Bayesian ODE solvers: the maximum a posteriori estimate

There is a growing interest in probabilistic numerical solutions to ordinary differential equations. In this paper, the maximum a posteriori estimate is studied under the class of ν times differentiable linear time-invariant Gauss–Markov priors, which can be computed with an iterated extended Kalman...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Statistics and computing Ročník 31; číslo 3
Hlavní autori: Tronarp, Filip, Särkkä, Simo, Hennig, Philipp
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.05.2021
Springer Nature B.V
Predmet:
ISSN:0960-3174, 1573-1375
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract There is a growing interest in probabilistic numerical solutions to ordinary differential equations. In this paper, the maximum a posteriori estimate is studied under the class of ν times differentiable linear time-invariant Gauss–Markov priors, which can be computed with an iterated extended Kalman smoother. The maximum a posteriori estimate corresponds to an optimal interpolant in the reproducing kernel Hilbert space associated with the prior, which in the present case is equivalent to a Sobolev space of smoothness ν + 1 . Subject to mild conditions on the vector field, convergence rates of the maximum a posteriori estimate are then obtained via methods from nonlinear analysis and scattered data approximation. These results closely resemble classical convergence results in the sense that a ν times differentiable prior process obtains a global order of ν , which is demonstrated in numerical examples.
AbstractList There is a growing interest in probabilistic numerical solutions to ordinary differential equations. In this paper, the maximum a posteriori estimate is studied under the class of ν times differentiable linear time-invariant Gauss–Markov priors, which can be computed with an iterated extended Kalman smoother. The maximum a posteriori estimate corresponds to an optimal interpolant in the reproducing kernel Hilbert space associated with the prior, which in the present case is equivalent to a Sobolev space of smoothness ν+1. Subject to mild conditions on the vector field, convergence rates of the maximum a posteriori estimate are then obtained via methods from nonlinear analysis and scattered data approximation. These results closely resemble classical convergence results in the sense that a ν times differentiable prior process obtains a global order of ν, which is demonstrated in numerical examples.
There is a growing interest in probabilistic numerical solutions to ordinary differential equations. In this paper, the maximum a posteriori estimate is studied under the class of $$\nu $$ ν times differentiable linear time-invariant Gauss–Markov priors, which can be computed with an iterated extended Kalman smoother. The maximum a posteriori estimate corresponds to an optimal interpolant in the reproducing kernel Hilbert space associated with the prior, which in the present case is equivalent to a Sobolev space of smoothness $$\nu +1$$ ν + 1 . Subject to mild conditions on the vector field, convergence rates of the maximum a posteriori estimate are then obtained via methods from nonlinear analysis and scattered data approximation. These results closely resemble classical convergence results in the sense that a $$\nu $$ ν times differentiable prior process obtains a global order of $$\nu $$ ν , which is demonstrated in numerical examples.
There is a growing interest in probabilistic numerical solutions to ordinary differential equations. In this paper, the maximum a posteriori estimate is studied under the class of ν times differentiable linear time-invariant Gauss–Markov priors, which can be computed with an iterated extended Kalman smoother. The maximum a posteriori estimate corresponds to an optimal interpolant in the reproducing kernel Hilbert space associated with the prior, which in the present case is equivalent to a Sobolev space of smoothness ν + 1 . Subject to mild conditions on the vector field, convergence rates of the maximum a posteriori estimate are then obtained via methods from nonlinear analysis and scattered data approximation. These results closely resemble classical convergence results in the sense that a ν times differentiable prior process obtains a global order of ν , which is demonstrated in numerical examples.
ArticleNumber 23
Author Hennig, Philipp
Tronarp, Filip
Särkkä, Simo
Author_xml – sequence: 1
  givenname: Filip
  orcidid: 0000-0002-1102-7706
  surname: Tronarp
  fullname: Tronarp, Filip
  email: filip.tronarp@uni-tueingen.de
  organization: University of Tübingen
– sequence: 2
  givenname: Simo
  surname: Särkkä
  fullname: Särkkä, Simo
  organization: Aalto University
– sequence: 3
  givenname: Philipp
  surname: Hennig
  fullname: Hennig, Philipp
  organization: University of Tübingen and MPI for Intelligent Systems
BookMark eNp9kE1LAzEQhoNUsK3-AU8LnqOTj9003rTWDyj0oueQ3U00pbupSSr23xtdQfDQ08DwPvMOzwSNet8bhM4JXBIAcRUJoZRioASDlJJhcYTGpBQMEybKERqDrAAzIvgJmsS4BiCkYnyMxK3em-h0X6zuFkX0mw8T4nWR3kzR6U_X7bpCF1sfkwnOB1eYmFynkzlFx1Zvojn7nVP0cr94nj_i5erhaX6zxA2nMuEWpLDQ1DUtBdWGayGkLa0FYiTjoja2BGkb3ZZ1wzSvbV7OalqDbE2l24pN0cVwdxv8-y63q7XfhT5XKsplxYBLznKKDqkm-BiDsWob8pthrwiob0FqEKSyIPUjSIkMzf5BjUs6Od-noN3mMMoGNOae_tWEv68OUF8T83wo
CitedBy_id crossref_primary_10_1007_s11222_020_09972_4
crossref_primary_10_1016_j_jmsy_2024_11_009
crossref_primary_10_1007_s00362_025_01697_8
crossref_primary_10_1016_j_egyr_2021_11_242
crossref_primary_10_1016_j_probengmech_2024_103620
crossref_primary_10_1063_5_0226625
crossref_primary_10_1016_j_ress_2023_109613
crossref_primary_10_1007_s11222_021_10030_w
crossref_primary_10_1016_j_probengmech_2023_103474
crossref_primary_10_3390_su16052054
crossref_primary_10_1007_s13160_025_00710_9
crossref_primary_10_1016_j_aml_2023_108833
Cites_doi 10.1137/17M1139357
10.1090/S0025-5718-1970-0275025-9
10.1007/978-1-4419-5783-2
10.1109/ICASSP40776.2020.9054686
10.1115/1.3662552
10.1007/978-3-642-14394-6
10.1007/s00211-007-0092-z
10.1007/978-94-017-2219-3_2
10.1162/neco.1995.7.2.219
10.1002/9780470753767
10.1115/1.3658902
10.1007/s11222-019-09900-1
10.1007/978-3-662-12607-3
10.1017/CBO9781139344203
10.1109/MLSP.2010.5589113
10.1109/TAC.2014.2353112
10.1561/2200000016
10.1109/TSP.2019.2935868
10.1016/0022-247X(79)90062-3
10.1109/MLSP.2014.6958899
10.1214/16-BA1017
10.1007/BF01396345
10.1007/s11222-019-09898-6
10.1016/0021-9045(73)90112-3
10.1137/0804035
10.1214/aos/1176342765
10.1007/978-0-387-21582-2
10.1007/s10208-018-09407-7
10.1137/20M1315968
10.1007/s11222-017-9798-7
10.1109/MLSP.2016.7738812
10.1214/aoms/1177697089
10.1017/9781108186735
10.1109/LSP.2018.2889440
10.1007/s11222-016-9671-0
10.1007/978-3-642-05221-7
10.1007/BF00263040
10.1007/s11222-020-09926-w
10.1109/TAC.1978.1101743
10.1007/s11222-019-09902-z
10.1016/0022-247X(71)90184-3
10.2514/3.3166
10.1109/MLSP.2018.8516992
10.1214/074921708000000156
10.1109/MSP.2013.2246292
10.1214/aos/1176347872
10.1007/BFb0066243
ContentType Journal Article
Copyright The Author(s) 2021
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
JQ2
DOI 10.1007/s11222-021-09993-7
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
Computer Science
EISSN 1573-1375
ExternalDocumentID 10_1007_s11222_021_09993_7
GrantInformation_xml – fundername: Bundesministerium für Bildung und Forschung
  grantid: FKZ 01IS18052B
  funderid: http://dx.doi.org/10.13039/501100002347
– fundername: H2020 European Research Council
  grantid: 757275
  funderid: http://dx.doi.org/10.13039/100010663
– fundername: Academy of Finland
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
123
199
1N0
1SB
2.D
203
28-
29Q
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BGNMA
BSONS
C6C
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9R
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7U
Z7W
Z7X
Z7Y
Z81
Z83
Z87
Z88
Z8O
Z8R
Z8U
Z8W
Z91
Z92
ZMTXR
ZWQNP
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
JQ2
ID FETCH-LOGICAL-c429t-d097f0cbb2572ae4a779f5ff01e9347bef509fcad5bc3a4bf3478b2b09de6ad63
IEDL.DBID RSV
ISICitedReferencesCount 27
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000625630000004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0960-3174
IngestDate Thu Oct 02 16:27:29 EDT 2025
Tue Nov 18 20:47:43 EST 2025
Sat Nov 29 03:32:43 EST 2025
Fri Feb 21 02:48:23 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Maximum a posteriori estimation
Kernel methods
Probabilistic numerical methods
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c429t-d097f0cbb2572ae4a779f5ff01e9347bef509fcad5bc3a4bf3478b2b09de6ad63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1102-7706
OpenAccessLink https://link.springer.com/10.1007/s11222-021-09993-7
PQID 2496304943
PQPubID 2043829
ParticipantIDs proquest_journals_2496304943
crossref_primary_10_1007_s11222_021_09993_7
crossref_citationtrail_10_1007_s11222_021_09993_7
springer_journals_10_1007_s11222_021_09993_7
PublicationCentury 2000
PublicationDate 20210500
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 5
  year: 2021
  text: 20210500
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationTitle Statistics and computing
PublicationTitleAbbrev Stat Comput
PublicationYear 2021
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Van LoanCComputing integrals involving the matrix exponentialIEEE Trans. Autom. Control19782333954044948650387.65013
Arnol’dVIOrdinary Differential Equations1992Berlin, HeidelbergSpringer0744.34001
RauchHETungFStriebelCTMaximum likelihood estimates of linear dynamic systemAIAA J.19653814451450181489
SchoberMDuvenaudDKHennigPGhahramaniZWellingMCortesCLawrenceNDWeinbergerKQProbabilistic ODE solvers with Runge-Kutta meansAdvances in Neural Information Processing Systems 272014MontréalCurran Associates Inc739747
van der Vaart, A.W., van Zanten, J.H.: Reproducing kernel Hilbert spaces of Gaussian priors. In: Pushing the Limits of Contemporary Statistics: Contributions in Honor of Jayanta K. Ghosh. Institute of Mathematical Statistics, pp. 200–222 (2008)
Kanagawa, M., Hennig, P., Sejdinovic, D., Sriperumbudur, B.K.: Gaussian processes and kernel methods: a review on connections and equivalences. arXiv:1807.02582 (2018)
ArcangéliRde SilanesMCLTorrensJJAn extension of a bound for functions in Sobolev spaces, with applications to (m, s)-spline interpolation and smoothingNumer. Math.2007107218121123288451221.41012
SärkkäSSolinAApplied Stochastic Differential Equations2019CambridgeCambridge University Press06998030
GinéENicklRMathematical Foundations of Infinite-Dimensional Statistical Models2016CambridgeCambridge University Press1358.62014
Skilling, J.: Bayesian solution of ordinary differential equations. In: Maximum Entropy and Bayesian Methods. Springer, pp. 23–37 (1992)
GaoRTronarpFSärkkäSIterated extended Kalman smoother-based variable splitting for L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${L}_1$$\end{document}-regularized state estimationIEEE Trans. Signal Process.2019671950785092401686407123417
