Bayesian ODE solvers: the maximum a posteriori estimate
There is a growing interest in probabilistic numerical solutions to ordinary differential equations. In this paper, the maximum a posteriori estimate is studied under the class of ν times differentiable linear time-invariant Gauss–Markov priors, which can be computed with an iterated extended Kalman...
Uloženo v:
| Vydáno v: | Statistics and computing Ročník 31; číslo 3 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.05.2021
Springer Nature B.V |
| Témata: | |
| ISSN: | 0960-3174, 1573-1375 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | There is a growing interest in probabilistic numerical solutions to ordinary differential equations. In this paper, the
maximum a posteriori estimate
is studied under the class of
ν
times differentiable linear time-invariant Gauss–Markov priors, which can be computed with an iterated extended Kalman smoother. The maximum a posteriori estimate corresponds to an optimal interpolant in the reproducing kernel Hilbert space associated with the prior, which in the present case is equivalent to a Sobolev space of smoothness
ν
+
1
. Subject to mild conditions on the vector field, convergence rates of the maximum a posteriori estimate are then obtained via methods from nonlinear analysis and scattered data approximation. These results closely resemble classical convergence results in the sense that a
ν
times differentiable prior process obtains a global order of
ν
, which is demonstrated in numerical examples. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0960-3174 1573-1375 |
| DOI: | 10.1007/s11222-021-09993-7 |