Swapped face detection using deep learning and subjective assessment

The tremendous success of deep learning for imaging applications has resulted in numerous beneficial advances. Unfortunately, this success has also been a catalyst for malicious uses such as photo-realistic face swapping of parties without consent. In this study, we use deep transfer learning for fa...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:EURASIP Journal on Information Security Ročník 2020; číslo 1; s. 1 - 12
Hlavní autoři: Ding, Xinyi, Raziei, Zohreh, Larson, Eric C., Olinick, Eli V., Krueger, Paul, Hahsler, Michael
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cham Springer International Publishing 19.05.2020
Springer Nature B.V
SpringerOpen
Témata:
ISSN:2510-523X, 1687-4161, 2510-523X, 1687-417X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The tremendous success of deep learning for imaging applications has resulted in numerous beneficial advances. Unfortunately, this success has also been a catalyst for malicious uses such as photo-realistic face swapping of parties without consent. In this study, we use deep transfer learning for face swapping detection, showing true positive rates greater than 96% with very few false alarms. Distinguished from existing methods that only provide detection accuracy, we also provide uncertainty for each prediction, which is critical for trust in the deployment of such detection systems. Moreover, we provide a comparison to human subjects. To capture human recognition performance, we build a website to collect pairwise comparisons of images from human subjects. Based on these comparisons, we infer a consensus ranking from the image perceived as most real to the image perceived as most fake. Overall, the results show the effectiveness of our method. As part of this study, we create a novel dataset that is, to the best of our knowledge, the largest swapped face dataset created using still images. This dataset will be available for academic research use per request. Our goal of this study is to inspire more research in the field of image forensics through the creation of a dataset and initial analysis.
AbstractList The tremendous success of deep learning for imaging applications has resulted in numerous beneficial advances. Unfortunately, this success has also been a catalyst for malicious uses such as photo-realistic face swapping of parties without consent. In this study, we use deep transfer learning for face swapping detection, showing true positive rates greater than 96% with very few false alarms. Distinguished from existing methods that only provide detection accuracy, we also provide uncertainty for each prediction, which is critical for trust in the deployment of such detection systems. Moreover, we provide a comparison to human subjects. To capture human recognition performance, we build a website to collect pairwise comparisons of images from human subjects. Based on these comparisons, we infer a consensus ranking from the image perceived as most real to the image perceived as most fake. Overall, the results show the effectiveness of our method. As part of this study, we create a novel dataset that is, to the best of our knowledge, the largest swapped face dataset created using still images. This dataset will be available for academic research use per request. Our goal of this study is to inspire more research in the field of image forensics through the creation of a dataset and initial analysis.
Abstract The tremendous success of deep learning for imaging applications has resulted in numerous beneficial advances. Unfortunately, this success has also been a catalyst for malicious uses such as photo-realistic face swapping of parties without consent. In this study, we use deep transfer learning for face swapping detection, showing true positive rates greater than 96% with very few false alarms. Distinguished from existing methods that only provide detection accuracy, we also provide uncertainty for each prediction, which is critical for trust in the deployment of such detection systems. Moreover, we provide a comparison to human subjects. To capture human recognition performance, we build a website to collect pairwise comparisons of images from human subjects. Based on these comparisons, we infer a consensus ranking from the image perceived as most real to the image perceived as most fake. Overall, the results show the effectiveness of our method. As part of this study, we create a novel dataset that is, to the best of our knowledge, the largest swapped face dataset created using still images. This dataset will be available for academic research use per request. Our goal of this study is to inspire more research in the field of image forensics through the creation of a dataset and initial analysis.
ArticleNumber 6
Author Krueger, Paul
Olinick, Eli V.
Larson, Eric C.
Raziei, Zohreh
Ding, Xinyi
Hahsler, Michael
Author_xml – sequence: 1
  givenname: Xinyi
  orcidid: 0000-0001-5264-6661
  surname: Ding
  fullname: Ding, Xinyi
  email: xding@mail.smu.edu
  organization: Department of Computer Science, Southern Methodist University
– sequence: 2
  givenname: Zohreh
  surname: Raziei
  fullname: Raziei, Zohreh
  organization: Department of Engineering Management, Information and Systems, Southern Methodist University
– sequence: 3
  givenname: Eric C.
  surname: Larson
  fullname: Larson, Eric C.
  organization: Department of Computer Science, Southern Methodist University
– sequence: 4
  givenname: Eli V.
  surname: Olinick
  fullname: Olinick, Eli V.
