.2281535
– ident: ref73
  doi: 10.1109/TEVC.2005.851275
– ident: ref35
  doi: 10.1007/s00500-014-1283-z
– ident: ref20
  doi: 10.1023/A:1011818803494
– ident: ref51
  doi: 10.1007/978-3-540-87700-4_78
– ident: ref65
  doi: 10.1109/TNN.2002.1031951
– year: 2004
  ident: ref49
  article-title: Generation of Pareto frontiers using support vector machine
  publication-title: Proc MCD
– start-page: 631
  year: 2015
  ident: ref53
  article-title: A multiobjective evolutionary algorithm based on decomposition and preselection
  publication-title: Bio-Inspired Computing Theories and Applications
  doi: 10.1007/978-3-662-49014-3_56
– ident: ref72
  doi: 10.1007/s40747-017-0039-7
– ident: ref7
  doi: 10.1109/4235.996017
– ident: ref66
  doi: 10.1201/b12207
– ident: ref25
  doi: 10.1007/s00500-003-0328-5
– ident: ref58
  doi: 10.1109/5.58337
– year: 2001
  ident: ref67
  publication-title: Multi-Objective Optimization Using Evolutionary Algorithms
– ident: ref15
  doi: 10.1029/2010WR009194
– ident: ref80
  doi: 10.1162/106365600568202
– start-page: 832
  year: 2004
  ident: ref8
  article-title: Indicator-based selection in multiobjective search
  publication-title: Proc Int Conf Parallel Problem Solving Nat
– ident: ref13
  doi: 10.1109/TEVC.2016.2519378
– start-page: 641
  year: 2013
  ident: ref14
  article-title: A real-world application of a many-objective optimisation complexity reduction process
  publication-title: Evolutionary Multi-Criterion Optimization
  doi: 10.1007/978-3-642-37140-0_48
– ident: ref69
  doi: 10.1109/MCI.2017.2742868
– ident: ref63
  doi: 10.1007/s40747-017-0057-5
– start-page: 230
  year: 2010
  ident: ref50
  article-title: Dominance-based Pareto-surrogate for multi-objective optimization
  publication-title: Proc IEEE Simulation Conf
– ident: ref9
  doi: 10.1109/TEVC.2007.892759
– ident: ref26
  doi: 10.1016/j.swevo.2011.05.001
– ident: ref12
  doi: 10.1109/CEC.2008.4631121
– ident: ref39
  doi: 10.1109/TEVC.2016.2622301
– ident: ref61
  doi: 10.1080/00401706.2000.10485979
– ident: ref22
  doi: 10.1109/MCI.2009.933094
– start-page: 1041
  year: 2015
  ident: ref48
  article-title: A novel constraint handling strategy for expensive optimization problems
  publication-title: Proc 11th World Congr Struct Multidiscipl Optim
– year: 2015
  ident: ref77
  article-title: Handling computationally expensive multiobjective optimization problems with evolutionary algorithms-a survey
– ident: ref56
  doi: 10.1029/2005WR004303
– ident: ref17
  doi: 10.1109/TEVC.2014.2378512
– ident: ref37
  doi: 10.1109/TEVC.2005.851274
– start-page: 214
  year: 2016
  ident: ref40
  article-title: On constraint handling in surrogate-assisted evolutionary many-objective optimization
  publication-title: Proc Int Conf Parallel Problem Solving Nat
– ident: ref70
  doi: 10.1007/1-84628-137-7_6
– volume: 2
  start-page: 393
  year: 2012
  ident: ref59
  article-title: Backpropagation learning algorithm based on Levenberg Marquardt algorithm
  publication-title: Proc Comput Sci Inf Technol (CS and IT)
– start-page: 283
  year: 2001
  ident: ref5
  article-title: PESA-II: Region-based selection in evolutionary multi-objective optimization
  publication-title: Proc Genet Evol Comput Conf (GECCO)
– start-page: 391
  year: 2011
  ident: ref34
  article-title: Classification-assisted memetic algorithms for equality-constrained optimization problems with restricted constraint function mapping
  publication-title: Proc IEEE Congr Evol Comput (CEC)
– ident: ref23
  doi: 10.1093/nar/gkq322
– ident: ref2
  doi: 10.3233/ICA-130452
– ident: ref10
  doi: 10.1016/j.swevo.2011.03.001
– ident: ref31
  doi: 10.1007/BF00994018
– ident: ref16
  doi: 10.1162/EVCO_a_00009
– ident: ref32
  doi: 10.1109/TEVC.2002.800884
– ident: ref78
  doi: 10.1023/A:1008306431147
– volume: 61
  start-page: 603
  year: 2017
  ident: ref60
  article-title: A radial space division based evolutionary algorithm for many-objective optimization
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2017.08.024
– ident: ref62
  doi: 10.1109/TEVC.2014.2308305
– ident: ref43
  doi: 10.1109/TEVC.2015.2449293
– volume: 424
  year: 1987
  ident: ref27
  publication-title: Empirical Model-Building and Response Surfaces
– volume: 26
  start-page: 30
  year: 1996
  ident: ref68
  article-title: A combined genetic adaptive search (GeneAS) for engineering design
