Swapped face detection using deep learning and subjective assessment
The tremendous success of deep learning for imaging applications has resulted in numerous beneficial advances. Unfortunately, this success has also been a catalyst for malicious uses such as photo-realistic face swapping of parties without consent. In this study, we use deep transfer learning for fa...
Uloženo v:
| Vydáno v: | EURASIP Journal on Information Security Ročník 2020; číslo 1; s. 1 - 12 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Cham
Springer International Publishing
19.05.2020
Springer Nature B.V SpringerOpen |
| Témata: | |
| ISSN: | 2510-523X, 1687-4161, 2510-523X, 1687-417X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The tremendous success of deep learning for imaging applications has resulted in numerous beneficial advances. Unfortunately, this success has also been a catalyst for malicious uses such as photo-realistic face swapping of parties without consent. In this study, we use deep transfer learning for face swapping detection, showing true positive rates greater than 96% with very few false alarms. Distinguished from existing methods that only provide detection accuracy, we also provide uncertainty for each prediction, which is critical for trust in the deployment of such detection systems. Moreover, we provide a comparison to human subjects. To capture human recognition performance, we build a website to collect pairwise comparisons of images from human subjects. Based on these comparisons, we infer a consensus ranking from the image perceived as most real to the image perceived as most fake. Overall, the results show the effectiveness of our method. As part of this study, we create a novel dataset that is, to the best of our knowledge, the largest swapped face dataset created using still images. This dataset will be available for academic research use per request. Our goal of this study is to inspire more research in the field of image forensics through the creation of a dataset and initial analysis. |
|---|---|
| AbstractList | The tremendous success of deep learning for imaging applications has resulted in numerous beneficial advances. Unfortunately, this success has also been a catalyst for malicious uses such as photo-realistic face swapping of parties without consent. In this study, we use deep transfer learning for face swapping detection, showing true positive rates greater than 96% with very few false alarms. Distinguished from existing methods that only provide detection accuracy, we also provide uncertainty for each prediction, which is critical for trust in the deployment of such detection systems. Moreover, we provide a comparison to human subjects. To capture human recognition performance, we build a website to collect pairwise comparisons of images from human subjects. Based on these comparisons, we infer a consensus ranking from the image perceived as most real to the image perceived as most fake. Overall, the results show the effectiveness of our method. As part of this study, we create a novel dataset that is, to the best of our knowledge, the largest swapped face dataset created using still images. This dataset will be available for academic research use per request. Our goal of this study is to inspire more research in the field of image forensics through the creation of a dataset and initial analysis. Abstract The tremendous success of deep learning for imaging applications has resulted in numerous beneficial advances. Unfortunately, this success has also been a catalyst for malicious uses such as photo-realistic face swapping of parties without consent. In this study, we use deep transfer learning for face swapping detection, showing true positive rates greater than 96% with very few false alarms. Distinguished from existing methods that only provide detection accuracy, we also provide uncertainty for each prediction, which is critical for trust in the deployment of such detection systems. Moreover, we provide a comparison to human subjects. To capture human recognition performance, we build a website to collect pairwise comparisons of images from human subjects. Based on these comparisons, we infer a consensus ranking from the image perceived as most real to the image perceived as most fake. Overall, the results show the effectiveness of our method. As part of this study, we create a novel dataset that is, to the best of our knowledge, the largest swapped face dataset created using still images. This dataset will be available for academic research use per request. Our goal of this study is to inspire more research in the field of image forensics through the creation of a dataset and initial analysis. |
| ArticleNumber | 6 |
| Author | Krueger, Paul Olinick, Eli V. Larson, Eric C. Raziei, Zohreh Ding, Xinyi Hahsler, Michael |
| Author_xml | – sequence: 1 givenname: Xinyi orcidid: 0000-0001-5264-6661 surname: Ding fullname: Ding, Xinyi email: xding@mail.smu.edu organization: Department of Computer Science, Southern Methodist University – sequence: 2 givenname: Zohreh surname: Raziei fullname: Raziei, Zohreh organization: Department of Engineering Management, Information and Systems, Southern Methodist University – sequence: 3 givenname: Eric C. surname: Larson fullname: Larson, Eric C. organization: Department of Computer Science, Southern Methodist University – sequence: 4 givenname: Eli V. surname: Olinick fullname: Olinick, Eli V. organization: Department of Engineering Management, Information and Systems, Southern Methodist University – sequence: 5 givenname: Paul surname: Krueger fullname: Krueger, Paul organization: Department of Mechanical Engineering, Southern Methodist University – sequence: 6 givenname: Michael surname: Hahsler fullname: Hahsler, Michael organization: Department of Engineering Management, Information and Systems, Southern Methodist University |
| BookMark | eNp9kE9P3DAQxa2KSqWUL9BTJM5px39jHyvaAhISB6jUmzWxJ6usFifY2Vb99nhJBVUPnOxnvd-b8XvPjtKUiLGPHD5xbs3nwqWRugUBLQAH19o37FhoDq0W8ufRP_d37LSULQAIC9aBPmZfb3_jPFNsBgzURFooLOOUmn0Z06ZqmpsdYU4HhSk2Zd9vD5Zf1GApVMo9peUDezvgrtDp3_OE_fj-7e78sr2-ubg6_3LdBiXc0kYjUSmMg-pwkD10gSQGEbQTQUYTFTjZkzGOrEMltR2EiYPrAyqOVcgTdrXmxgm3fs7jPeY_fsLRPz1MeeMxL2PYkUfSTvfYgZJRdWGw9c-dMp2wyAGcqVlna9acp4c9lcVvp31OdX0vFCgtq9dVl1hdIU-lZBqep3Lwh_L9Wr6v5fun8r2tkP0PCuOCh1qXjOPudVSuaKlz0obyy1avUI9CmJoO |
| CitedBy_id | crossref_primary_10_1007_s13369_022_07321_3 crossref_primary_10_1007_s13735_022_00241_w crossref_primary_10_1109_TCSS_2022_3213832 crossref_primary_10_3390_rs16224311 crossref_primary_10_1109_TCSVT_2021_3089724 crossref_primary_10_3103_S0147688223050143 crossref_primary_10_3389_fdata_2024_1400024 crossref_primary_10_1109_TII_2021_3129629 crossref_primary_10_26599_TST_2024_9010022 crossref_primary_10_3233_JIFS_210625 crossref_primary_10_1007_s11042_021_11733_y crossref_primary_10_1109_ACCESS_2022_3154404 crossref_primary_10_3390_jimaging7040069 crossref_primary_10_1007_s11263_022_01606_8 crossref_primary_10_7717_peerj_cs_1125 crossref_primary_10_1007_s11831_021_09705_4 crossref_primary_10_1016_j_eswa_2024_124260 |
| Cites_doi | 10.1145/882262.882269 10.1109/TMI.2016.2528162 10.1068/p6517 10.1016/j.neunet.2014.09.003 10.1016/j.neucom.2019.01.103 10.1111/j.1467-8659.2004.00799.x 10.1109/cvpr.2016.90 10.1155/2019/8902701 10.1109/cvpr.2009.5206848 10.1145/2070781.2024164 10.1109/siprocess.2017.8124497 10.1145/3230744.3230818 10.1109/fg.2018.00024 10.1109/iccv.2017.397 10.1109/btas.2017.8272754 10.1145/1360612.1360638 10.23919/biosig.2018.8553251 10.1109/aina.2017.53 10.1109/ICCV.2019.00009 10.1109/iccv.2017.74 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2020 The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2020 – notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION 3V. 7SC 7XB 8AL 8FD 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L7M L~C L~D M0N P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U DOA |
| DOI | 10.1186/s13635-020-00109-8 |
| DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic 开放获取期刊(Open Access Journals) |
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
| DatabaseTitleList | Computer Science Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: 开放获取期刊(Open Access Journals) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 2510-523X 1687-417X |
| EndPage | 12 |
| ExternalDocumentID | oai_doaj_org_article_ae595ba7043d47cf8002746728a10096 10_1186_s13635_020_00109_8 |
| GroupedDBID | -A0 .4S .DC 2WC 3V. 4.4 40G 5VS 6KP 8FE 8FG 8R4 8R5 AAKPC ABUWG ACGFS ADBBV ADINQ ADMLS AFKRA AHBYD AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP ARAPS ARCSS AZQEC BCNDV BENPR BGLVJ BPHCQ C24 C6C CCPQU CS3 DWQXO EDO EIS GNUQQ GROUPED_DOAJ HCIFZ HZ~ K6V K7- KQ8 M0N M~E OK1 P62 PQQKQ PROAC Q2X RHU SEG TR2 TUS U2A AAYXX CITATION OVT 7SC 7XB 8AL 8FD 8FK JQ2 L7M L~C L~D PHGZM PHGZT PKEHL PQEST PQGLB PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c429t-d63a44adf47af3b07ce3ac2c592c3d6d4093be669e89a4358f26df9bca41a8f23 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 32 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000534240100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2510-523X 1687-4161 |
| IngestDate | Fri Oct 03 12:52:51 EDT 2025 Sat Oct 11 05:33:04 EDT 2025 Sat Nov 29 03:33:01 EST 2025 Tue Nov 18 22:00:38 EST 2025 Fri Feb 21 02:32:16 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Deep learning Image forensics Privacy Face swapping |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c429t-d63a44adf47af3b07ce3ac2c592c3d6d4093be669e89a4358f26df9bca41a8f23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-5264-6661 |
| OpenAccessLink | https://doaj.org/article/ae595ba7043d47cf8002746728a10096 |
| PQID | 2404536729 |
| PQPubID | 237294 |
| PageCount | 12 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_ae595ba7043d47cf8002746728a10096 proquest_journals_2404536729 crossref_primary_10_1186_s13635_020_00109_8 crossref_citationtrail_10_1186_s13635_020_00109_8 springer_journals_10_1186_s13635_020_00109_8 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-05-19 |
| PublicationDateYYYYMMDD | 2020-05-19 |
| PublicationDate_xml | – month: 05 year: 2020 text: 2020-05-19 day: 19 |
| PublicationDecade | 2020 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham – name: New York |
| PublicationTitle | EURASIP Journal on Information Security |
| PublicationTitleAbbrev | EURASIP J. on Info. Security |
| PublicationYear | 2020 |
| Publisher | Springer International Publishing Springer Nature B.V SpringerOpen |
| Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V – name: SpringerOpen |
| References | Bay, Tuytelaars, Van Gool (CR18) 2006 Shin, Roth, Gao, Lu, Xu, Nogues, Yao, Mollura, Summers (CR25) 2016; 35 CR19 CR16 CR15 CR14 CR13 CR10 Pérez, Gangnet, Blake (CR12) 2003; 22 Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, Bengio (CR1) 2014 Schmidhuber (CR3) 2015; 61 CR2 CR4 CR5 CR7 Blanz, Scherbaum, Vetter, Seidel (CR8) 2004; 23 Wang, Li, Aertsen, Deprest, Ourselin, Vercauteren (CR6) 2019; 338 CR9 CR26 Guo, Tunnicliffe, Roebuck (CR27) 2010; 39 Chen, Chen, Wu, Yu, Jia (CR11) 2019; 2019 CR24 Huang, Ramesh, Berg, Learned-Miller (CR17) 2007 CR23 CR22 CR21 CR20 P. Pérez (109_CR12) 2003; 22 I. Goodfellow (109_CR1) 2014 109_CR10 109_CR14 109_CR13 109_CR2 G. B. Huang (109_CR17) 2007 109_CR16 109_CR15 109_CR19 109_CR5 J. Schmidhuber (109_CR3) 2015; 61 109_CR4 G. Wang (109_CR6) 2019; 338 109_CR7 109_CR9 H. Bay (109_CR18) 2006 109_CR21 109_CR20 K. Guo (109_CR27) 2010; 39 109_CR24 D. Chen (109_CR11) 2019; 2019 109_CR23 109_CR22 V. Blanz (109_CR8) 2004; 23 109_CR26 H. -C. Shin (109_CR25) 2016; 35 |
| References_xml | – ident: CR22 – volume: 22 start-page: 313 issue: 3 year: 2003 end-page: 318 ident: CR12 article-title: Poisson image editing publication-title: ACM Trans. Graph. (TOG) doi: 10.1145/882262.882269 – ident: CR4 – ident: CR14 – ident: CR2 – ident: CR16 – start-page: 2672 year: 2014 end-page: 2680 ident: CR1 article-title: Generative adversarial nets publication-title: Advances in Neural Information Processing Systems – ident: CR10 – volume: 2019 start-page: 1 year: 2019 end-page: 1 ident: CR11 article-title: Face swapping: realistic image synthesis based on facial landmarks alignment publication-title: Math. Probl. Eng. – volume: 35 start-page: 1285 issue: 5 year: 2016 end-page: 1298 ident: CR25 article-title: Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2016.2528162 – ident: CR23 – year: 2007 ident: CR17 publication-title: Labeled Faces in the Wild: a Database for Studying Face Recognition in Unconstrained Environments. Technical Report 07-49 – ident: CR21 – ident: CR19 – volume: 39 start-page: 533 issue: 4 year: 2010 end-page: 542 ident: CR27 article-title: Human spontaneous gaze patterns in viewing of faces of different species publication-title: Perception doi: 10.1068/p6517 – ident: CR15 – start-page: 404 year: 2006 end-page: 417 ident: CR18 article-title: Surf: speeded up robust features publication-title: European Conference on Computer Vision – ident: CR13 – ident: CR9 – volume: 61 start-page: 85 year: 2015 end-page: 117 ident: CR3 article-title: Deep learning in neural networks: an overview publication-title: Neural Netw. doi: 10.1016/j.neunet.2014.09.003 – volume: 338 start-page: 34 year: 2019 end-page: 45 ident: CR6 article-title: Aleatoric uncertainty estimation with test-time augmentation for medical image segmentation with convolutional neural networks publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.01.103 – volume: 23 start-page: 669 year: 2004 end-page: 676 ident: CR8 article-title: Exchanging faces in images publication-title: Comput. Graph. Forum doi: 10.1111/j.1467-8659.2004.00799.x – ident: CR5 – ident: CR7 – ident: CR26 – ident: CR24 – ident: CR20 – volume: 338 start-page: 34 year: 2019 ident: 109_CR6 publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.01.103 – start-page: 2672 volume-title: Advances in Neural Information Processing Systems year: 2014 ident: 109_CR1 – ident: 109_CR23 doi: 10.1109/cvpr.2016.90 – volume: 61 start-page: 85 year: 2015 ident: 109_CR3 publication-title: Neural Netw. doi: 10.1016/j.neunet.2014.09.003 – volume: 22 start-page: 313 issue: 3 year: 2003 ident: 109_CR12 publication-title: ACM Trans. Graph. (TOG) doi: 10.1145/882262.882269 – volume: 2019 start-page: 1 year: 2019 ident: 109_CR11 publication-title: Math. Probl. Eng. doi: 10.1155/2019/8902701 – start-page: 404 volume-title: European Conference on Computer Vision year: 2006 ident: 109_CR18 – ident: 109_CR24 doi: 10.1109/cvpr.2009.5206848 – volume-title: Labeled Faces in the Wild: a Database for Studying Face Recognition in Unconstrained Environments. Technical Report 07-49 year: 2007 ident: 109_CR17 – ident: 109_CR15 doi: 10.1145/2070781.2024164 – ident: 109_CR16 doi: 10.1109/siprocess.2017.8124497 – ident: 109_CR21 – volume: 23 start-page: 669 year: 2004 ident: 109_CR8 publication-title: Comput. Graph. Forum doi: 10.1111/j.1467-8659.2004.00799.x – ident: 109_CR14 doi: 10.1145/3230744.3230818 – ident: 109_CR4 doi: 10.1109/fg.2018.00024 – ident: 109_CR13 doi: 10.1109/iccv.2017.397 – ident: 109_CR2 – ident: 109_CR20 doi: 10.1109/btas.2017.8272754 – volume: 35 start-page: 1285 issue: 5 year: 2016 ident: 109_CR25 publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2016.2528162 – ident: 109_CR9 doi: 10.1145/1360612.1360638 – ident: 109_CR19 doi: 10.23919/biosig.2018.8553251 – ident: 109_CR10 doi: 10.1109/aina.2017.53 – volume: 39 start-page: 533 issue: 4 year: 2010 ident: 109_CR27 publication-title: Perception doi: 10.1068/p6517 – ident: 109_CR5 – ident: 109_CR22 doi: 10.1109/ICCV.2019.00009 – ident: 109_CR7 – ident: 109_CR26 doi: 10.1109/iccv.2017.74 |
| SSID | ssj0002808905 ssj0064073 |
| Score | 2.3740535 |
| Snippet | The tremendous success of deep learning for imaging applications has resulted in numerous beneficial advances. Unfortunately, this success has also been a... Abstract The tremendous success of deep learning for imaging applications has resulted in numerous beneficial advances. Unfortunately, this success has also... |
| SourceID | doaj proquest crossref springer |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Communications Engineering Datasets Deep learning Engineering Face recognition Face swapping False alarms Human performance Human subjects Image forensics Machine learning Networks Object recognition Privacy Security Science and Technology Signal,Image and Speech Processing Subjective assessment Systems and Data Security Websites |
| SummonAdditionalLinks | – databaseName: Advanced Technologies & Aerospace Database dbid: P5Z link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8QwFA5uBy8uqDhu5OBNg23TpMlJXPEgIqggXkLWQZFOnc7o3zfJpCMKevGYNi2hX95730vS7wGwLxlXzhCMnPP0rSSkQBznDknr4wthNuM6irheVzc37PGR36YFtzYdq-x8YnTUZqDDGvmRjzwlwdRzwePmDYWqUWF3NZXQmAXzQSUhlG64JU8hx6LedgJ37_6TYfSozbGPrijkS3FDCLFvsShK9n_jmT-2RmPEuVz-71hXwFLimvBkMjlWwYyt18D53YdsGmugk9pCY0fxLFYNwwH4vm_bBqZKEn0oawPbsXqZOEUopyqe6-Dh8uL-7AqlUgpI-4AzQoZiWZbSuLKSDqus0hZLXWjCC40NNT7Lw8pSyi3j0jMo5gpqHFdalrn0DbwB5upBbTcBVFhzTDOLc8-lMOGKZ6aillPNiDWK90DefVShk854KHfxKmK-waiYACE8ECICIVgPHEyfaSYqG3_2Pg1YTXsGhex4YTDsi2RwQlrCiZJVVmJTVtqxmIB7TJjMQ97WAzsddiKZbSu-gOuBww79r9u_D2nr77dtg8UizjuCcr4D5kbDsd0FC_p99NwO9-Kk_QT55fEn priority: 102 providerName: ProQuest – databaseName: SpringerOpen dbid: C24 link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9wwDLfYbQ_bAwwY2gFDeeBti2ibJo0fgQ3tAZ2Q2CTeonyehlA5XQ_490lz6TGmbdL2mNatUseO7dr5GeBQSzTBcUZDiO5bzXlFkZWBah_tC5e-QJtAXM-byUReXeFFPhTWDdXuQ0oy7dRJraU46koWjSPtw52Uz6HyBbzkpcS-kO80n3G4Tr-LConFygnuM1VsOC7z2_c8M0kJuf-Zu_lLhjQZnrON_5vyW1jPjiY5XkrGJqz5dgs2hiYOJOv0Frz5CZFwGz5fPujZzDsStPXE-UWq1GpJXx4_jWM_I7nPxJTo1pHuzlwvt0yiVxif7-D72Zdvp19pbrRAbTRHC-oE03WtXagbHZgpGuuZtpXlWFnmhIsxIDNeCPQSdfSvZKiEC2isrksdB2wHRu1t698DMcwiE4VnZfS0GEeDhWuER2El987gGMqB18pmFPK-GcaNStGIFGrJNBWZphLTlBzDx9UzsyUGx1-pT_olXFH2-Nnpwu18qrI6Ku05cqObomaubmyQKTwXTSV12Ud1Y9gfBEBlpe5UdH5qziJR_IpPw4I_3f7zlHb_jXwPXldJZjgtcR9Gi_md_wCv7P3iRzc_SML-COVg9ZI priority: 102 providerName: Springer Nature |
| Title | Swapped face detection using deep learning and subjective assessment |
| URI | https://link.springer.com/article/10.1186/s13635-020-00109-8 https://www.proquest.com/docview/2404536729 https://doaj.org/article/ae595ba7043d47cf8002746728a10096 |
| Volume | 2020 |
| WOSCitedRecordID | wos000534240100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: 开放获取期刊(Open Access Journals) customDbUrl: eissn: 2510-523X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002808905 issn: 2510-523X databaseCode: DOA dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2510-523X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002808905 issn: 2510-523X databaseCode: M~E dateStart: 20070101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAVX databaseName: SpringerOpen customDbUrl: eissn: 2510-523X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002808905 issn: 2510-523X databaseCode: C24 dateStart: 20071201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagcODS8hTblpUP3MBqEj_n2MdWSC2rFS1SxcXys6JCYdXdtrf-9tpOsrRIwIXLSE4mkjMee76JnW8Qem8U2Og5JTEm-MY4bwjQOhITUnzhKlTgConrsZxO1dkZzO6V-spnwjp64M5wOyZw4NbIilHPpIuqJFJCNsrUGX_n1beScC-ZuiifjCoF1QoI590qOvwyo8TOoqYp0JKcOpW9IaIehKXC3v8Acv62S1qCz-FztN6jRrzb9fYFehTal2hjqMiA-wn6Ch2c3Jj5PHgcjQvYh2U5aNXifLr9PLXDHPdlIs6xaT1eXNmLbsXDZkXR-Rp9PZyc7n8ifZ0E4lI0WRIvqGHM-MikidRW0gVqXOM4NI564VMKR20QAoICk-CRio3wEawzrDapQd-gtfZnG94ibKkDKqpA6wSUKAcLlZcigHCKB29hhOrBTNr1JOK5lsUPXZIJJXRnWp1Mq4tptRqhD6tn5h2Fxl-197L1V5qZ_rpcSE6he6fQ_3KKEdoexk73c3KhE3ZhnCal9BYfh_H8dfvPXdr8H13aQs-a4m-c1LCN1paXV-Edeuqul98Xl2P0ZG8ynX0Zo8f7DRsXX07ySJIkP99Okpzxb3dVQfGN |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggQXHgLEQgEf4ARWk_gR-4AQUKpWu6yQKFJvxs8VCGXDZkvFn-I3YjvJVkWitx44OnEsK_N5Zj57PAPwTAtpgmMEhxDdN8pYhSUpA9Y-2hcmfCFtTuI6q-dzcXwsP27B7_EuTAqrHHViVtRuadMe-W60PJQRHn3B1-0PnKpGpdPVsYRGD4up_3UaKVv36nAvyvd5Ve2_P3p3gIeqAthG3bvGjhNNqXaB1joQU9TWE20ry2RlieMuEh5iPOfSC6mjMyFCxV2Qxmpa6tggcdwrcJUSUad1Na1x4nQ8rtXEFcZ7OYLvdiWJ1hwnfpYPoLA4Z_tyiYBzfu1fR7HZwu3f-t_-zW24OfjS6E0P_juw5Zu7sPfpVLetdyho65Hz6xxr1qAU4L-Ibd-ioVLGAunGoe7EfOuVPtKbLKX34POlTPw-bDfLxj8AZIiVhBeelNFXJEwaWbiae8mtYN4ZOYFyFKKyQx71VM7ju8p8SnDVC15FwasseCUm8GLzTdtnEbmw99uEjU3PlAE8P1iuFmpQKEp7JpnRdUGJo7UNIm8wRAwIXSZeOoGdEStqUEudOgPKBF6OaDt7_e8pPbx4tKdw_eDow0zNDufTR3CjyphnuJQ7sL1enfjHcM3-XH_tVk_ygkHw5bJR-AdlyU_a |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VghAXHgLUhQI-wAms3cSxYx8QApYVVavVSoBUcTGOHysQyobNloq_xq9j7CRbFYneeuDoxLGs-PPMfJ7xDMBTI1UVHGc0BDTfCs5zqlgWqPGoX7j0E2VTEtejcj6Xx8dqsQO_h7swMaxykIlJULuVjWfkY9Q8BWcCbcFx6MMiFtPZq-YHjRWkoqd1KKfRQeTQ_zpF-ta-PJjiWj_L89m7j2_f077CALUohzfUCWaKwrhQlCawalJaz4zNLVe5ZU44JD-s8kIoL5VBw0KGXLigKmuKzGCD4bhX4GqJHDOGEy7458jvBO7byBuGOzpSjNuMoWankaslZxSV5_RgKhdwzsb9yy2btN3s1v_8n27Dzd7GJq-7TXEHdnx9F6YfTk3TeEeCsZ44v0kxaDWJgf9LbPuG9BU0lsTUjrQn1bdOGRCzzV56Dz5dysTvw269qv0ekIpZxcTEswxtSMZVpSauFF4JK7l3lRpBNiyotn1-9Vjm47tOPEsK3YFAIwh0AoGWI3i-_abpsotc2PtNxMm2Z8wMnh6s1kvdCxptPFe8MuWkYK4obZDp4AHxIE0W-eoI9gfc6F5ctfoMNCN4MSDv7PW_p_Tg4tGewHUEnz46mB8-hBt5gj-nmdqH3c36xD-Ca_bn5mu7fpz2DoEvlw3CPzWKWP4 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Swapped+face+detection+using+deep+learning+and+subjective+assessment&rft.jtitle=EURASIP+Journal+on+Information+Security&rft.au=Xinyi+Ding&rft.au=Zohreh+Raziei&rft.au=Eric+C.+Larson&rft.au=Eli+V.+Olinick&rft.date=2020-05-19&rft.pub=SpringerOpen&rft.eissn=2510-523X&rft.volume=2020&rft.issue=1&rft.spage=1&rft.epage=12&rft_id=info:doi/10.1186%2Fs13635-020-00109-8&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_ae595ba7043d47cf8002746728a10096 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2510-523X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2510-523X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2510-523X&client=summon |