NielsonOAAn Introduction to Integration and Measure Theory1997New YorkWiley
WahbaGA class of approximate solutions to linear operator equationsJ. Approx. Theory19739161773862840267.45015
Kersting, H., Krämer, N., Schiegg, M., Daniel, C., Tiemann, M., Hennig, P.: Differentiable likelihoods for fast inversion of ’likelihood-free’ dynamical systems. arXiv:2002.09301 (2020)
Tronarp, F., Karvonen, T., Särkkä, S.: Mixture representation of the Matérn class with applications in state space approximations and Bayesian quadrature. In: 2018 IEEE 28th International Workshop on Machine Learning for Signal Processing (MLSP) (2018)
WangJCockayneJOatesCJA role for symmetry in the Bayesian solution of differential equationsBayesian Anal.201815105710854171143
ConradPRGirolamiMSärkkäSStuartAZygalakisKStatistical analysis of differential equations: introducing probability measures on numerical solutionsStat. Comput.20172741065108236275631384.62082
KanagawaMSriperumbudurBKFukumizuKConvergence analysis of deterministic kernel-based quadrature rules in misspecified settingsFound. Comput. Math.202020155194405692807161204
Kersting, H., Hennig, P.: Active uncertainty calibration in Bayesian ODE solvers. In: Uncertainty in Artificial Intelligence (UAI) 2016, AUAI, New York City (2016)
KnothOA globalization scheme for the generalized Gauss–Newton methodNumer. Math.198956659160710240130691.65051
OatesCJSullivanTJA modern retrospective on probabilistic numericsStat. Comput.20192961335135140266741431.60002
Hartikainen, J., Särkkä, S.: Kalman filtering and smoothing solutions to temporal Gaussian process regression models. In: 2010 IEEE International Workshop on Machine Learning for Signal Processing. IEEE, pp. 379–384 (2010)
SchultzMHError bounds for polynomial spline interpolationMath. Comput.1970241115075152750250216.23002
Hennig, P., Hauberg, S.: Probabilistic solutions to differential equations and their application to Riemannian statistics. In: Proceedings of the 17th International Conference on Artificial Intelligence and Statistics (AISTATS), JMLR, W&CP, vol. 33 (2014)
KalmanREA new approach to linear filtering and prediction problemsJ. Basic Eng.196082135453931993
Karvonen, T., Wynne, G., Tronarp, F., Oates, C.J., Särkkä, S.: Maximum likelihood estimation and uncertainty quantification for Gaussian process approximation of deterministic functions. arXiv:2001.10965 (2020)
HennigPOsborneMAGirolamiMProbabilistic numerics and uncertainty in computationsProc. R. Soc. A Math. Phys. Eng. Sci.201547121792015014233787441372.65010
ØksendalBStochastic Differential Equations—An Introduction with Applications2003BerlinSpringer1025.60026
AxelssonPGustafssonFDiscrete-time solutions to the continuous-time differential Lyapunov equation with applications to Kalman filteringIEEE Trans. Autom. Control201460363264333183921360.93685
KimeldorfGWahbaGSome results on Tchebycheffian spline functionsJ. Math. Anal. Appl.197133182952900130201.39702
MarcusMMizelVJNemytsky operators on Sobolev spacesArch. Ration. Mech. Anal.1973513473700266.46029
ValentTA property of multiplication in Sobolev spaces. Some applicationsRendiconti del Seminario Matematico della Università di Padova19857463738187170587.46037
LieHCStuartAMSullivanTJStrong convergence rates of probabilistic integrators for ordinary differential equationsStat. Comput.20192961265128340266701431.65122
Solin, A., Särkkä, S.: Gaussian quadratures for state space approximation of scale mixtures of squared exponential covariance functions. In: 2014 IEEE International Workshop on Machine Learning for Signal Processing (MLSP) (2014)
AdamsRAFournierJJSobolev Spaces2003LondonElsevier1098.46001
WeinertHLKailathTStochastic interpretations and recursive algorithms for spline functionsAnn. Stat.1974247877943842900287.65009
DeuflhardPBornemannFScientific Computing with Ordinary Differential Equations2002BerlinSpringer1001.65071
HairerENørsettSWannerGSolving Ordinary Differential Equations I—Nonstiff Problems1987BerlinSpringer0638.65058
Matsuda, T., Miyatake, Y.: Estimation of ordinary differential equation models with discretization error quantification. arXiv:1907.10565 (2019)
ChkrebtiiOACampbellDACalderheadBGirolamiMABayesian solution uncertainty quantification for differential equationsBayesian Anal.20161141239126735773781357.62108
HairerEWannerGSolving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems1996BerlinSpringer0859.65067
SärkkäSBayesian Filtering and Smoothing2013CambridgeCambridge University Press1274.62021
Kersting, H., Sullivan, T.J., Hennig, P.: Convergence rates of Gaussian ODE filters. arXiv:1807.09737 (2018)
John, D., Heuveline, V., Schober, M.: GOODE: A Gaussian off-the-shelf ordinary differential equation solver. In: Chaudhuri K, Salakhutdinov R (eds) Proceedings of the 36th International Conference on Machine Learning, PMLR, Long Beach, California, USA, Proceedings of Machine Learning Research, vol. 97, pp. 3152–3162 (2019)
ValentTBoundary Value Problems of Finite Elasticity: Local Theorems on Existence, Uniqueness, and Analytic Dependence on Data2013BerlinSpringer0648.73019
CockayneJOatesCJSullivanTJGirolamiMBayesian probabilistic numerical methodsSIAM Rev.201961475678940278361451.65179
Schumaker, L.L.: Optimal spline solutions of systems of ordinary differential equations. In: Differential Equations. Springer, pp. 272–283 (1982)
Cox, D.D., O’Sullivan, F.: Asymptotic analysis of penalized likelihood and related estimators. Ann. Stat. 18, 1676–1695 (1990)
GirosiFJonesMPoggioTRegularization theory and neural networks architecturesNeural Comput.199572219269
SchoberMSärkkäSHennigPA probabilistic model for the numerical solution of initial value problemsStat. Comput.201929199122390554307119314
Teymur, O., Zygalakis, K., Calderhead, B.: Probabilistic linear multistep methods. In: Advances in Neural Information Processing Systems (NIPS) (2016)
TronarpFKarvonenTSärkkäSStudent’s t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ t $$\end{document}-filters for noise scale estimationIEEE Signal Process. Lett.2019262352356
TronarpFKerstingHSärkkäSHennigPProbabilistic solutions to ordinary differential equations as nonlinear Bayesian filtering: a new perspectiveStat. Comput.20192961297131540266721435.65020
Karvonen, T., Sarkkä, S.: Approximate state-space Gaussian processes via spectral transformation. In: 2016 IEEE 26th International Workshop on Machine Learning for Signal Processing (MLSP) (2016)
BellBMThe iterated Kalman smoother as a Gauss–Newton methodSIAM J. Optim.19944362663612878200814.93079
KelleyWGPetersonACThe Theory of Differential Equations: Classical and Qualitative2010BerlinSpringer1201.34001
Teymur, O., Lie, H.C., Sullivan, T., Calderhead, B.: Implicit probabilistic integrators for ODEs. In: Advances in Neural Information Processing Systems (NIPS) (2018)
Magnani, E., Kersting, H., Schober, M., Hennig, P.: Bayesian Filtering for ODEs with bounded derivatives. arXiv:1709.08471 [csNA] (2017)
SärkkäSSolinAHartikainenJSpatiotemporal learning via infinite-dimensional Bayesian filtering and smoothing: a look at Gaussian process regression through Kalman filteringIEEE Signal Process. Mag.20133045161
Abdulle, A., Garegnani, G.: Random time step probabilistic methods for uncertainty quantification in chaotic and geometric numerical integration. Stat. Comput. 30, 907–932 (2020)
ButcherJCNumerical Methods for Ordinary Differential Equations20082LondonWiley1167.65041
BoydSParikhNChuEPeleatoBEcksteinJDistributed optimization and statistical learning via the alternating direction method of multipliersFound. Trends Mach. Learn.20113111221229.90122
RasmussenCEWilliamsCKIGaussian Processes for Machine Learning2006New YorkMIT Press1177.68165
KalmanRBucyRNew results in linear filtering and prediction theoryTrans. ASME J. Basic Eng.19618395108234760
SidhuGSWeinertHLVector-valued Lg-splines II interpolating splinesJ. Math. Anal. Appl.19797025055295435910435.65007
Särkkä, S., Svensson, L.: Levenb
J Wang (9993_CR66) 2018; 15
R Arcangéli (9993_CR3) 2007; 107
VI Arnol’d (9993_CR4) 1992
M Schober (9993_CR49) 2014
9993_CR47
HL Weinert (9993_CR67) 1974; 2
F Girosi (9993_CR16) 1995; 7
R Kalman (9993_CR24) 1961; 83
BM Bell (9993_CR6) 1994; 4
S Särkkä (9993_CR48) 2013; 30
M Kanagawa (9993_CR26) 2020; 20
9993_CR55
9993_CR12
9993_CR56
9993_CR57
9993_CR58
9993_CR52
G Kimeldorf (9993_CR33) 1971; 33
9993_CR54
F Tronarp (9993_CR59) 2019; 26
9993_CR1
E Giné (9993_CR15) 2016
9993_CR19
C Van Loan (9993_CR64) 1978; 23
T Valent (9993_CR63) 2013
S Särkkä (9993_CR46) 2019
P Deuflhard (9993_CR13) 2002
GS Kimeldorf (9993_CR34) 1970; 41
CE Rasmussen (9993_CR43) 2006
F Tronarp (9993_CR60) 2019; 29
OA Nielson (9993_CR40) 1997
9993_CR61
T Valent (9993_CR62) 1985; 74
9993_CR22
HE Rauch (9993_CR44) 1965; 3
9993_CR25
MH Schultz (9993_CR51) 1970; 24
S Boyd (9993_CR7) 2011; 3
B Øksendal (9993_CR42) 2003
WG Kelley (9993_CR29) 2010
9993_CR20
OA Chkrebtii (9993_CR9) 2016; 11
G Wahba (9993_CR65) 1973; 9
JC Butcher (9993_CR8) 2008
9993_CR27
9993_CR28
J Cockayne (9993_CR10) 2019; 61
RE Kalman (9993_CR23) 1960; 82
O Knoth (9993_CR35) 1989; 56
R Gao (9993_CR14) 2019; 67
RA Adams (9993_CR2) 2003
S Särkkä (9993_CR45) 2013
E Hairer (9993_CR17) 1996
P Hennig (9993_CR21) 2015; 471
HC Lie (9993_CR36) 2019; 29
9993_CR30
M Schober (9993_CR50) 2019; 29
9993_CR31
E Hairer (9993_CR18) 1987
9993_CR32
M Marcus (9993_CR38) 1973; 51
CJ Oates (9993_CR41) 2019; 29
GS Sidhu (9993_CR53) 1979; 70
9993_CR37
P Axelsson (9993_CR5) 2014; 60
PR Conrad (9993_CR11) 2017; 27
9993_CR39
References_xml – reference: AdamsRAFournierJJSobolev Spaces2003LondonElsevier1098.46001
– reference: HennigPOsborneMAGirolamiMProbabilistic numerics and uncertainty in computationsProc. R. Soc. A Math. Phys. Eng. Sci.201547121792015014233787441372.65010
– reference: DeuflhardPBornemannFScientific Computing with Ordinary Differential Equations2002BerlinSpringer1001.65071
– reference: KimeldorfGWahbaGSome results on Tchebycheffian spline functionsJ. Math. Anal. Appl.197133182952900130201.39702
– reference: SärkkäSSolinAApplied Stochastic Differential Equations2019CambridgeCambridge University Press06998030
– reference: ValentTA property of multiplication in Sobolev spaces. Some applicationsRendiconti del Seminario Matematico della Università di Padova19857463738187170587.46037
– reference: RasmussenCEWilliamsCKIGaussian Processes for Machine Learning2006New YorkMIT Press1177.68165
– reference: KalmanRBucyRNew results in linear filtering and prediction theoryTrans. ASME J. Basic Eng.19618395108234760
– reference: HairerENørsettSWannerGSolving Ordinary Differential Equations I—Nonstiff Problems1987BerlinSpringer0638.65058
– reference: Karvonen, T., Sarkkä, S.: Approximate state-space Gaussian processes via spectral transformation. In: 2016 IEEE 26th International Workshop on Machine Learning for Signal Processing (MLSP) (2016)
– reference: SärkkäSBayesian Filtering and Smoothing2013CambridgeCambridge University Press1274.62021
– reference: SärkkäSSolinAHartikainenJSpatiotemporal learning via infinite-dimensional Bayesian filtering and smoothing: a look at Gaussian process regression through Kalman filteringIEEE Signal Process. Mag.20133045161
– reference: CockayneJOatesCJSullivanTJGirolamiMBayesian probabilistic numerical methodsSIAM Rev.201961475678940278361451.65179
– reference: Teymur, O., Lie, H.C., Sullivan, T., Calderhead, B.: Implicit probabilistic integrators for ODEs. In: Advances in Neural Information Processing Systems (NIPS) (2018)
– reference: Solin, A., Särkkä, S.: Gaussian quadratures for state space approximation of scale mixtures of squared exponential covariance functions. In: 2014 IEEE International Workshop on Machine Learning for Signal Processing (MLSP) (2014)
– reference: ButcherJCNumerical Methods for Ordinary Differential Equations20082LondonWiley1167.65041
– reference: WahbaGA class of approximate solutions to linear operator equationsJ. Approx. Theory19739161773862840267.45015
– reference: GaoRTronarpFSärkkäSIterated extended Kalman smoother-based variable splitting for L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${L}_1$$\end{document}-regularized state estimationIEEE Trans. Signal Process.2019671950785092401686407123417
– reference: Teymur, O., Zygalakis, K., Calderhead, B.: Probabilistic linear multistep methods. In: Advances in Neural Information Processing Systems (NIPS) (2016)
– reference: GinéENicklRMathematical Foundations of Infinite-Dimensional Statistical Models2016CambridgeCambridge University Press1358.62014
– reference: Abdulle, A., Garegnani, G.: Random time step probabilistic methods for uncertainty quantification in chaotic and geometric numerical integration. Stat. Comput. 30, 907–932 (2020)
– reference: NielsonOAAn Introduction to Integration and Measure Theory1997New YorkWiley
– reference: SchoberMSärkkäSHennigPA probabilistic model for the numerical solution of initial value problemsStat. Comput.201929199122390554307119314
– reference: ConradPRGirolamiMSärkkäSStuartAZygalakisKStatistical analysis of differential equations: introducing probability measures on numerical solutionsStat. Comput.20172741065108236275631384.62082
– reference: Kanagawa, M., Hennig, P., Sejdinovic, D., Sriperumbudur, B.K.: Gaussian processes and kernel methods: a review on connections and equivalences. arXiv:1807.02582 (2018)
– reference: ArcangéliRde SilanesMCLTorrensJJAn extension of a bound for functions in Sobolev spaces, with applications to (m, s)-spline interpolation and smoothingNumer. Math.2007107218121123288451221.41012
– reference: WangJCockayneJOatesCJA role for symmetry in the Bayesian solution of differential equationsBayesian Anal.201815105710854171143
– reference: BellBMThe iterated Kalman smoother as a Gauss–Newton methodSIAM J. Optim.19944362663612878200814.93079
– reference: HairerEWannerGSolving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems1996BerlinSpringer0859.65067
– reference: Magnani, E., Kersting, H., Schober, M., Hennig, P.: Bayesian Filtering for ODEs with bounded derivatives. arXiv:1709.08471 [csNA] (2017)
– reference: OatesCJSullivanTJA modern retrospective on probabilistic numericsStat. Comput.20192961335135140266741431.60002
– reference: AxelssonPGustafssonFDiscrete-time solutions to the continuous-time differential Lyapunov equation with applications to Kalman filteringIEEE Trans. Autom. Control201460363264333183921360.93685
– reference: Kersting, H., Hennig, P.: Active uncertainty calibration in Bayesian ODE solvers. In: Uncertainty in Artificial Intelligence (UAI) 2016, AUAI, New York City (2016)
– reference: TronarpFKerstingHSärkkäSHennigPProbabilistic solutions to ordinary differential equations as nonlinear Bayesian filtering: a new perspectiveStat. Comput.20192961297131540266721435.65020
– reference: GirosiFJonesMPoggioTRegularization theory and neural networks architecturesNeural Comput.199572219269
– reference: van der Vaart, A.W., van Zanten, J.H.: Reproducing kernel Hilbert spaces of Gaussian priors. In: Pushing the Limits of Contemporary Statistics: Contributions in Honor of Jayanta K. Ghosh. Institute of Mathematical Statistics, pp. 200–222 (2008)
– reference: Cox, D.D., O’Sullivan, F.: Asymptotic analysis of penalized likelihood and related estimators. Ann. Stat. 18, 1676–1695 (1990)
– reference: KalmanREA new approach to linear filtering and prediction problemsJ. Basic Eng.196082135453931993
– reference: ValentTBoundary Value Problems of Finite Elasticity: Local Theorems on Existence, Uniqueness, and Analytic Dependence on Data2013BerlinSpringer0648.73019
– reference: Hartikainen, J., Särkkä, S.: Kalman filtering and smoothing solutions to temporal Gaussian process regression models. In: 2010 IEEE International Workshop on Machine Learning for Signal Processing. IEEE, pp. 379–384 (2010)
– reference: Kersting, H., Sullivan, T.J., Hennig, P.: Convergence rates of Gaussian ODE filters. arXiv:1807.09737 (2018)
– reference: SchoberMDuvenaudDKHennigPGhahramaniZWellingMCortesCLawrenceNDWeinbergerKQProbabilistic ODE solvers with Runge-Kutta meansAdvances in Neural Information Processing Systems 272014MontréalCurran Associates Inc739747
– reference: ØksendalBStochastic Differential Equations—An Introduction with Applications2003BerlinSpringer1025.60026
– reference: ChkrebtiiOACampbellDACalderheadBGirolamiMABayesian solution uncertainty quantification for differential equationsBayesian Anal.20161141239126735773781357.62108
– reference: Skilling, J.: Bayesian solution of ordinary differential equations. In: Maximum Entropy and Bayesian Methods. Springer, pp. 23–37 (1992)
– reference: Karvonen, T., Wynne, G., Tronarp, F., Oates, C.J., Särkkä, S.: Maximum likelihood estimation and uncertainty quantification for Gaussian process approximation of deterministic functions. arXiv:2001.10965 (2020)
– reference: KnothOA globalization scheme for the generalized Gauss–Newton methodNumer. Math.198956659160710240130691.65051
– reference: Särkkä, S., Svensson, L.: Levenberg–Marquardt and line-search extended Kalman smoothers. In: 2020 IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE, Virtual location (2020)
– reference: SchultzMHError bounds for polynomial spline interpolationMath. Comput.1970241115075152750250216.23002
– reference: KelleyWGPetersonACThe Theory of Differential Equations: Classical and Qualitative2010BerlinSpringer1201.34001
– reference: Kersting, H., Krämer, N., Schiegg, M., Daniel, C., Tiemann, M., Hennig, P.: Differentiable likelihoods for fast inversion of ’likelihood-free’ dynamical systems. arXiv:2002.09301 (2020)
– reference: RauchHETungFStriebelCTMaximum likelihood estimates of linear dynamic systemAIAA J.19653814451450181489
– reference: Hennig, P., Hauberg, S.: Probabilistic solutions to differential equations and their application to Riemannian statistics. In: Proceedings of the 17th International Conference on Artificial Intelligence and Statistics (AISTATS), JMLR, W&CP, vol. 33 (2014)
– reference: TronarpFKarvonenTSärkkäSStudent’s t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ t $$\end{document}-filters for noise scale estimationIEEE Signal Process. Lett.2019262352356
– reference: Van LoanCComputing integrals involving the matrix exponentialIEEE Trans. Autom. Control19782333954044948650387.65013
– reference: Tronarp, F., Karvonen, T., Särkkä, S.: Mixture representation of the Matérn class with applications in state space approximations and Bayesian quadrature. In: 2018 IEEE 28th International Workshop on Machine Learning for Signal Processing (MLSP) (2018)
– reference: Schumaker, L.L.: Optimal spline solutions of systems of ordinary differential equations. In: Differential Equations. Springer, pp. 272–283 (1982)
– reference: MarcusMMizelVJNemytsky operators on Sobolev spacesArch. Ration. Mech. Anal.1973513473700266.46029
– reference: KimeldorfGSWahbaGA correspondence between Bayesian estimation on stochastic processes and smoothing by splinesAnn. Math. Stat.19704124955022549990193.45201
– reference: Matsuda, T., Miyatake, Y.: Estimation of ordinary differential equation models with discretization error quantification. arXiv:1907.10565 (2019)
– reference: LieHCStuartAMSullivanTJStrong convergence rates of probabilistic integrators for ordinary differential equationsStat. Comput.20192961265128340266701431.65122
– reference: John, D., Heuveline, V., Schober, M.: GOODE: A Gaussian off-the-shelf ordinary differential equation solver. In: Chaudhuri K, Salakhutdinov R (eds) Proceedings of the 36th International Conference on Machine Learning, PMLR, Long Beach, California, USA, Proceedings of Machine Learning Research, vol. 97, pp. 3152–3162 (2019)
– reference: KanagawaMSriperumbudurBKFukumizuKConvergence analysis of deterministic kernel-based quadrature rules in misspecified settingsFound. Comput. Math.202020155194405692807161204
– reference: Arnol’dVIOrdinary Differential Equations1992Berlin, HeidelbergSpringer0744.34001
– reference: SidhuGSWeinertHLVector-valued Lg-splines II interpolating splinesJ. Math. Anal. Appl.19797025055295435910435.65007
– reference: BoydSParikhNChuEPeleatoBEcksteinJDistributed optimization and statistical learning via the alternating direction method of multipliersFound. Trends Mach. Learn.20113111221229.90122
– reference: WeinertHLKailathTStochastic interpretations and recursive algorithms for spline functionsAnn. Stat.1974247877943842900287.65009
– volume: 61
  start-page: 756
  issue: 4
  year: 2019
  ident: 9993_CR10
  publication-title: SIAM Rev.
  doi: 10.1137/17M1139357
– volume-title: Boundary Value Problems of Finite Elasticity: Local Theorems on Existence, Uniqueness, and Analytic Dependence on Data
  year: 2013
  ident: 9993_CR63
– volume: 24
  start-page: 507
  issue: 111
  year: 1970
  ident: 9993_CR51
  publication-title: Math. Comput.
  doi: 10.1090/S0025-5718-1970-0275025-9
– volume-title: The Theory of Differential Equations: Classical and Qualitative
  year: 2010
  ident: 9993_CR29
  doi: 10.1007/978-1-4419-5783-2
– ident: 9993_CR47
  doi: 10.1109/ICASSP40776.2020.9054686
– volume: 82
  start-page: 35
  issue: 1
  year: 1960
  ident: 9993_CR23
  publication-title: J. Basic Eng.
  doi: 10.1115/1.3662552
– volume-title: Stochastic Differential Equations—An Introduction with Applications
  year: 2003
  ident: 9993_CR42
  doi: 10.1007/978-3-642-14394-6
– ident: 9993_CR39
– volume-title: Gaussian Processes for Machine Learning
  year: 2006
  ident: 9993_CR43
– volume-title: Sobolev Spaces
  year: 2003
  ident: 9993_CR2
– ident: 9993_CR56
– volume: 107
  start-page: 181
  issue: 2
  year: 2007
  ident: 9993_CR3
  publication-title: Numer. Math.
  doi: 10.1007/s00211-007-0092-z
– ident: 9993_CR54
  doi: 10.1007/978-94-017-2219-3_2
– volume: 7
  start-page: 219
  issue: 2
  year: 1995
  ident: 9993_CR16
  publication-title: Neural Comput.
  doi: 10.1162/neco.1995.7.2.219
– volume-title: Numerical Methods for Ordinary Differential Equations
  year: 2008
  ident: 9993_CR8
  doi: 10.1002/9780470753767
– volume-title: Ordinary Differential Equations
  year: 1992
  ident: 9993_CR4
– volume: 83
  start-page: 95
  year: 1961
  ident: 9993_CR24
  publication-title: Trans. ASME J. Basic Eng.
  doi: 10.1115/1.3658902
– volume: 29
  start-page: 1297
  issue: 6
  year: 2019
  ident: 9993_CR60
  publication-title: Stat. Comput.
  doi: 10.1007/s11222-019-09900-1
– ident: 9993_CR25
– volume-title: Solving Ordinary Differential Equations I—Nonstiff Problems
  year: 1987
  ident: 9993_CR18
  doi: 10.1007/978-3-662-12607-3
– volume-title: Bayesian Filtering and Smoothing
  year: 2013
  ident: 9993_CR45
  doi: 10.1017/CBO9781139344203
– ident: 9993_CR22
– ident: 9993_CR19
  doi: 10.1109/MLSP.2010.5589113
– volume: 60
  start-page: 632
  issue: 3
  year: 2014
  ident: 9993_CR5
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2014.2353112
– volume: 3
  start-page: 1
  issue: 1
  year: 2011
  ident: 9993_CR7
  publication-title: Found. Trends Mach. Learn.
  doi: 10.1561/2200000016
– volume: 67
  start-page: 5078
  issue: 19
  year: 2019
  ident: 9993_CR14
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2019.2935868
– volume: 70
  start-page: 505
  issue: 2
  year: 1979
  ident: 9993_CR53
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/0022-247X(79)90062-3
– ident: 9993_CR55
  doi: 10.1109/MLSP.2014.6958899
– volume: 11
  start-page: 1239
  issue: 4
  year: 2016
  ident: 9993_CR9
  publication-title: Bayesian Anal.
  doi: 10.1214/16-BA1017
– volume: 56
  start-page: 591
  issue: 6
  year: 1989
  ident: 9993_CR35
  publication-title: Numer. Math.
  doi: 10.1007/BF01396345
– volume: 29
  start-page: 1265
  issue: 6
  year: 2019
  ident: 9993_CR36
  publication-title: Stat. Comput.
  doi: 10.1007/s11222-019-09898-6
– ident: 9993_CR32
– volume: 74
  start-page: 63
  year: 1985
  ident: 9993_CR62
  publication-title: Rendiconti del Seminario Matematico della Università di Padova
– volume: 471
  start-page: 20150142
  issue: 2179
  year: 2015
  ident: 9993_CR21
  publication-title: Proc. R. Soc. A Math. Phys. Eng. Sci.
– volume: 9
  start-page: 61
  issue: 1
  year: 1973
  ident: 9993_CR65
  publication-title: J. Approx. Theory
  doi: 10.1016/0021-9045(73)90112-3
– ident: 9993_CR57
– volume: 4
  start-page: 626
  issue: 3
  year: 1994
  ident: 9993_CR6
  publication-title: SIAM J. Optim.
  doi: 10.1137/0804035
– volume: 15
  start-page: 1057
  year: 2018
  ident: 9993_CR66
  publication-title: Bayesian Anal.
– volume: 2
  start-page: 787
  issue: 4
  year: 1974
  ident: 9993_CR67
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1176342765
– volume-title: An Introduction to Integration and Measure Theory
  year: 1997
  ident: 9993_CR40
– volume-title: Scientific Computing with Ordinary Differential Equations
  year: 2002
  ident: 9993_CR13
  doi: 10.1007/978-0-387-21582-2
– volume: 20
  start-page: 155
  year: 2020
  ident: 9993_CR26
  publication-title: Found. Comput. Math.
  doi: 10.1007/s10208-018-09407-7
– ident: 9993_CR28
  doi: 10.1137/20M1315968
– volume: 29
  start-page: 99
  issue: 1
  year: 2019
  ident: 9993_CR50
  publication-title: Stat. Comput.
  doi: 10.1007/s11222-017-9798-7
– ident: 9993_CR27
  doi: 10.1109/MLSP.2016.7738812
– volume: 41
  start-page: 495
  issue: 2
  year: 1970
  ident: 9993_CR34
  publication-title: Ann. Math. Stat.
  doi: 10.1214/aoms/1177697089
– volume-title: Applied Stochastic Differential Equations
  year: 2019
  ident: 9993_CR46
  doi: 10.1017/9781108186735
– volume: 26
  start-page: 352
  issue: 2
  year: 2019
  ident: 9993_CR59
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2018.2889440
– volume: 27
  start-page: 1065
  issue: 4
  year: 2017
  ident: 9993_CR11
  publication-title: Stat. Comput.
  doi: 10.1007/s11222-016-9671-0
– ident: 9993_CR31
– ident: 9993_CR37
– volume-title: Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems
  year: 1996
  ident: 9993_CR17
  doi: 10.1007/978-3-642-05221-7
– volume: 51
  start-page: 347
  year: 1973
  ident: 9993_CR38
  publication-title: Arch. Ration. Mech. Anal.
  doi: 10.1007/BF00263040
– ident: 9993_CR1
  doi: 10.1007/s11222-020-09926-w
– volume: 23
  start-page: 395
  issue: 3
  year: 1978
  ident: 9993_CR64
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.1978.1101743
– volume: 29
  start-page: 1335
  issue: 6
  year: 2019
  ident: 9993_CR41
  publication-title: Stat. Comput.
  doi: 10.1007/s11222-019-09902-z
– volume: 33
  start-page: 82
  issue: 1
  year: 1971
  ident: 9993_CR33
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/0022-247X(71)90184-3
– volume-title: Mathematical Foundations of Infinite-Dimensional Statistical Models
  year: 2016
  ident: 9993_CR15
– ident: 9993_CR20
– start-page: 739
  volume-title: Advances in Neural Information Processing Systems 27
  year: 2014
  ident: 9993_CR49
– volume: 3
  start-page: 1445
  issue: 8
  year: 1965
  ident: 9993_CR44
  publication-title: AIAA J.
  doi: 10.2514/3.3166
– ident: 9993_CR58
  doi: 10.1109/MLSP.2018.8516992
– ident: 9993_CR61
  doi: 10.1214/074921708000000156
– ident: 9993_CR30
– volume: 30
  start-page: 51
  issue: 4
  year: 2013
  ident: 9993_CR48
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2013.2246292
– ident: 9993_CR12
  doi: 10.1214/aos/1176347872
– ident: 9993_CR52
  doi: 10.1007/BFb0066243
SSID ssj0011634
Score 2.4750123
Snippet There is a growing interest in probabilistic numerical solutions to ordinary differential equations. In this paper, the maximum a posteriori estimate is...
There is a growing interest in probabilistic numerical solutions to ordinary differential equations. In this paper, the maximum a posteriori estimate is...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Artificial Intelligence
Convergence
Differential equations
Fields (mathematics)
Hilbert space
Mathematics and Statistics
Nonlinear analysis
Ordinary differential equations
Probability and Statistics in Computer Science
Smoothness
Sobolev space
Statistical Theory and Methods
Statistics
Statistics and Computing/Statistics Programs
Title Bayesian ODE solvers: the maximum a posteriori estimate
URI https://link.springer.com/article/10.1007/s11222-021-09993-7
https://www.proquest.com/docview/2496304943
Volume 31
WOSCitedRecordID wos000625630000004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-1375
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011634
  issn: 0960-3174
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgcIADgwFiMFAO3KBSH2nTcOOxiQsD8dJuVZIm0iT2ULch-Pc4XbsKBEhwbROr8iN2avszwLHUnomjSDsRs79uQqqc2JfMkei8KU_T0EvjfNgE63bjXo_fFU1hk7LavUxJ5id11ezmoS9zbEmBjWoChy3DCrq72Jrj_cPzIneAEUYOGoWxOZ4wjBatMt_T-OyOqhjzS1o09zad-v--cxM2iuiSnM_VYQuW9LAB9XJyAykMuQHrNwu01kkD1mzEOQds3gZ2Id617awkt1dtgppp6zbOCC4nA_HWH8wGRJCxbQ3J-qOsTyxKBxLSO_DUaT9eXjvFdAVHoQ-aOqnLmXGVlGi0vtBUMMZNaIzraR5QJrVB5hol0lCqQFBp8GEsfenyVEcijYJdqA1HQ70HJBKS-5HwDdWS6lhwwbUyeP0VOlaMhk3wSiYnqoAetxMwXpIKNNkyLUGmJTnTEtaEk8We8Rx449fVrVJ2SWGEkwRvlpHNItKgCaelrKrXP1Pb_9vyA1jzc3HbMsgW1KbZTB_CqnpF0WVHuXJ-AOT93Lg
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgIDEOPAaI8cyBG1Ra27RpuPEUiDEQL3GrkjSRJrGHug3Bv8fp2lUgQIJrm0SV7cRfavszwJ7UronCUDshs79uAqqcyJPMkei8KU-SwE2irNkEa7Wi52d-mxeFDYps9yIkmZ3UZbGbi77MsSkFFtX4DpuGGYoeyyby3d0_TWIHiDAy0ijE5njCMJqXyny_xmd3VGLML2HRzNucL_7vO5dgIUeX5GhsDsswpbs1WCw6N5B8I9dg_nrC1jqoQdUizjFh8wqwY_GubWUluTk9I2iZNm_jkOBw0hFv7c6oQwTp29KQtN1L28SydOBCehUez88eTi6cvLuCo9AHDZ2kwZlpKClx03pCU8EYN4ExDVdznzKpDWIJo0QSSOULKg0-jKQnGzzRoUhCfw0q3V5XrwMJheReKDxDtaQ6ElxwrQxef4WOFKNBHdxCyLHKqcdtB4yXuCRNtkKLUWhxJrSY1WF_Mqc_Jt74dfRWobs434SDGG-WoY0iUr8OB4Wuytc_r7bxt-G7MHfxcN2Mm5etq02oepnqbUrkFlSG6Uhvw6x6RTWmO5mhfgBGhd-c
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZgIDQODAaIwYAcuEG1tU2bhhuwTSBgTOKh3aokTaRJ7KE9EPx7kj5WQICEuLapVdlJ_bm2PwMccWmrwPel5RPz68bDwgocTiyunTemUeTZURAPmyDtdtDt0s6HLv642j1LSSY9DYalaTCtjSJVyxvfbO3XLFNeYBCOa5FFWMJmaJCJ1--f5nkEjTZiAimN0_XXhuC0beZ7GZ9dU443v6RIY8_TKv3_nddhLUWd6CzZJhuwIAdlKGUTHVB6wMuwejtncZ2UoWiQaELkvAnknL1J03GJ7hpNpHesqec4RXo56rPXXn_WRwyNTMvIuDcc95Bh79CC5BY8tpoPF5dWOnXBEto3Ta2oTomqC871YXaYxIwQqjyl6rakLiZcKo0xlGCRx4XLMFf6YsAdXqeR9Fnku9tQGAwHcgeQzzh1fOYoLDmWAaOMSqF0WMxkIAj2KmBnCg9FSkluJmM8hzmZslFaqJUWxkoLSQWO58-MEkKOX1dXMzuG6eGchDri9E12EbsVOMnslt_-Wdru35Yfwkqn0QpvrtrXe1B0YsubSskqFKbjmdyHZfGirTg-iPfsO7xn6IA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bayesian+ODE+solvers%3A+the+maximum+a+posteriori+estimate&rft.jtitle=Statistics+and+computing&rft.au=Tronarp%2C+Filip&rft.au=S%C3%A4rkk%C3%A4%2C+Simo&rft.au=Hennig%2C+Philipp&rft.date=2021-05-01&rft.issn=0960-3174&rft.eissn=1573-1375&rft.volume=31&rft.issue=3&rft_id=info:doi/10.1007%2Fs11222-021-09993-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11222_021_09993_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-3174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-3174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-3174&client=summon