  publication-title: J Inform Comput Sci
– ident: ref54
  doi: 10.1109/TEVC.2007.894202
– start-page: 95
  year: 2001
  ident: ref6
  article-title: SPEA2: Improving the strength Pareto evolutionary algorithm for multiobjective optimization
  publication-title: Proc 5th Conf Evol Methods Design Optim Control Appl Ind Problems
– ident: ref57
  doi: 10.1016/S0893-6080(05)80131-5
– ident: ref24
  doi: 10.1111/mice.12125
– start-page: 1
  year: 2012
  ident: ref38
  article-title: Pareto rank learning in multi-objective evolutionary algorithms
  publication-title: Proc IEEE Congr Evol Comput (CEC)
– ident: ref52
  doi: 10.1109/CEC.2014.6900641
– ident: ref1
  doi: 10.1007/978-3-540-31880-4_49
– ident: ref44
  doi: 10.1109/CEC.2013.6557879
– start-page: 1
  year: 2016
  ident: ref79
  article-title: A fitness approximation assisted competitive swarm optimizer for large scale expensive optimization problems
  publication-title: Memetic Comput
– ident: ref47
  doi: 10.1007/s11390-012-1282-4
– year: 2002
  ident: ref76
  article-title: DACE, a MATLAB Kriging toolbox
– ident: ref42
  doi: 10.1109/CEC.2012.6256450
– ident: ref18
  doi: 10.1109/TEVC.2014.2350987
– ident: ref33
  doi: 10.1109/TEVC.2009.2039141
– ident: ref36
  doi: 10.1109/TEVC.2009.2027359
– year: 1988
  ident: ref28
  publication-title: Radial Basis Functions Multi-variable Functional Interpolation and Adaptive Networks
– ident: ref21
  doi: 10.1109/TEVC.2009.2033671
SSID ssj0014519
Score 2.680239
Snippet Surrogate-assisted evolutionary algorithms (SAEAs) have been developed mainly for solving expensive optimization problems where only a small number of real...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 74
SubjectTerms Artificial neural networks
Classification
Computer simulation
Evolutionary algorithms
Evolutionary computation
expensive many-objective optimization
Fitness
Genetic algorithms
Linear programming
Multiple objective analysis
Neural networks
Neurons
Optimization
Pareto dominance
Prediction algorithms
Signal processing algorithms
State of the art
surrogate-assisted evolutionary optimization
Uncertainty
Title A Classification-Based Surrogate-Assisted Evolutionary Algorithm for Expensive Many-Objective Optimization
URI https://ieeexplore.ieee.org/document/8281523
https://www.proquest.com/docview/2175413896
Volume 23
WOSCitedRecordID wos000457825100006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0026
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014519
  issn: 1089-778X
  databaseCode: RIE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NbxMxEB01FQc4NJCCCITKB04IJ_vt9TGtUvVQEiRClNtqbY-hVZtU26QS_56x14moqJC4rPbgsVb77BmP580MwEedq0gnacYLQw8XaeIlOUI8xRhLmScYe8r_4lJMp-VyKb8ewOd9LgwievIZDt2rj-Wbtd66q7IReQdkbtIOdIQQba7WPmLgyqS0ZHpJJ8ZyGSKYcSRH88nizJG4ymFS-kDbIxvkm6r8pYm9eTnv_t-HvYSjcIxk4xb3V3CAqx50dy0aWNixPXjxR73BY7geM98E09GDPCL8lIyYYd-2TbN292mc0HK4GzZ5CGuybn6x8c2PdXO1-XnL6IjLXHVkz3pnX0iT8Jm6bpUmm5H6uQ15na_h-_lkfnbBQ7MFrskkbbhRNi6KEoVJsY7j2t10kHejrIyQnBqbCStUJhNdC6UzLFSsUWqL1qrMijpK38Dhar3Ct8BkatCYEm2u6izJlDQkk9JIG1lSwKYP0e73VzpUIncNMW4q75FEsnKIVQ6xKiDWh097kbu2DMe_Bh87iPYDAzp9GOwwrsJGva_II8szF6wt3j0t9R6e09yyJWoP4HDTbPEDPNMPm6v75sSvwd-oLtwb
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxsxEB5RqFQ4QMtDpEDrQ09VDfvwPnxMURBVQ6jUFOW2WtvjFgQJWhIk_n3HXidqBUListqDR17tZ894PN_MAHzSmYp0kgqeG3q4SBMvyRHiKcZYyizB2FP-L_rFYFCORvLHEnxZ5MIgoief4aF79bF8M9Ezd1V2RN4BmZv0FaxkQiRxm621iBm4QiktnV7SmbEchRhmHMmjYe_i2NG4ysOk9KG2_6yQb6vySBd7A3Oy8bJPewvr4SDJui3y72AJx5uwMW_SwMKe3YS1fyoObsFVl_k2mI4g5DHhX8mMGfZz1jQTd6PGCS-HvGG9-7Aq6-aBda9_T5rL6Z8bRodc5uoje947OyNdws_VVas22TkpoJuQ2bkNv056w-NTHtotcE1GacqNsnGel1iYFOs4rt1dB_k3ysoIya2xorCFEjLRdaG0wFzFGqW2aK0StqijdAeWx5Mx7gKTqUFjSrSZqkUilDQkk9JIG1lSwaYD0fz3VzrUInctMa4r75NEsnKIVQ6xKiDWgc8Lkdu2EMdzg7ccRIuBAZ0O7M8xrsJWvavIJ8uEC9fm75-W-ghvTodn_ar_bfB9D1ZpHtnStvdhedrM8ABe6_vp5V3zwa_Hvzxq32I
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Classification-Based+Surrogate-Assisted+Evolutionary+Algorithm+for+Expensive+Many-Objective+Optimization&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Pan%2C+Linqiang&rft.au=He%2C+Cheng&rft.au=Tian%2C+Ye&rft.au=Wang%2C+Handing&rft.date=2019-02-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1089-778X&rft.eissn=1941-0026&rft.volume=23&rft.issue=1&rft.spage=74&rft_id=info:doi/10.1109%2FTEVC.2018.2802784&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon