Robust Guided Image Filtering Using Nonconvex Potentials
Filtering images using a guidance signal, a process called guided or joint image filtering, has been used in various tasks in computer vision and computational photography, particularly for noise reduction and joint upsampling. This uses an additional guidance signal as a structure prior, and transf...
Uloženo v:
| Vydáno v: | IEEE transactions on pattern analysis and machine intelligence Ročník 40; číslo 1; s. 192 - 207 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
IEEE
01.01.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Institute of Electrical and Electronics Engineers |
| Témata: | |
| ISSN: | 0162-8828, 1939-3539, 2160-9292, 1939-3539 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Filtering images using a guidance signal, a process called guided or joint image filtering, has been used in various tasks in computer vision and computational photography, particularly for noise reduction and joint upsampling. This uses an additional guidance signal as a structure prior, and transfers the structure of the guidance signal to an input image, restoring noisy or altered image structure. The main drawbacks of such a data-dependent framework are that it does not consider structural differences between guidance and input images, and that it is not robust to outliers. We propose a novel SD (for static/dynamic) filter to address these problems in a unified framework, and jointly leverage structural information from guidance and input images. Guided image filtering is formulated as a nonconvex optimization problem, which is solved by the majorize-minimization algorithm. The proposed algorithm converges quickly while guaranteeing a local minimum. The SD filter effectively controls the underlying image structure at different scales, and can handle a variety of types of data from different sensors. It is robust to outliers and other artifacts such as gradient reversal and global intensity shift, and has good edge-preserving smoothing properties. We demonstrate the flexibility and effectiveness of the proposed SD filter in a variety of applications, including depth upsampling, scale-space filtering, texture removal, flash/non-flash denoising, and RGB/NIR denoising. |
|---|---|
| AbstractList | Filtering images using a guidance signal, a process called guided or joint image filtering, has been used in various tasks in computer vision and computational photography, particularly for noise reduction and joint upsampling. This uses an additional guidance signal as a structure prior, and transfers the structure of the guidance signal to an input image, restoring noisy or altered image structure. The main drawbacks of such a data-dependent framework are that it does not consider structural differences between guidance and input images, and that it is not robust to outliers. We propose a novel SD (for static/dynamic) filter to address these problems in a unified framework, and jointly leverage structural information from guidance and input images. Guided image filtering is formulated as a nonconvex optimization problem, which is solved by the majorize-minimization algorithm. The proposed algorithm converges quickly while guaranteeing a local minimum. The SD filter effectively controls the underlying image structure at different scales, and can handle a variety of types of data from different sensors. It is robust to outliers and other artifacts such as gradient reversal and global intensity shift, and has good edge-preserving smoothing properties. We demonstrate the flexibility and effectiveness of the proposed SD filter in a variety of applications, including depth upsampling, scale-space filtering, texture removal, flash/non-flash denoising, and RGB/NIR denoising. Filtering images using a guidance signal, a process called guided or joint image filtering, has been used in various tasks in computer vision and computational photography, particularly for noise reduction and joint upsampling. This uses an additional guidance signal as a structure prior, and transfers the structure of the guidance signal to an input image, restoring noisy or altered image structure. The main drawbacks of such a data-dependent framework are that it does not consider structural differences between guidance and input images, and that it is not robust to outliers. We propose a novel SD (for static/dynamic) filter to address these problems in a unified framework, and jointly leverage structural information from guidance and input images. Guided image filtering is formulated as a nonconvex optimization problem, which is solved by the majorize-minimization algorithm. The proposed algorithm converges quickly while guaranteeing a local minimum. The SD filter effectively controls the underlying image structure at different scales, and can handle a variety of types of data from different sensors. It is robust to outliers and other artifacts such as gradient reversal and global intensity shift, and has good edge-preserving smoothing properties. We demonstrate the flexibility and effectiveness of the proposed SD filter in a variety of applications, including depth upsampling, scale-space filtering, texture removal, flash/non-flash denoising, and RGB/NIR denoising.Filtering images using a guidance signal, a process called guided or joint image filtering, has been used in various tasks in computer vision and computational photography, particularly for noise reduction and joint upsampling. This uses an additional guidance signal as a structure prior, and transfers the structure of the guidance signal to an input image, restoring noisy or altered image structure. The main drawbacks of such a data-dependent framework are that it does not consider structural differences between guidance and input images, and that it is not robust to outliers. We propose a novel SD (for static/dynamic) filter to address these problems in a unified framework, and jointly leverage structural information from guidance and input images. Guided image filtering is formulated as a nonconvex optimization problem, which is solved by the majorize-minimization algorithm. The proposed algorithm converges quickly while guaranteeing a local minimum. The SD filter effectively controls the underlying image structure at different scales, and can handle a variety of types of data from different sensors. It is robust to outliers and other artifacts such as gradient reversal and global intensity shift, and has good edge-preserving smoothing properties. We demonstrate the flexibility and effectiveness of the proposed SD filter in a variety of applications, including depth upsampling, scale-space filtering, texture removal, flash/non-flash denoising, and RGB/NIR denoising. |
| Author | Ponce, Jean Minsu Cho Ham, Bumsub |
| Author_xml | – sequence: 1 givenname: Bumsub surname: Ham fullname: Ham, Bumsub email: mimo@yonsei.ac.kr organization: Sch. of Electr. & Electron. Eng., Yonsei Univ., Seoul, South Korea – sequence: 2 surname: Minsu Cho fullname: Minsu Cho email: mscho@postech.ac.kr organization: Dept. of Comput. Sci. & Eng., POSTECH, Pohang, South Korea – sequence: 3 givenname: Jean surname: Ponce fullname: Ponce, Jean email: jean.ponce@ens.fr organization: ENS, PSL Res. Univ. &, Paris, France |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28212077$$D View this record in MEDLINE/PubMed https://hal.science/hal-01279857$$DView record in HAL |