  organization: Department of Engineering Management, Information and Systems, Southern Methodist University
– sequence: 5
  givenname: Paul
  surname: Krueger
  fullname: Krueger, Paul
  organization: Department of Mechanical Engineering, Southern Methodist University
– sequence: 6
  givenname: Michael
  surname: Hahsler
  fullname: Hahsler, Michael
  organization: Department of Engineering Management, Information and Systems, Southern Methodist University
BookMark eNp9kE9P3DAQxa2KSqWUL9BTJM5px39jHyvaAhISB6jUmzWxJ6usFifY2Vb99nhJBVUPnOxnvd-b8XvPjtKUiLGPHD5xbs3nwqWRugUBLQAH19o37FhoDq0W8ufRP_d37LSULQAIC9aBPmZfb3_jPFNsBgzURFooLOOUmn0Z06ZqmpsdYU4HhSk2Zd9vD5Zf1GApVMo9peUDezvgrtDp3_OE_fj-7e78sr2-ubg6_3LdBiXc0kYjUSmMg-pwkD10gSQGEbQTQUYTFTjZkzGOrEMltR2EiYPrAyqOVcgTdrXmxgm3fs7jPeY_fsLRPz1MeeMxL2PYkUfSTvfYgZJRdWGw9c-dMp2wyAGcqVlna9acp4c9lcVvp31OdX0vFCgtq9dVl1hdIU-lZBqep3Lwh_L9Wr6v5fun8r2tkP0PCuOCh1qXjOPudVSuaKlz0obyy1avUI9CmJoO
CitedBy_id crossref_primary_10_1007_s13369_022_07321_3
crossref_primary_10_1007_s13735_022_00241_w
crossref_primary_10_1109_TCSS_2022_3213832
crossref_primary_10_3390_rs16224311
crossref_primary_10_1109_TCSVT_2021_3089724
crossref_primary_10_3103_S0147688223050143
crossref_primary_10_3389_fdata_2024_1400024
crossref_primary_10_1109_TII_2021_3129629
crossref_primary_10_26599_TST_2024_9010022
crossref_primary_10_3233_JIFS_210625
crossref_primary_10_1007_s11042_021_11733_y
crossref_primary_10_1109_ACCESS_2022_3154404
crossref_primary_10_3390_jimaging7040069
crossref_primary_10_1007_s11263_022_01606_8
crossref_primary_10_7717_peerj_cs_1125
crossref_primary_10_1007_s11831_021_09705_4
crossref_primary_10_1016_j_eswa_2024_124260
Cites_doi 10.1145/882262.882269
10.1109/TMI.2016.2528162
10.1068/p6517
10.1016/j.neunet.2014.09.003
10.1016/j.neucom.2019.01.103
10.1111/j.1467-8659.2004.00799.x
10.1109/cvpr.2016.90
10.1155/2019/8902701
10.1109/cvpr.2009.5206848
10.1145/2070781.2024164
10.1109/siprocess.2017.8124497
10.1145/3230744.3230818
10.1109/fg.2018.00024
10.1109/iccv.2017.397
10.1109/btas.2017.8272754
10.1145/1360612.1360638
10.23919/biosig.2018.8553251
10.1109/aina.2017.53
10.1109/ICCV.2019.00009
10.1109/iccv.2017.74
ContentType Journal Article
Copyright The Author(s) 2020
The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2020
– notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
3V.
7SC
7XB
8AL
8FD
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M0N
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOA
DOI 10.1186/s13635-020-00109-8
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
开放获取期刊(Open Access Journals)
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList Computer Science Database


CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: 开放获取期刊(Open Access Journals)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 2510-523X
1687-417X
EndPage 12
ExternalDocumentID oai_doaj_org_article_ae595ba7043d47cf8002746728a10096
10_1186_s13635_020_00109_8
GroupedDBID -A0
.4S
.DC
2WC
3V.
4.4
40G
5VS
6KP
8FE
8FG
8R4
8R5
AAKPC
ABUWG
ACGFS
ADBBV
ADINQ
ADMLS
AFKRA
AHBYD
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
ARAPS
ARCSS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
C24
C6C
CCPQU
CS3
DWQXO
EDO
EIS
GNUQQ
GROUPED_DOAJ
HCIFZ
HZ~
K6V
K7-
KQ8
M0N
M~E
OK1
P62
PQQKQ
PROAC
Q2X
RHU
SEG
TR2
TUS
U2A
AAYXX
CITATION
OVT
7SC
7XB
8AL
8FD
8FK
JQ2
L7M
L~C
L~D
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c429t-d63a44adf47af3b07ce3ac2c592c3d6d4093be669e89a4358f26df9bca41a8f23
IEDL.DBID DOA
ISICitedReferencesCount 32
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000534240100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2510-523X
1687-4161
IngestDate Fri Oct 03 12:52:51 EDT 2025
Sat Oct 11 05:33:04 EDT 2025
Sat Nov 29 03:33:01 EST 2025
Tue Nov 18 22:00:38 EST 2025
Fri Feb 21 02:32:16 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Deep learning
Image forensics
Privacy
Face swapping
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c429t-d63a44adf47af3b07ce3ac2c592c3d6d4093be669e89a4358f26df9bca41a8f23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5264-6661
OpenAccessLink https://doaj.org/article/ae595ba7043d47cf8002746728a10096
PQID 2404536729
PQPubID 237294
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_ae595ba7043d47cf8002746728a10096
proquest_journals_2404536729
crossref_primary_10_1186_s13635_020_00109_8
crossref_citationtrail_10_1186_s13635_020_00109_8
springer_journals_10_1186_s13635_020_00109_8
PublicationCentury 2000
PublicationDate 2020-05-19
PublicationDateYYYYMMDD 2020-05-19
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-05-19
  day: 19
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: New York
PublicationTitle EURASIP Journal on Information Security
PublicationTitleAbbrev EURASIP J. on Info. Security
PublicationYear 2020
Publisher Springer International Publishing
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
– name: SpringerOpen
References Bay, Tuytelaars, Van Gool (CR18) 2006
Shin, Roth, Gao, Lu, Xu, Nogues, Yao, Mollura, Summers (CR25) 2016; 35
CR19
CR16
CR15
CR14
CR13
CR10
Pérez, Gangnet, Blake (CR12) 2003; 22
Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, Bengio (CR1) 2014
Schmidhuber (CR3) 2015; 61
CR2
CR4
CR5
CR7
Blanz, Scherbaum, Vetter, Seidel (CR8) 2004; 23
Wang, Li, Aertsen, Deprest, Ourselin, Vercauteren (CR6) 2019; 338
CR9
CR26
Guo, Tunnicliffe, Roebuck (CR27) 2010; 39
Chen, Chen, Wu, Yu, Jia (CR11) 2019; 2019
CR24
Huang, Ramesh, Berg, Learned-Miller (CR17) 2007
CR23
CR22
CR21
CR20
P. Pérez (109_CR12) 2003; 22
I. Goodfellow (109_CR1) 2014
109_CR10
109_CR14
109_CR13
109_CR2
G. B. Huang (109_CR17) 2007
109_CR16
109_CR15
109_CR19
109_CR5
J. Schmidhuber (109_CR3) 2015; 61
109_CR4
G. Wang (109_CR6) 2019; 338
109_CR7
109_CR9
H. Bay (109_CR18) 2006
109_CR21
109_CR20
K. Guo (109_CR27) 2010; 39
109_CR24
D. Chen (109_CR11) 2019; 2019
109_CR23
109_CR22
V. Blanz (109_CR8) 2004; 23
109_CR26
H. -C. Shin (109_CR25) 2016; 35
References_xml – ident: CR22
– volume: 22
  start-page: 313
  issue: 3
  year: 2003
  end-page: 318
  ident: CR12
  article-title: Poisson image editing
  publication-title: ACM Trans. Graph. (TOG)
  doi: 10.1145/882262.882269
– ident: CR4
– ident: CR14
– ident: CR2
– ident: CR16
– start-page: 2672
  year: 2014
  end-page: 2680
  ident: CR1
  article-title: Generative adversarial nets
  publication-title: Advances in Neural Information Processing Systems
– ident: CR10
– volume: 2019
  start-page: 1
  year: 2019
  end-page: 1
  ident: CR11
  article-title: Face swapping: realistic image synthesis based on facial landmarks alignment
  publication-title: Math. Probl. Eng.
– volume: 35
  start-page: 1285
  issue: 5
  year: 2016
  end-page: 1298
  ident: CR25
  article-title: Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2016.2528162
– ident: CR23
– year: 2007
  ident: CR17
  publication-title: Labeled Faces in the Wild: a Database for Studying Face Recognition in Unconstrained Environments. Technical Report 07-49
– ident: CR21
– ident: CR19
– volume: 39
  start-page: 533
  issue: 4
  year: 2010
  end-page: 542
  ident: CR27
  article-title: Human spontaneous gaze patterns in viewing of faces of different species
  publication-title: Perception
  doi: 10.1068/p6517
– ident: CR15
– start-page: 404
  year: 2006
  end-page: 417
  ident: CR18
  article-title: Surf: speeded up robust features
  publication-title: European Conference on Computer Vision
– ident: CR13
– ident: CR9
– volume: 61
  start-page: 85
  year: 2015
  end-page: 117
  ident: CR3
  article-title: Deep learning in neural networks: an overview
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2014.09.003
– volume: 338
  start-page: 34
  year: 2019
  end-page: 45
  ident: CR6
  article-title: Aleatoric uncertainty estimation with test-time augmentation for medical image segmentation with convolutional neural networks
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.01.103
– volume: 23
  start-page: 669
  year: 2004
  end-page: 676
  ident: CR8
  article-title: Exchanging faces in images
  publication-title: Comput. Graph. Forum
  doi: 10.1111/j.1467-8659.2004.00799.x
– ident: CR5
– ident: CR7
– ident: CR26
– ident: CR24
– ident: CR20
– volume: 338
  start-page: 34
  year: 2019
  ident: 109_CR6
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.01.103
– start-page: 2672
  volume-title: Advances in Neural Information Processing Systems
  year: 2014
  ident: 109_CR1
– ident: 109_CR23
  doi: 10.1109/cvpr.2016.90
– volume: 61
  start-page: 85
  year: 2015
  ident: 109_CR3
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2014.09.003
– volume: 22
  start-page: 313
  issue: 3
  year: 2003
  ident: 109_CR12
  publication-title: ACM Trans. Graph. (TOG)
  doi: 10.1145/882262.882269
– volume: 2019
  start-page: 1
  year: 2019
  ident: 109_CR11
  publication-title: Math. Probl. Eng.
  doi: 10.1155/2019/8902701
– start-page: 404
  volume-title: European Conference on Computer Vision
  year: 2006
  ident: 109_CR18
– ident: 109_CR24
  doi: 10.1109/cvpr.2009.5206848
– volume-title: Labeled Faces in the Wild: a Database for Studying Face Recognition in Unconstrained Environments. Technical Report 07-49
  year: 2007
  ident: 109_CR17
– ident: 109_CR15
  doi: 10.1145/2070781.2024164
– ident: 109_CR16
  doi: 10.1109/siprocess.2017.8124497
– ident: 109_CR21
– volume: 23
  start-page: 669
  year: 2004
  ident: 109_CR8
  publication-title: Comput. Graph. Forum
  doi: 10.1111/j.1467-8659.2004.00799.x
– ident: 109_CR14
  doi: 10.1145/3230744.3230818
– ident: 109_CR4
  doi: 10.1109/fg.2018.00024
– ident: 109_CR13
  doi: 10.1109/iccv.2017.397
– ident: 109_CR2
– ident: 109_CR20
  doi: 10.1109/btas.2017.8272754
– volume: 35
  start-page: 1285
  issue: 5
  year: 2016
  ident: 109_CR25
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2016.2528162
– ident: 109_CR9
  doi: 10.1145/1360612.1360638
– ident: 109_CR19
  doi: 10.23919/biosig.2018.8553251
– ident: 109_CR10
  doi: 10.1109/aina.2017.53
– volume: 39
  start-page: 533
  issue: 4
  year: 2010
  ident: 109_CR27
  publication-title: Perception
  doi: 10.1068/p6517
– ident: 109_CR5
– ident: 109_CR22
  doi: 10.1109/ICCV.2019.00009
– ident: 109_CR7
– ident: 109_CR26
  doi: 10.1109/iccv.2017.74
SSID ssj0002808905
ssj0064073
Score 2.3740535
Snippet The tremendous success of deep learning for imaging applications has resulted in numerous beneficial advances. Unfortunately, this success has also been a...
Abstract The tremendous success of deep learning for imaging applications has resulted in numerous beneficial advances. Unfortunately, this success has also...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Communications Engineering
Datasets
Deep learning
Engineering
Face recognition
Face swapping
False alarms
Human performance
Human subjects
Image forensics
Machine learning
Networks
Object recognition
Privacy
Security Science and Technology
Signal,Image and Speech Processing
Subjective assessment
Systems and Data Security
Websites
SummonAdditionalLinks – databaseName: Advanced Technologies & Aerospace Database
  dbid: P5Z
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8QwFA5uBy8uqDhu5OBNg23TpMlJXPEgIqggXkLWQZFOnc7o3zfJpCMKevGYNi2hX95730vS7wGwLxlXzhCMnPP0rSSkQBznDknr4wthNuM6irheVzc37PGR36YFtzYdq-x8YnTUZqDDGvmRjzwlwdRzwePmDYWqUWF3NZXQmAXzQSUhlG64JU8hx6LedgJ37_6TYfSozbGPrijkS3FDCLFvsShK9n_jmT-2RmPEuVz-71hXwFLimvBkMjlWwYyt18D53YdsGmugk9pCY0fxLFYNwwH4vm_bBqZKEn0oawPbsXqZOEUopyqe6-Dh8uL-7AqlUgpI-4AzQoZiWZbSuLKSDqus0hZLXWjCC40NNT7Lw8pSyi3j0jMo5gpqHFdalrn0DbwB5upBbTcBVFhzTDOLc8-lMOGKZ6aillPNiDWK90DefVShk854KHfxKmK-waiYACE8ECICIVgPHEyfaSYqG3_2Pg1YTXsGhex4YTDsi2RwQlrCiZJVVmJTVtqxmIB7TJjMQ97WAzsddiKZbSu-gOuBww79r9u_D2nr77dtg8UizjuCcr4D5kbDsd0FC_p99NwO9-Kk_QT55fEn
  priority: 102
  providerName: ProQuest
– databaseName: SpringerOpen
  dbid: C24
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9wwDLfYbQ_bAwwY2gFDeeBti2ibJo0fgQ3tAZ2Q2CTeonyehlA5XQ_490lz6TGmbdL2mNatUseO7dr5GeBQSzTBcUZDiO5bzXlFkZWBah_tC5e-QJtAXM-byUReXeFFPhTWDdXuQ0oy7dRJraU46koWjSPtw52Uz6HyBbzkpcS-kO80n3G4Tr-LConFygnuM1VsOC7z2_c8M0kJuf-Zu_lLhjQZnrON_5vyW1jPjiY5XkrGJqz5dgs2hiYOJOv0Frz5CZFwGz5fPujZzDsStPXE-UWq1GpJXx4_jWM_I7nPxJTo1pHuzlwvt0yiVxif7-D72Zdvp19pbrRAbTRHC-oE03WtXagbHZgpGuuZtpXlWFnmhIsxIDNeCPQSdfSvZKiEC2isrksdB2wHRu1t698DMcwiE4VnZfS0GEeDhWuER2El987gGMqB18pmFPK-GcaNStGIFGrJNBWZphLTlBzDx9UzsyUGx1-pT_olXFH2-Nnpwu18qrI6Ku05cqObomaubmyQKTwXTSV12Ud1Y9gfBEBlpe5UdH5qziJR_IpPw4I_3f7zlHb_jXwPXldJZjgtcR9Gi_md_wCv7P3iRzc_SML-COVg9ZI
  priority: 102
  providerName: Springer Nature
Title Swapped face detection using deep learning and subjective assessment
URI https://link.springer.com/article/10.1186/s13635-020-00109-8
https://www.proquest.com/docview/2404536729
https://doaj.org/article/ae595ba7043d47cf8002746728a10096
Volume 2020
WOSCitedRecordID wos000534240100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: 开放获取期刊(Open Access Journals)
  customDbUrl:
  eissn: 2510-523X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002808905
  issn: 2510-523X
  databaseCode: DOA
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2510-523X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002808905
  issn: 2510-523X
  databaseCode: M~E
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAVX
  databaseName: SpringerOpen
  customDbUrl:
  eissn: 2510-523X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002808905
  issn: 2510-523X
  databaseCode: C24
  dateStart: 20071201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagcODS8hTblpUP3MBqEj_n2MdWSC2rFS1SxcXys6JCYdXdtrf-9tpOsrRIwIXLSE4mkjMee76JnW8Qem8U2Og5JTEm-MY4bwjQOhITUnzhKlTgConrsZxO1dkZzO6V-spnwjp64M5wOyZw4NbIilHPpIuqJFJCNsrUGX_n1beScC-ZuiifjCoF1QoI590qOvwyo8TOoqYp0JKcOpW9IaIehKXC3v8Acv62S1qCz-FztN6jRrzb9fYFehTal2hjqMiA-wn6Ch2c3Jj5PHgcjQvYh2U5aNXifLr9PLXDHPdlIs6xaT1eXNmLbsXDZkXR-Rp9PZyc7n8ifZ0E4lI0WRIvqGHM-MikidRW0gVqXOM4NI564VMKR20QAoICk-CRio3wEawzrDapQd-gtfZnG94ibKkDKqpA6wSUKAcLlZcigHCKB29hhOrBTNr1JOK5lsUPXZIJJXRnWp1Mq4tptRqhD6tn5h2Fxl-197L1V5qZ_rpcSE6he6fQ_3KKEdoexk73c3KhE3ZhnCal9BYfh_H8dfvPXdr8H13aQs-a4m-c1LCN1paXV-Edeuqul98Xl2P0ZG8ynX0Zo8f7DRsXX07ySJIkP99Okpzxb3dVQfGN
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggQXHgLEQgEf4ARWk_gR-4AQUKpWu6yQKFJvxs8VCGXDZkvFn-I3YjvJVkWitx44OnEsK_N5Zj57PAPwTAtpgmMEhxDdN8pYhSUpA9Y-2hcmfCFtTuI6q-dzcXwsP27B7_EuTAqrHHViVtRuadMe-W60PJQRHn3B1-0PnKpGpdPVsYRGD4up_3UaKVv36nAvyvd5Ve2_P3p3gIeqAthG3bvGjhNNqXaB1joQU9TWE20ry2RlieMuEh5iPOfSC6mjMyFCxV2Qxmpa6tggcdwrcJUSUad1Na1x4nQ8rtXEFcZ7OYLvdiWJ1hwnfpYPoLA4Z_tyiYBzfu1fR7HZwu3f-t_-zW24OfjS6E0P_juw5Zu7sPfpVLetdyho65Hz6xxr1qAU4L-Ibd-ioVLGAunGoe7EfOuVPtKbLKX34POlTPw-bDfLxj8AZIiVhBeelNFXJEwaWbiae8mtYN4ZOYFyFKKyQx71VM7ju8p8SnDVC15FwasseCUm8GLzTdtnEbmw99uEjU3PlAE8P1iuFmpQKEp7JpnRdUGJo7UNIm8wRAwIXSZeOoGdEStqUEudOgPKBF6OaDt7_e8pPbx4tKdw_eDow0zNDufTR3CjyphnuJQ7sL1enfjHcM3-XH_tVk_ygkHw5bJR-AdlyU_a
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VghAXHgLUhQI-wAms3cSxYx8QApYVVavVSoBUcTGOHysQyobNloq_xq9j7CRbFYneeuDoxLGs-PPMfJ7xDMBTI1UVHGc0BDTfCs5zqlgWqPGoX7j0E2VTEtejcj6Xx8dqsQO_h7swMaxykIlJULuVjWfkY9Q8BWcCbcFx6MMiFtPZq-YHjRWkoqd1KKfRQeTQ_zpF-ta-PJjiWj_L89m7j2_f077CALUohzfUCWaKwrhQlCawalJaz4zNLVe5ZU44JD-s8kIoL5VBw0KGXLigKmuKzGCD4bhX4GqJHDOGEy7458jvBO7byBuGOzpSjNuMoWankaslZxSV5_RgKhdwzsb9yy2btN3s1v_8n27Dzd7GJq-7TXEHdnx9F6YfTk3TeEeCsZ44v0kxaDWJgf9LbPuG9BU0lsTUjrQn1bdOGRCzzV56Dz5dysTvw269qv0ekIpZxcTEswxtSMZVpSauFF4JK7l3lRpBNiyotn1-9Vjm47tOPEsK3YFAIwh0AoGWI3i-_abpsotc2PtNxMm2Z8wMnh6s1kvdCxptPFe8MuWkYK4obZDp4AHxIE0W-eoI9gfc6F5ctfoMNCN4MSDv7PW_p_Tg4tGewHUEnz46mB8-hBt5gj-nmdqH3c36xD-Ca_bn5mu7fpz2DoEvlw3CPzWKWP4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Swapped+face+detection+using+deep+learning+and+subjective+assessment&rft.jtitle=EURASIP+Journal+on+Information+Security&rft.au=Xinyi+Ding&rft.au=Zohreh+Raziei&rft.au=Eric+C.+Larson&rft.au=Eli+V.+Olinick&rft.date=2020-05-19&rft.pub=SpringerOpen&rft.eissn=2510-523X&rft.volume=2020&rft.issue=1&rft.spage=1&rft.epage=12&rft_id=info:doi/10.1186%2Fs13635-020-00109-8&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_ae595ba7043d47cf8002746728a10096
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2510-523X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2510-523X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2510-523X&client=summon