Bayesian ODE solvers: the maximum a posteriori estimate

There is a growing interest in probabilistic numerical solutions to ordinary differential equations. In this paper, the maximum a posteriori estimate is studied under the class of ν times differentiable linear time-invariant Gauss–Markov priors, which can be computed with an iterated extended Kalman...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistics and computing Jg. 31; H. 3
Hauptverfasser: Tronarp, Filip, Särkkä, Simo, Hennig, Philipp
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.05.2021
Springer Nature B.V
Schlagworte:
ISSN:0960-3174, 1573-1375
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:There is a growing interest in probabilistic numerical solutions to ordinary differential equations. In this paper, the maximum a posteriori estimate is studied under the class of ν times differentiable linear time-invariant Gauss–Markov priors, which can be computed with an iterated extended Kalman smoother. The maximum a posteriori estimate corresponds to an optimal interpolant in the reproducing kernel Hilbert space associated with the prior, which in the present case is equivalent to a Sobolev space of smoothness ν + 1 . Subject to mild conditions on the vector field, convergence rates of the maximum a posteriori estimate are then obtained via methods from nonlinear analysis and scattered data approximation. These results closely resemble classical convergence results in the sense that a ν times differentiable prior process obtains a global order of ν , which is demonstrated in numerical examples.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0960-3174
1573-1375
DOI:10.1007/s11222-021-09993-7