| BookMark | eNp9kU1v1DAQhi1URLeFPwASitRLOWTxV_xxXFW0XWmBCrVny7EnxVXWLrFTwb8n6S576IHLjDR63nk1856go5giIPSe4CUhWH--vVl9XS8pJnJJhdCY8VdoQYnAtaaaHqEFJoLWSlF1jE5yfsCY8AazN-iYKkoolnKB1I_UjrlUV2Pw4Kv11t5DdRn6AkOI99Vdnuu3FF2KT_C7ukkFYgm2z2_R625q8G7fT9Hd5Zfbi-t68_1qfbHa1I5TXWrPfdcqT4XunGVKSoEb3rWgnMMaC-15a4XrKAHmNQZtG6VapsF63jVaK3aKPu32_rS9eRzC1g5_TLLBXK82Zp5hQqVWjXxiE3u-Yx-H9GuEXMw2ZAd9byOkMRuihNaSYTKjZy_QhzQOcbrEUCI51w1Ts_nHPTW2W_AH_3__mwC6A9yQch6gOyAEmzkk8xySmUMy-5AmkXohcqHYElIsgw39_6UfdtIAAAcvqZpGKsr-AiywnH0 |
| CODEN | ITPIDJ |
| CitedBy_id | crossref_primary_10_1016_j_amc_2025_129557 crossref_primary_10_1016_j_dsp_2023_103991 crossref_primary_10_1016_j_patcog_2022_109260 crossref_primary_10_1088_1361_6501_abaa65 crossref_primary_10_1109_TIP_2018_2889531 crossref_primary_10_1109_TPAMI_2020_2984244 crossref_primary_10_1109_TIP_2021_3106812 crossref_primary_10_1016_j_sigpro_2022_108862 crossref_primary_10_1109_TMM_2017_2772438 crossref_primary_10_1016_j_cviu_2025_104278 crossref_primary_10_1117_1_JEI_31_4_043022 crossref_primary_10_3390_s23135776 crossref_primary_10_1007_s00138_021_01189_3 crossref_primary_10_1007_s11760_022_02471_1 crossref_primary_10_1016_j_imavis_2024_105031 crossref_primary_10_1007_s11042_017_5253_1 crossref_primary_10_1109_TPAMI_2018_2883553 crossref_primary_10_1109_TNNLS_2021_3084473 crossref_primary_10_1016_j_cviu_2023_103841 crossref_primary_10_1016_j_patcog_2023_110006 crossref_primary_10_1016_j_jag_2024_104186 crossref_primary_10_1109_TPAMI_2021_3054619 crossref_primary_10_1109_TIP_2021_3100268 crossref_primary_10_1016_j_sigpro_2024_109700 crossref_primary_10_1109_TPAMI_2018_2878240 crossref_primary_10_1109_TIE_2024_3515280 crossref_primary_10_1007_s11042_019_08420_4 crossref_primary_10_1007_s11760_020_01663_x crossref_primary_10_1016_j_imavis_2024_105300 crossref_primary_10_1145_3584860 crossref_primary_10_1007_s11760_024_03262_6 crossref_primary_10_1148_ryai_2020200007 crossref_primary_10_1109_TIP_2019_2944270 crossref_primary_10_1049_iet_ipr_2018_5133 crossref_primary_10_1049_ipr2_12751 crossref_primary_10_1109_TIP_2020_3019644 crossref_primary_10_1007_s00034_021_01857_9 crossref_primary_10_1109_TIP_2018_2881906 crossref_primary_10_1109_TIP_2019_2908778 crossref_primary_10_1109_LSP_2024_3354549 crossref_primary_10_1016_j_acha_2020_05_009 crossref_primary_10_1007_s00530_023_01209_4 crossref_primary_10_1109_TCSVT_2022_3214219 crossref_primary_10_1109_ACCESS_2025_3555434 crossref_primary_10_1016_j_patcog_2025_112176 crossref_primary_10_1007_s00371_021_02249_5 crossref_primary_10_1109_TIP_2023_3235536 crossref_primary_10_1016_j_neucom_2025_131085 crossref_primary_10_1007_s00371_018_1611_x crossref_primary_10_1049_ipr2_12360 crossref_primary_10_1109_JSTARS_2020_3047636 crossref_primary_10_1109_JSTARS_2023_3275201 crossref_primary_10_1109_TPAMI_2025_3577595 crossref_primary_10_1111_cgf_14681 crossref_primary_10_1109_TIM_2024_3381168 crossref_primary_10_3390_s21113610 crossref_primary_10_1016_j_image_2020_116128 crossref_primary_10_1109_TNNLS_2023_3253472 crossref_primary_10_1016_j_eswa_2023_120733 crossref_primary_10_1109_TIP_2020_3002664 crossref_primary_10_1186_s13640_018_0310_x crossref_primary_10_1016_j_heliyon_2023_e13577 crossref_primary_10_1109_ACCESS_2019_2940755 crossref_primary_10_1007_s00138_023_01432_z crossref_primary_10_1109_TIP_2018_2869720 crossref_primary_10_1016_j_dsp_2018_08_022 crossref_primary_10_1016_j_neucom_2020_03_067 crossref_primary_10_1134_S1063774524601618 crossref_primary_10_1007_s00530_025_01818_1 crossref_primary_10_1016_j_image_2025_117378 crossref_primary_10_3390_rs12203370 crossref_primary_10_1007_s00530_024_01382_0 crossref_primary_10_1016_j_patcog_2018_03_007 crossref_primary_10_1109_TIP_2018_2880088 crossref_primary_10_1007_s11263_024_02105_8 crossref_primary_10_1007_s11263_020_01386_z crossref_primary_10_1109_TPAMI_2021_3097891 crossref_primary_10_1016_j_cviu_2023_103769 crossref_primary_10_1109_TIP_2018_2871597 crossref_primary_10_1007_s00530_023_01074_1 crossref_primary_10_1109_TCI_2019_2916502 crossref_primary_10_1109_TIM_2024_3417544 crossref_primary_10_1109_TPAMI_2023_3334624 crossref_primary_10_1016_j_dsp_2024_104591 crossref_primary_10_1016_j_cag_2023_12_002 crossref_primary_10_1016_j_dsp_2025_105344 crossref_primary_10_1016_j_inffus_2025_103506 crossref_primary_10_1109_TCSVT_2023_3321668 crossref_primary_10_1109_TCI_2024_3372459 crossref_primary_10_1049_iet_ipr_2019_1471 crossref_primary_10_1016_j_jvcir_2019_102654 crossref_primary_10_3390_e27010044 crossref_primary_10_1007_s11263_022_01699_1 crossref_primary_10_3390_jimaging10030069 crossref_primary_10_1016_j_eswa_2022_118283 crossref_primary_10_3390_app10051894 crossref_primary_10_3724_SP_J_1089_2022_19202 crossref_primary_10_1080_13682199_2019_1631049 crossref_primary_10_1007_s11042_023_14984_z crossref_primary_10_1016_j_apm_2023_07_008 crossref_primary_10_1016_j_jvcir_2021_103315 crossref_primary_10_1007_s11760_023_02661_5 crossref_primary_10_1016_j_displa_2024_102752 crossref_primary_10_1007_s10916_019_1500_5 crossref_primary_10_1007_s00371_023_02897_9 crossref_primary_10_1109_TIP_2020_3010082 crossref_primary_10_1109_TIM_2025_3585220 crossref_primary_10_1109_TCSVT_2022_3163649 crossref_primary_10_1117_1_JEI_33_4_043001 crossref_primary_10_1016_j_patcog_2020_107670 crossref_primary_10_1109_TGRS_2021_3129803 crossref_primary_10_1016_j_patrec_2020_07_011 crossref_primary_10_1109_TIP_2020_3014729 crossref_primary_10_1109_TPAMI_2021_3102575 crossref_primary_10_1049_iet_ipr_2019_1577 crossref_primary_10_1016_j_neucom_2025_131159 crossref_primary_10_1109_TIP_2018_2852741 |
| Cites_doi | 10.1145/1015706.1015780 10.1080/03610927708827533 10.1145/1015330.1015342 10.1109/CVPR.2008.4587417 10.1109/CVPR.2015.7299115 10.1109/83.661192 10.1109/TPAMI.2006.70 10.1023/A:1014573219977 10.1145/1015706.1015777 10.1109/ICCV.2013.13 10.1007/978-3-540-88690-7_20 10.1145/1014052.1014135 10.1109/TIP.2008.924281 10.1145/1360612.1360666 10.1109/ICCV.2001.937655 10.1145/566654.566574 10.1137/140957639 10.1145/1391989.1391995 10.1145/2070781.2024208 10.1007/BF01587094 10.1109/TVCG.2015.2396064 10.1214/aos/1176346060 10.1109/ICCV.2011.6126456 10.1109/TIP.2013.2253479 10.1109/ICCV.1998.710815 10.1145/2508363.2508403 10.1109/TSP.2007.896065 10.1109/ICCV.2013.127 10.1109/CVPR.2016.378 10.1109/TIP.2011.2163164 10.1109/CVPR.2013.29 10.1109/34.56205 10.1109/ICCV.2015.389 10.1109/34.120331 10.1137/030600862 10.1145/1276377.1276497 10.1007/978-3-319-46487-9_38 10.1109/83.551699 10.1109/TIP.2014.2366600 10.1145/2185520.2335385 10.1109/ICCV.2011.6126423 10.1002/cpa.20303 10.1109/TIP.2007.896622 10.1109/TPAMI.2012.213 10.1198/0003130042836 10.1109/ICDM.2006.70 10.1109/CVPR.2016.492 10.1109/CVPR.2015.7298720 10.1109/ICCV.2015.179 10.1109/TPAMI.2010.161 10.1109/ICCV.2013.194 10.1109/TPAMI.2012.156 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | 97E RIA RIE AAYXX CITATION NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 1XC VOOES |
| DOI | 10.1109/TPAMI.2017.2669034 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
| DatabaseTitle | CrossRef PubMed Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic Technology Research Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 2160-9292 1939-3539 |
| EndPage | 207 |
| ExternalDocumentID | oai:HAL:hal-01279857v3 28212077 10_1109_TPAMI_2017_2669034 7855782 |
| Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: Development of the high-precision natural 3D view generation technology using smart-car multi sensors and deep learning – fundername: Korea government (MSIP) grantid: 2016-0- 00197 funderid: 10.13039/501100003621 – fundername: Institute for Information & communications Technology Promotion (IITP) |
| GroupedDBID | --- -DZ -~X .DC 0R~ 29I 4.4 53G 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ IEDLZ IFIPE IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 UHB ~02 AAYXX CITATION 5VS 9M8 AAYOK ABFSI ADRHT AETEA AETIX AGSQL AI. AIBXA ALLEH FA8 H~9 IBMZZ ICLAB IFJZH NPM RIG RNI RZB VH1 XJT 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 1XC VOOES |
| ID | FETCH-LOGICAL-c429t-d4dfb8d269fca38776054fbe8cc09069d4ba6cf21e3d90e9a588b39ead4f59983 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 175 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000417806000015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0162-8828 1939-3539 |
| IngestDate | Tue Oct 28 06:32:57 EDT 2025 Sun Sep 28 12:09:52 EDT 2025 Sun Nov 30 04:42:43 EST 2025 Thu Apr 03 06:57:01 EDT 2025 Tue Nov 18 21:01:02 EST 2025 Sat Nov 29 05:15:57 EST 2025 Wed Aug 27 02:47:50 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Majorize-minimization algorithm Guided image filtering Joint image filtering Nonconvex optimization |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c429t-d4dfb8d269fca38776054fbe8cc09069d4ba6cf21e3d90e9a588b39ead4f59983 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-3443-8161 |
| OpenAccessLink | https://hal.science/hal-01279857 |
| PMID | 28212077 |
| PQID | 2174495388 |
| PQPubID | 85458 |
| PageCount | 16 |
| ParticipantIDs | proquest_journals_2174495388 proquest_miscellaneous_1869973013 pubmed_primary_28212077 crossref_primary_10_1109_TPAMI_2017_2669034 crossref_citationtrail_10_1109_TPAMI_2017_2669034 hal_primary_oai_HAL_hal_01279857v3 ieee_primary_7855782 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-Jan.-1 2018-1-1 2018-01-00 20180101 2018-01-01 |
| PublicationDateYYYYMMDD | 2018-01-01 |
| PublicationDate_xml | – month: 01 year: 2018 text: 2018-Jan.-1 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: New York |
| PublicationTitle | IEEE transactions on pattern analysis and machine intelligence |
| PublicationTitleAbbrev | TPAMI |
| PublicationTitleAlternate | IEEE Trans Pattern Anal Mach Intell |
| PublicationYear | 2018 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Institute of Electrical and Electronics Engineers |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) – name: Institute of Electrical and Electronics Engineers |
| References | ref57 ref56 ref12 ref59 ref58 ref14 ref53 ref52 ref55 ref11 ref54 ref10 ref17 ref19 ref18 krähenbühl (ref33) 2011 ref51 ref50 ref46 ref45 ref47 ref41 ref44 petschnigg (ref13) 2004; 23 farbman (ref23) 2008; 27 ref49 ref8 ref7 ref4 ref6 ref5 zhou (ref9) 2015 ref35 ref37 ref36 liang-chieh (ref34) 2015 ref30 ref32 ref2 weickert (ref28) 1997 ref1 mac aodha (ref39) 2012 mclachlan (ref48) 2007; 382 min (ref25) 2012; 21 hampel (ref42) 2011 kopf (ref3) 2007; 26 chan (ref38) 2008 ref24 ref26 ref64 ref20 ref63 ref22 ref65 ref21 isola (ref40) 2014 ref27 ref29 xu (ref15) 2012; 31 lanckriet (ref43) 0 ref60 zhang (ref16) 2014 li (ref31) 2016 ref62 ref61 |
| References_xml | – ident: ref26 doi: 10.1145/1015706.1015780 – ident: ref19 doi: 10.1080/03610927708827533 – ident: ref45 doi: 10.1145/1015330.1015342 – ident: ref32 doi: 10.1109/CVPR.2008.4587417 – ident: ref21 doi: 10.1109/CVPR.2015.7299115 – ident: ref59 doi: 10.1109/83.661192 – start-page: 1191 year: 2015 ident: ref9 article-title: FlowWeb: Joint image set alignment by weaving consistent, pixel-wise correspondences publication-title: Proc IEEE Conf Comput Vis Pattern Recognit – ident: ref6 doi: 10.1109/TPAMI.2006.70 – start-page: 71 year: 2012 ident: ref39 article-title: Patch based synthesis for single depth image super-resolution publication-title: Proc Eur Conf Comput Vis – ident: ref60 doi: 10.1023/A:1014573219977 – volume: 23 start-page: 664 year: 2004 ident: ref13 article-title: Digital photography with flash and no-flash image pairs publication-title: ACM Trans Graphics doi: 10.1145/1015706.1015777 – ident: ref11 doi: 10.1109/ICCV.2013.13 – ident: ref56 doi: 10.1007/978-3-540-88690-7_20 – start-page: 1 year: 1997 ident: ref28 article-title: A review of nonlinear diffusion filtering publication-title: Proc Int Conf Scale-Space Theories Comput Vis – ident: ref57 doi: 10.1145/1014052.1014135 – ident: ref18 doi: 10.1109/TIP.2008.924281 – volume: 27 start-page: 67:1 year: 2008 ident: ref23 article-title: Edge-preserving decompositions for multi-scale tone and detail manipulation publication-title: ACM Trans Graphics doi: 10.1145/1360612.1360666 – ident: ref64 doi: 10.1109/ICCV.2001.937655 – start-page: 1 year: 2015 ident: ref34 article-title: Semantic image segmentation with deep convolutional nets and fully connected CRFs publication-title: Proc Int Conf Learning Representations – ident: ref41 doi: 10.1145/566654.566574 – ident: ref44 doi: 10.1137/140957639 – ident: ref54 doi: 10.1145/1391989.1391995 – ident: ref24 doi: 10.1145/2070781.2024208 – ident: ref50 doi: 10.1007/BF01587094 – ident: ref29 doi: 10.1109/TVCG.2015.2396064 – ident: ref46 doi: 10.1214/aos/1176346060 – ident: ref63 doi: 10.1109/ICCV.2011.6126456 – ident: ref62 doi: 10.1109/TIP.2013.2253479 – ident: ref22 doi: 10.1109/ICCV.1998.710815 – start-page: 1 year: 2008 ident: ref38 article-title: A noise-aware filter for real-time depth upsampling publication-title: Proc Eur Conf Comput Vis Workshops – ident: ref14 doi: 10.1145/2508363.2508403 – ident: ref20 doi: 10.1109/TSP.2007.896065 – ident: ref10 doi: 10.1109/ICCV.2013.127 – start-page: 1 year: 2016 ident: ref31 article-title: Deep joint image filtering publication-title: Proc Eur Conf Comput Vis – ident: ref8 doi: 10.1109/CVPR.2016.378 – volume: 21 start-page: 1176 year: 2012 ident: ref25 article-title: Depth video enhancement based on weighted mode filtering publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2011.2163164 – start-page: 815 year: 2014 ident: ref16 article-title: Rolling guidance filter publication-title: Proc Eur Conf Comput Vis – ident: ref61 doi: 10.1109/CVPR.2013.29 – volume: 31 start-page: 1 year: 2012 ident: ref15 article-title: Structure extraction from texture via relative total variation publication-title: ACM Trans Graphics – ident: ref17 doi: 10.1109/34.56205 – ident: ref30 doi: 10.1109/ICCV.2015.389 – ident: ref51 doi: 10.1109/34.120331 – ident: ref52 doi: 10.1137/030600862 – volume: 26 start-page: 96 year: 2007 ident: ref3 article-title: Joint bilateral upsampling publication-title: ACM Trans Graph doi: 10.1145/1276377.1276497 – ident: ref36 doi: 10.1007/978-3-319-46487-9_38 – start-page: 799 year: 2014 ident: ref40 article-title: Crisp boundary detection using pointwise mutual information publication-title: Proc Eur Conf Comput Vis – ident: ref1 doi: 10.1109/83.551699 – ident: ref55 doi: 10.1109/TIP.2014.2366600 – ident: ref27 doi: 10.1145/2185520.2335385 – ident: ref12 doi: 10.1109/ICCV.2011.6126423 – volume: 382 year: 2007 ident: ref48 publication-title: The EM Algorithm and Extensions – ident: ref49 doi: 10.1002/cpa.20303 – start-page: 1759 year: 0 ident: ref43 article-title: On the convergence of the concave-convex procedure publication-title: Proc Advances Neural Inform Process Syst – ident: ref53 doi: 10.1109/TIP.2007.896622 – ident: ref2 doi: 10.1109/TPAMI.2012.213 – ident: ref47 doi: 10.1198/0003130042836 – ident: ref58 doi: 10.1109/ICDM.2006.70 – ident: ref37 doi: 10.1109/CVPR.2016.492 – ident: ref7 doi: 10.1109/CVPR.2015.7298720 – start-page: 109 year: 2011 ident: ref33 article-title: Efficient inference in fully connected CRFs with Gaussian edge potentials publication-title: Proc Adv Neural Inf Process Syst – ident: ref35 doi: 10.1109/ICCV.2015.179 – ident: ref65 doi: 10.1109/TPAMI.2010.161 – ident: ref4 doi: 10.1109/ICCV.2013.194 – ident: ref5 doi: 10.1109/TPAMI.2012.156 – year: 2011 ident: ref42 publication-title: Robust Statistics The Approach Based on Influence Functions |
| SSID | ssj0014503 |
| Score | 2.6298008 |
| Snippet | Filtering images using a guidance signal, a process called guided or joint image filtering, has been used in various tasks in computer vision and computational... |
| SourceID | hal proquest pubmed crossref ieee |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 192 |
| SubjectTerms | Algorithms Color Computer Science Computer vision Computer Vision and Pattern Recognition Guided image filtering Image color analysis Image edge detection Image filters Image restoration joint image filtering Linear programming majorize-minimization algorithm Noise reduction nonconvex optimization Optimization Outliers (statistics) Photography Robustness Signal processing |
| Title | Robust Guided Image Filtering Using Nonconvex Potentials |
| URI | https://ieeexplore.ieee.org/document/7855782 https://www.ncbi.nlm.nih.gov/pubmed/28212077 https://www.proquest.com/docview/2174495388 https://www.proquest.com/docview/1869973013 https://hal.science/hal-01279857 |
| Volume | 40 |
| WOSCitedRecordID | wos000417806000015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2160-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014503 issn: 0162-8828 databaseCode: RIE dateStart: 19790101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9wwDBe9sofuod3arU3bFW_0bUubXOLYfjzGbi1sxzE6uDeT2A49aJPSS8r-_EnOBxtsg5GXEDuOiSRLsmT9AM4jJ3mauSwsrEEHBVVyWBibocRbmxgbuzKzHmxCLBZytVLLLfgwnoVxzvnkM3dBtz6Wb2vT0lbZpZCcqq9PYCKE6M5qjRGDlHsUZLRgUMLRjRgOyETq8mY5-3pNWVziAtWRihIC40FXI55GQvymjya3lA3pYVb-bnF6zTPf-785v4Dd3sJks44lXsKWq_Zhb0BvYL0w78PzX0oRHoD8VhftpmGf27V1ll3f4zrD5muKpWM785kFbFFXPkv9B1vWDaUZIe--gu_zTzcfr8IeVSE0qHua0Ka2LKSdZqo0eSKFQIcmLQsnjYlUlCmbFnlmymnsEqsip3IuZZEo5Li05OicJa9hu6ordwRM8dzhlduEysI5LmNui2mekVUVK2UDiId_q01fcpyQL-60dz0ipT1pNJFG96QJ4P34zkNXcOOfvd8hycaOVCv7avZF0zOKqSvJxVMSwAHRZezVkySA04HCuhfcjSYPjVJupQzg7diMIkdxlLxydbvRhOKlaGXEkQ87zhjHHtjq-M_fPIEdnL7s9nBOYbt5bN0beGaemvXm8Qz5eiXPPF__BAXL76w |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9QwDLe2gcR4YLAxKBsQEG_QrV9pk8cT4rgTt9MJHdLeojZJtZNGi3btxJ-PnX4IJIaE-lI1afphO7Zjxz-Ad4EVPElt6hdGo4OCKtkvtElR4o2JtQltmRoHNpEtl-LyUq524MO4F8Za65LP7Bmduli-qXVLS2XnmeBUfX0X7vEkicJut9YYM0i4w0FGGwZlHB2JYYtMIM_Xq8nFnPK4sjNUSDKICY4HnY0wCrLsD420e0X5kA5o5W6b0-me6cH_vfVjeNTbmGzSMcUT2LHVIRwM-A2sF-dDePhbMcIjEF_rot027HO7Mdaw-Xecadh0Q9F0bGcut4At68rlqf9kq7qhRCPk3qfwbfpp_XHm97gKvkbt0_gmMWUhTJTKUuexyDJ0aZKysELrQAapNEmRp7qMQhsbGViZcyGKWCLPJSVH9yw-hr2qruxzYJLnFo_cxFQYznIRclNEeUp2VSil8SAc_q3SfdFxwr64Vs75CKRypFFEGtWTxoP34z0_upIb_-z9Fkk2dqRq2bPJQtE1iqpLwbPb2IMjosvYqyeJB6cDhVUvultFPhol3QrhwZuxGYWOIil5Zet2qwjHS9LciCM_6zhjHHtgqxd_f-ZreDBbXyzUYr78cgL7-CmiW9E5hb3mprUv4b6-bTbbm1eOu38B_rDyCw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+Guided+Image+Filtering+Using+Nonconvex+Potentials&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Ham%2C+Bumsub&rft.au=Cho%2C+Minsu&rft.au=Ponce%2C+Jean&rft.date=2018-01-01&rft.eissn=1939-3539&rft.volume=40&rft.issue=1&rft.spage=192&rft_id=info:doi/10.1109%2FTPAMI.2017.2669034&rft_id=info%3Apmid%2F28212077&rft.externalDocID=28212077 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon |