Robust Guided Image Filtering Using Nonconvex Potentials

Filtering images using a guidance signal, a process called guided or joint image filtering, has been used in various tasks in computer vision and computational photography, particularly for noise reduction and joint upsampling. This uses an additional guidance signal as a structure prior, and transf...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on pattern analysis and machine intelligence Ročník 40; číslo 1; s. 192 - 207
Hlavní autoři: Ham, Bumsub, Minsu Cho, Ponce, Jean
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States IEEE 01.01.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Institute of Electrical and Electronics Engineers
Témata:
ISSN:0162-8828, 1939-3539, 2160-9292, 1939-3539
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Filtering images using a guidance signal, a process called guided or joint image filtering, has been used in various tasks in computer vision and computational photography, particularly for noise reduction and joint upsampling. This uses an additional guidance signal as a structure prior, and transfers the structure of the guidance signal to an input image, restoring noisy or altered image structure. The main drawbacks of such a data-dependent framework are that it does not consider structural differences between guidance and input images, and that it is not robust to outliers. We propose a novel SD (for static/dynamic) filter to address these problems in a unified framework, and jointly leverage structural information from guidance and input images. Guided image filtering is formulated as a nonconvex optimization problem, which is solved by the majorize-minimization algorithm. The proposed algorithm converges quickly while guaranteeing a local minimum. The SD filter effectively controls the underlying image structure at different scales, and can handle a variety of types of data from different sensors. It is robust to outliers and other artifacts such as gradient reversal and global intensity shift, and has good edge-preserving smoothing properties. We demonstrate the flexibility and effectiveness of the proposed SD filter in a variety of applications, including depth upsampling, scale-space filtering, texture removal, flash/non-flash denoising, and RGB/NIR denoising.
AbstractList Filtering images using a guidance signal, a process called guided or joint image filtering, has been used in various tasks in computer vision and computational photography, particularly for noise reduction and joint upsampling. This uses an additional guidance signal as a structure prior, and transfers the structure of the guidance signal to an input image, restoring noisy or altered image structure. The main drawbacks of such a data-dependent framework are that it does not consider structural differences between guidance and input images, and that it is not robust to outliers. We propose a novel SD (for static/dynamic) filter to address these problems in a unified framework, and jointly leverage structural information from guidance and input images. Guided image filtering is formulated as a nonconvex optimization problem, which is solved by the majorize-minimization algorithm. The proposed algorithm converges quickly while guaranteeing a local minimum. The SD filter effectively controls the underlying image structure at different scales, and can handle a variety of types of data from different sensors. It is robust to outliers and other artifacts such as gradient reversal and global intensity shift, and has good edge-preserving smoothing properties. We demonstrate the flexibility and effectiveness of the proposed SD filter in a variety of applications, including depth upsampling, scale-space filtering, texture removal, flash/non-flash denoising, and RGB/NIR denoising.
Filtering images using a guidance signal, a process called guided or joint image filtering, has been used in various tasks in computer vision and computational photography, particularly for noise reduction and joint upsampling. This uses an additional guidance signal as a structure prior, and transfers the structure of the guidance signal to an input image, restoring noisy or altered image structure. The main drawbacks of such a data-dependent framework are that it does not consider structural differences between guidance and input images, and that it is not robust to outliers. We propose a novel SD (for static/dynamic) filter to address these problems in a unified framework, and jointly leverage structural information from guidance and input images. Guided image filtering is formulated as a nonconvex optimization problem, which is solved by the majorize-minimization algorithm. The proposed algorithm converges quickly while guaranteeing a local minimum. The SD filter effectively controls the underlying image structure at different scales, and can handle a variety of types of data from different sensors. It is robust to outliers and other artifacts such as gradient reversal and global intensity shift, and has good edge-preserving smoothing properties. We demonstrate the flexibility and effectiveness of the proposed SD filter in a variety of applications, including depth upsampling, scale-space filtering, texture removal, flash/non-flash denoising, and RGB/NIR denoising.Filtering images using a guidance signal, a process called guided or joint image filtering, has been used in various tasks in computer vision and computational photography, particularly for noise reduction and joint upsampling. This uses an additional guidance signal as a structure prior, and transfers the structure of the guidance signal to an input image, restoring noisy or altered image structure. The main drawbacks of such a data-dependent framework are that it does not consider structural differences between guidance and input images, and that it is not robust to outliers. We propose a novel SD (for static/dynamic) filter to address these problems in a unified framework, and jointly leverage structural information from guidance and input images. Guided image filtering is formulated as a nonconvex optimization problem, which is solved by the majorize-minimization algorithm. The proposed algorithm converges quickly while guaranteeing a local minimum. The SD filter effectively controls the underlying image structure at different scales, and can handle a variety of types of data from different sensors. It is robust to outliers and other artifacts such as gradient reversal and global intensity shift, and has good edge-preserving smoothing properties. We demonstrate the flexibility and effectiveness of the proposed SD filter in a variety of applications, including depth upsampling, scale-space filtering, texture removal, flash/non-flash denoising, and RGB/NIR denoising.
Author Ponce, Jean
Minsu Cho
Ham, Bumsub
Author_xml – sequence: 1
  givenname: Bumsub
  surname: Ham
  fullname: Ham, Bumsub
  email: mimo@yonsei.ac.kr
  organization: Sch. of Electr. & Electron. Eng., Yonsei Univ., Seoul, South Korea
– sequence: 2
  surname: Minsu Cho
  fullname: Minsu Cho
  email: mscho@postech.ac.kr
  organization: Dept. of Comput. Sci. & Eng., POSTECH, Pohang, South Korea
– sequence: 3
  givenname: Jean
  surname: Ponce
  fullname: Ponce, Jean
  email: jean.ponce@ens.fr
  organization: ENS, PSL Res. Univ. &, Paris, France
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28212077$$D View this record in MEDLINE/PubMed
https://hal.science/hal-01279857$$DView record in HAL
BookMark eNp9kU1v1DAQhi1URLeFPwASitRLOWTxV_xxXFW0XWmBCrVny7EnxVXWLrFTwb8n6S576IHLjDR63nk1856go5giIPSe4CUhWH--vVl9XS8pJnJJhdCY8VdoQYnAtaaaHqEFJoLWSlF1jE5yfsCY8AazN-iYKkoolnKB1I_UjrlUV2Pw4Kv11t5DdRn6AkOI99Vdnuu3FF2KT_C7ukkFYgm2z2_R625q8G7fT9Hd5Zfbi-t68_1qfbHa1I5TXWrPfdcqT4XunGVKSoEb3rWgnMMaC-15a4XrKAHmNQZtG6VapsF63jVaK3aKPu32_rS9eRzC1g5_TLLBXK82Zp5hQqVWjXxiE3u-Yx-H9GuEXMw2ZAd9byOkMRuihNaSYTKjZy_QhzQOcbrEUCI51w1Ts_nHPTW2W_AH_3__mwC6A9yQch6gOyAEmzkk8xySmUMy-5AmkXohcqHYElIsgw39_6UfdtIAAAcvqZpGKsr-AiywnH0
CODEN ITPIDJ
CitedBy_id crossref_primary_10_1016_j_amc_2025_129557
crossref_primary_10_1016_j_dsp_2023_103991
crossref_primary_10_1016_j_patcog_2022_109260
crossref_primary_10_1088_1361_6501_abaa65
crossref_primary_10_1109_TIP_2018_2889531
crossref_primary_10_1109_TPAMI_2020_2984244
crossref_primary_10_1109_TIP_2021_3106812
crossref_primary_10_1016_j_sigpro_2022_108862
crossref_primary_10_1109_TMM_2017_2772438
crossref_primary_10_1016_j_cviu_2025_104278
crossref_primary_10_1117_1_JEI_31_4_043022
crossref_primary_10_3390_s23135776
crossref_primary_10_1007_s00138_021_01189_3
crossref_primary_10_1007_s11760_022_02471_1
crossref_primary_10_1016_j_imavis_2024_105031
crossref_primary_10_1007_s11042_017_5253_1
crossref_primary_10_1109_TPAMI_2018_2883553
crossref_primary_10_1109_TNNLS_2021_3084473
crossref_primary_10_1016_j_cviu_2023_103841
crossref_primary_10_1016_j_patcog_2023_110006
crossref_primary_10_1016_j_jag_2024_104186
crossref_primary_10_1109_TPAMI_2021_3054619
crossref_primary_10_1109_TIP_2021_3100268
crossref_primary_10_1016_j_sigpro_2024_109700
crossref_primary_10_1109_TPAMI_2018_2878240
crossref_primary_10_1109_TIE_2024_3515280
crossref_primary_10_1007_s11042_019_08420_4
crossref_primary_10_1007_s11760_020_01663_x
crossref_primary_10_1016_j_imavis_2024_105300
crossref_primary_10_1145_3584860
crossref_primary_10_1007_s11760_024_03262_6
crossref_primary_10_1148_ryai_2020200007
crossref_primary_10_1109_TIP_2019_2944270
crossref_primary_10_1049_iet_ipr_2018_5133
crossref_primary_10_1049_ipr2_12751
crossref_primary_10_1109_TIP_2020_3019644
crossref_primary_10_1007_s00034_021_01857_9
crossref_primary_10_1109_TIP_2018_2881906
crossref_primary_10_1109_TIP_2019_2908778
crossref_primary_10_1109_LSP_2024_3354549
crossref_primary_10_1016_j_acha_2020_05_009
crossref_primary_10_1007_s00530_023_01209_4
crossref_primary_10_1109_TCSVT_2022_3214219
crossref_primary_10_1109_ACCESS_2025_3555434
crossref_primary_10_1016_j_patcog_2025_112176
crossref_primary_10_1007_s00371_021_02249_5
crossref_primary_10_1109_TIP_2023_3235536
crossref_primary_10_1016_j_neucom_2025_131085
crossref_primary_10_1007_s00371_018_1611_x
crossref_primary_10_1049_ipr2_12360
crossref_primary_10_1109_JSTARS_2020_3047636
crossref_primary_10_1109_JSTARS_2023_3275201
crossref_primary_10_1109_TPAMI_2025_3577595
crossref_primary_10_1111_cgf_14681
crossref_primary_10_1109_TIM_2024_3381168
crossref_primary_10_3390_s21113610
crossref_primary_10_1016_j_image_2020_116128
crossref_primary_10_1109_TNNLS_2023_3253472
crossref_primary_10_1016_j_eswa_2023_120733
crossref_primary_10_1109_TIP_2020_3002664
crossref_primary_10_1186_s13640_018_0310_x
crossref_primary_10_1016_j_heliyon_2023_e13577
crossref_primary_10_1109_ACCESS_2019_2940755
crossref_primary_10_1007_s00138_023_01432_z
crossref_primary_10_1109_TIP_2018_2869720
crossref_primary_10_1016_j_dsp_2018_08_022
crossref_primary_10_1016_j_neucom_2020_03_067
crossref_primary_10_1134_S1063774524601618
crossref_primary_10_1007_s00530_025_01818_1
crossref_primary_10_1016_j_image_2025_117378
crossref_primary_10_3390_rs12203370
crossref_primary_10_1007_s00530_024_01382_0
crossref_primary_10_1016_j_patcog_2018_03_007
crossref_primary_10_1109_TIP_2018_2880088
crossref_primary_10_1007_s11263_024_02105_8
crossref_primary_10_1007_s11263_020_01386_z
crossref_primary_10_1109_TPAMI_2021_3097891
crossref_primary_10_1016_j_cviu_2023_103769
crossref_primary_10_1109_TIP_2018_2871597
crossref_primary_10_1007_s00530_023_01074_1
crossref_primary_10_1109_TCI_2019_2916502
crossref_primary_10_1109_TIM_2024_3417544
crossref_primary_10_1109_TPAMI_2023_3334624
crossref_primary_10_1016_j_dsp_2024_104591
crossref_primary_10_1016_j_cag_2023_12_002
crossref_primary_10_1016_j_dsp_2025_105344
crossref_primary_10_1016_j_inffus_2025_103506
crossref_primary_10_1109_TCSVT_2023_3321668
crossref_primary_10_1109_TCI_2024_3372459
crossref_primary_10_1049_iet_ipr_2019_1471
crossref_primary_10_1016_j_jvcir_2019_102654
crossref_primary_10_3390_e27010044
crossref_primary_10_1007_s11263_022_01699_1
crossref_primary_10_3390_jimaging10030069
crossref_primary_10_1016_j_eswa_2022_118283
crossref_primary_10_3390_app10051894
crossref_primary_10_3724_SP_J_1089_2022_19202
crossref_primary_10_1080_13682199_2019_1631049
crossref_primary_10_1007_s11042_023_14984_z
crossref_primary_10_1016_j_apm_2023_07_008
crossref_primary_10_1016_j_jvcir_2021_103315
crossref_primary_10_1007_s11760_023_02661_5
crossref_primary_10_1016_j_displa_2024_102752
crossref_primary_10_1007_s10916_019_1500_5
crossref_primary_10_1007_s00371_023_02897_9
crossref_primary_10_1109_TIP_2020_3010082
crossref_primary_10_1109_TIM_2025_3585220
crossref_primary_10_1109_TCSVT_2022_3163649
crossref_primary_10_1117_1_JEI_33_4_043001
crossref_primary_10_1016_j_patcog_2020_107670
crossref_primary_10_1109_TGRS_2021_3129803
crossref_primary_10_1016_j_patrec_2020_07_011
crossref_primary_10_1109_TIP_2020_3014729
crossref_primary_10_1109_TPAMI_2021_3102575
crossref_primary_10_1049_iet_ipr_2019_1577
crossref_primary_10_1016_j_neucom_2025_131159
crossref_primary_10_1109_TIP_2018_2852741
Cites_doi 10.1145/1015706.1015780
10.1080/03610927708827533
10.1145/1015330.1015342
10.1109/CVPR.2008.4587417
10.1109/CVPR.2015.7299115
10.1109/83.661192
10.1109/TPAMI.2006.70
10.1023/A:1014573219977
10.1145/1015706.1015777
10.1109/ICCV.2013.13
10.1007/978-3-540-88690-7_20
10.1145/1014052.1014135
10.1109/TIP.2008.924281
10.1145/1360612.1360666
10.1109/ICCV.2001.937655
10.1145/566654.566574
10.1137/140957639
10.1145/1391989.1391995
10.1145/2070781.2024208
10.1007/BF01587094
10.1109/TVCG.2015.2396064
10.1214/aos/1176346060
10.1109/ICCV.2011.6126456
10.1109/TIP.2013.2253479
10.1109/ICCV.1998.710815
10.1145/2508363.2508403
10.1109/TSP.2007.896065
10.1109/ICCV.2013.127
10.1109/CVPR.2016.378
10.1109/TIP.2011.2163164
10.1109/CVPR.2013.29
10.1109/34.56205
10.1109/ICCV.2015.389
10.1109/34.120331
10.1137/030600862
10.1145/1276377.1276497
10.1007/978-3-319-46487-9_38
10.1109/83.551699
10.1109/TIP.2014.2366600
10.1145/2185520.2335385
10.1109/ICCV.2011.6126423
10.1002/cpa.20303
10.1109/TIP.2007.896622
10.1109/TPAMI.2012.213
10.1198/0003130042836
10.1109/ICDM.2006.70
10.1109/CVPR.2016.492
10.1109/CVPR.2015.7298720
10.1109/ICCV.2015.179
10.1109/TPAMI.2010.161
10.1109/ICCV.2013.194
10.1109/TPAMI.2012.156
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
1XC
VOOES
DOI 10.1109/TPAMI.2017.2669034
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

Technology Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 2160-9292
1939-3539
EndPage 207
ExternalDocumentID oai:HAL:hal-01279857v3
28212077
10_1109_TPAMI_2017_2669034
7855782
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Development of the high-precision natural 3D view generation technology using smart-car multi sensors and deep learning
– fundername: Korea government (MSIP)
  grantid: 2016-0- 00197
  funderid: 10.13039/501100003621
– fundername: Institute for Information & communications Technology Promotion (IITP)
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
UHB
~02
AAYXX
CITATION
5VS
9M8
AAYOK
ABFSI
ADRHT
AETEA
AETIX
AGSQL
AI.
AIBXA
ALLEH
FA8
H~9
IBMZZ
ICLAB
IFJZH
NPM
RIG
RNI
RZB
VH1
XJT
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
1XC
VOOES
ID FETCH-LOGICAL-c429t-d4dfb8d269fca38776054fbe8cc09069d4ba6cf21e3d90e9a588b39ead4f59983
IEDL.DBID RIE
ISICitedReferencesCount 175
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000417806000015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0162-8828
1939-3539
IngestDate Tue Oct 28 06:32:57 EDT 2025
Sun Sep 28 12:09:52 EDT 2025
Sun Nov 30 04:42:43 EST 2025
Thu Apr 03 06:57:01 EDT 2025
Tue Nov 18 21:01:02 EST 2025
Sat Nov 29 05:15:57 EST 2025
Wed Aug 27 02:47:50 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Majorize-minimization algorithm
Guided image filtering
Joint image filtering
Nonconvex optimization
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c429t-d4dfb8d269fca38776054fbe8cc09069d4ba6cf21e3d90e9a588b39ead4f59983
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3443-8161
OpenAccessLink https://hal.science/hal-01279857
PMID 28212077
PQID 2174495388
PQPubID 85458
PageCount 16
ParticipantIDs proquest_journals_2174495388
proquest_miscellaneous_1869973013
pubmed_primary_28212077
crossref_primary_10_1109_TPAMI_2017_2669034
crossref_citationtrail_10_1109_TPAMI_2017_2669034
hal_primary_oai_HAL_hal_01279857v3
ieee_primary_7855782
PublicationCentury 2000
PublicationDate 2018-Jan.-1
2018-1-1
2018-01-00
20180101
2018-01-01
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – month: 01
  year: 2018
  text: 2018-Jan.-1
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationTitleAlternate IEEE Trans Pattern Anal Mach Intell
PublicationYear 2018
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Institute of Electrical and Electronics Engineers
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
– name: Institute of Electrical and Electronics Engineers
References ref57
ref56
ref12
ref59
ref58
ref14
ref53
ref52
ref55
ref11
ref54
ref10
ref17
ref19
ref18
krähenbühl (ref33) 2011
ref51
ref50
ref46
ref45
ref47
ref41
ref44
petschnigg (ref13) 2004; 23
farbman (ref23) 2008; 27
ref49
ref8
ref7
ref4
ref6
ref5
zhou (ref9) 2015
ref35
ref37
ref36
liang-chieh (ref34) 2015
ref30
ref32
ref2
weickert (ref28) 1997
ref1
mac aodha (ref39) 2012
mclachlan (ref48) 2007; 382
min (ref25) 2012; 21
hampel (ref42) 2011
kopf (ref3) 2007; 26
chan (ref38) 2008
ref24
ref26
ref64
ref20
ref63
ref22
ref65
ref21
isola (ref40) 2014
ref27
ref29
xu (ref15) 2012; 31
lanckriet (ref43) 0
ref60
zhang (ref16) 2014
li (ref31) 2016
ref62
ref61
References_xml – ident: ref26
  doi: 10.1145/1015706.1015780
– ident: ref19
  doi: 10.1080/03610927708827533
– ident: ref45
  doi: 10.1145/1015330.1015342
– ident: ref32
  doi: 10.1109/CVPR.2008.4587417
– ident: ref21
  doi: 10.1109/CVPR.2015.7299115
– ident: ref59
  doi: 10.1109/83.661192
– start-page: 1191
  year: 2015
  ident: ref9
  article-title: FlowWeb: Joint image set alignment by weaving consistent, pixel-wise correspondences
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit
– ident: ref6
  doi: 10.1109/TPAMI.2006.70
– start-page: 71
  year: 2012
  ident: ref39
  article-title: Patch based synthesis for single depth image super-resolution
  publication-title: Proc Eur Conf Comput Vis
– ident: ref60
  doi: 10.1023/A:1014573219977
– volume: 23
  start-page: 664
  year: 2004
  ident: ref13
  article-title: Digital photography with flash and no-flash image pairs
  publication-title: ACM Trans Graphics
  doi: 10.1145/1015706.1015777
– ident: ref11
  doi: 10.1109/ICCV.2013.13
– ident: ref56
  doi: 10.1007/978-3-540-88690-7_20
– start-page: 1
  year: 1997
  ident: ref28
  article-title: A review of nonlinear diffusion filtering
  publication-title: Proc Int Conf Scale-Space Theories Comput Vis
– ident: ref57
  doi: 10.1145/1014052.1014135
– ident: ref18
  doi: 10.1109/TIP.2008.924281
– volume: 27
  start-page: 67:1
  year: 2008
  ident: ref23
  article-title: Edge-preserving decompositions for multi-scale tone and detail manipulation
  publication-title: ACM Trans Graphics
  doi: 10.1145/1360612.1360666
– ident: ref64
  doi: 10.1109/ICCV.2001.937655
– start-page: 1
  year: 2015
  ident: ref34
  article-title: Semantic image segmentation with deep convolutional nets and fully connected CRFs
  publication-title: Proc Int Conf Learning Representations
– ident: ref41
  doi: 10.1145/566654.566574
– ident: ref44
  doi: 10.1137/140957639
– ident: ref54
  doi: 10.1145/1391989.1391995
– ident: ref24
  doi: 10.1145/2070781.2024208
– ident: ref50
  doi: 10.1007/BF01587094
– ident: ref29
  doi: 10.1109/TVCG.2015.2396064
– ident: ref46
  doi: 10.1214/aos/1176346060
– ident: ref63
  doi: 10.1109/ICCV.2011.6126456
– ident: ref62
  doi: 10.1109/TIP.2013.2253479
– ident: ref22
  doi: 10.1109/ICCV.1998.710815
– start-page: 1
  year: 2008
  ident: ref38
  article-title: A noise-aware filter for real-time depth upsampling
  publication-title: Proc Eur Conf Comput Vis Workshops
– ident: ref14
  doi: 10.1145/2508363.2508403
– ident: ref20
  doi: 10.1109/TSP.2007.896065
– ident: ref10
  doi: 10.1109/ICCV.2013.127
– start-page: 1
  year: 2016
  ident: ref31
  article-title: Deep joint image filtering
  publication-title: Proc Eur Conf Comput Vis
– ident: ref8
  doi: 10.1109/CVPR.2016.378
– volume: 21
  start-page: 1176
  year: 2012
  ident: ref25
  article-title: Depth video enhancement based on weighted mode filtering
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2011.2163164
– start-page: 815
  year: 2014
  ident: ref16
  article-title: Rolling guidance filter
  publication-title: Proc Eur Conf Comput Vis
– ident: ref61
  doi: 10.1109/CVPR.2013.29
– volume: 31
  start-page: 1
  year: 2012
  ident: ref15
  article-title: Structure extraction from texture via relative total variation
  publication-title: ACM Trans Graphics
– ident: ref17
  doi: 10.1109/34.56205
– ident: ref30
  doi: 10.1109/ICCV.2015.389
– ident: ref51
  doi: 10.1109/34.120331
– ident: ref52
  doi: 10.1137/030600862
– volume: 26
  start-page: 96
  year: 2007
  ident: ref3
  article-title: Joint bilateral upsampling
  publication-title: ACM Trans Graph
  doi: 10.1145/1276377.1276497
– ident: ref36
  doi: 10.1007/978-3-319-46487-9_38
– start-page: 799
  year: 2014
  ident: ref40
  article-title: Crisp boundary detection using pointwise mutual information
  publication-title: Proc Eur Conf Comput Vis
– ident: ref1
  doi: 10.1109/83.551699
– ident: ref55
  doi: 10.1109/TIP.2014.2366600
– ident: ref27
  doi: 10.1145/2185520.2335385
– ident: ref12
  doi: 10.1109/ICCV.2011.6126423
– volume: 382
  year: 2007
  ident: ref48
  publication-title: The EM Algorithm and Extensions
– ident: ref49
  doi: 10.1002/cpa.20303
– start-page: 1759
  year: 0
  ident: ref43
  article-title: On the convergence of the concave-convex procedure
  publication-title: Proc Advances Neural Inform Process Syst
– ident: ref53
  doi: 10.1109/TIP.2007.896622
– ident: ref2
  doi: 10.1109/TPAMI.2012.213
– ident: ref47
  doi: 10.1198/0003130042836
– ident: ref58
  doi: 10.1109/ICDM.2006.70
– ident: ref37
  doi: 10.1109/CVPR.2016.492
– ident: ref7
  doi: 10.1109/CVPR.2015.7298720
– start-page: 109
  year: 2011
  ident: ref33
  article-title: Efficient inference in fully connected CRFs with Gaussian edge potentials
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref35
  doi: 10.1109/ICCV.2015.179
– ident: ref65
  doi: 10.1109/TPAMI.2010.161
– ident: ref4
  doi: 10.1109/ICCV.2013.194
– ident: ref5
  doi: 10.1109/TPAMI.2012.156
– year: 2011
  ident: ref42
  publication-title: Robust Statistics The Approach Based on Influence Functions
SSID ssj0014503
Score 2.6298008
Snippet Filtering images using a guidance signal, a process called guided or joint image filtering, has been used in various tasks in computer vision and computational...
SourceID hal
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 192
SubjectTerms Algorithms
Color
Computer Science
Computer vision
Computer Vision and Pattern Recognition
Guided image filtering
Image color analysis
Image edge detection
Image filters
Image restoration
joint image filtering
Linear programming
majorize-minimization algorithm
Noise reduction
nonconvex optimization
Optimization
Outliers (statistics)
Photography
Robustness
Signal processing
Title Robust Guided Image Filtering Using Nonconvex Potentials
URI https://ieeexplore.ieee.org/document/7855782
https://www.ncbi.nlm.nih.gov/pubmed/28212077
https://www.proquest.com/docview/2174495388
https://www.proquest.com/docview/1869973013
https://hal.science/hal-01279857
Volume 40
WOSCitedRecordID wos000417806000015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2160-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014503
  issn: 0162-8828
  databaseCode: RIE
  dateStart: 19790101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9wwDBe9sofuod3arU3bFW_0bUubXOLYfjzGbi1sxzE6uDeT2A49aJPSS8r-_EnOBxtsg5GXEDuOiSRLsmT9AM4jJ3mauSwsrEEHBVVyWBibocRbmxgbuzKzHmxCLBZytVLLLfgwnoVxzvnkM3dBtz6Wb2vT0lbZpZCcqq9PYCKE6M5qjRGDlHsUZLRgUMLRjRgOyETq8mY5-3pNWVziAtWRihIC40FXI55GQvymjya3lA3pYVb-bnF6zTPf-785v4Dd3sJks44lXsKWq_Zhb0BvYL0w78PzX0oRHoD8VhftpmGf27V1ll3f4zrD5muKpWM785kFbFFXPkv9B1vWDaUZIe--gu_zTzcfr8IeVSE0qHua0Ka2LKSdZqo0eSKFQIcmLQsnjYlUlCmbFnlmymnsEqsip3IuZZEo5Li05OicJa9hu6ordwRM8dzhlduEysI5LmNui2mekVUVK2UDiId_q01fcpyQL-60dz0ipT1pNJFG96QJ4P34zkNXcOOfvd8hycaOVCv7avZF0zOKqSvJxVMSwAHRZezVkySA04HCuhfcjSYPjVJupQzg7diMIkdxlLxydbvRhOKlaGXEkQ87zhjHHtjq-M_fPIEdnL7s9nBOYbt5bN0beGaemvXm8Qz5eiXPPF__BAXL76w
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9QwDLe2gcR4YLAxKBsQEG_QrV9pk8cT4rgTt9MJHdLeojZJtZNGi3btxJ-PnX4IJIaE-lI1afphO7Zjxz-Ad4EVPElt6hdGo4OCKtkvtElR4o2JtQltmRoHNpEtl-LyUq524MO4F8Za65LP7Bmduli-qXVLS2XnmeBUfX0X7vEkicJut9YYM0i4w0FGGwZlHB2JYYtMIM_Xq8nFnPK4sjNUSDKICY4HnY0wCrLsD420e0X5kA5o5W6b0-me6cH_vfVjeNTbmGzSMcUT2LHVIRwM-A2sF-dDePhbMcIjEF_rot027HO7Mdaw-Xecadh0Q9F0bGcut4At68rlqf9kq7qhRCPk3qfwbfpp_XHm97gKvkbt0_gmMWUhTJTKUuexyDJ0aZKysELrQAapNEmRp7qMQhsbGViZcyGKWCLPJSVH9yw-hr2qruxzYJLnFo_cxFQYznIRclNEeUp2VSil8SAc_q3SfdFxwr64Vs75CKRypFFEGtWTxoP34z0_upIb_-z9Fkk2dqRq2bPJQtE1iqpLwbPb2IMjosvYqyeJB6cDhVUvultFPhol3QrhwZuxGYWOIil5Zet2qwjHS9LciCM_6zhjHHtgqxd_f-ZreDBbXyzUYr78cgL7-CmiW9E5hb3mprUv4b6-bTbbm1eOu38B_rDyCw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+Guided+Image+Filtering+Using+Nonconvex+Potentials&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Ham%2C+Bumsub&rft.au=Cho%2C+Minsu&rft.au=Ponce%2C+Jean&rft.date=2018-01-01&rft.eissn=1939-3539&rft.volume=40&rft.issue=1&rft.spage=192&rft_id=info:doi/10.1109%2FTPAMI.2017.2669034&rft_id=info%3Apmid%2F28212077&rft.externalDocID=28212077
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon