Bayesian ODE solvers: the maximum a posteriori estimate
There is a growing interest in probabilistic numerical solutions to ordinary differential equations. In this paper, the maximum a posteriori estimate is studied under the class of ν times differentiable linear time-invariant Gauss–Markov priors, which can be computed with an iterated extended Kalman...
Uložené v:
| Vydané v: | Statistics and computing Ročník 31; číslo 3 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
Springer US
01.05.2021
Springer Nature B.V |
| Predmet: | |
| ISSN: | 0960-3174, 1573-1375 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | There is a growing interest in probabilistic numerical solutions to ordinary differential equations. In this paper, the
maximum a posteriori estimate
is studied under the class of
ν
times differentiable linear time-invariant Gauss–Markov priors, which can be computed with an iterated extended Kalman smoother. The maximum a posteriori estimate corresponds to an optimal interpolant in the reproducing kernel Hilbert space associated with the prior, which in the present case is equivalent to a Sobolev space of smoothness
ν
+
1
. Subject to mild conditions on the vector field, convergence rates of the maximum a posteriori estimate are then obtained via methods from nonlinear analysis and scattered data approximation. These results closely resemble classical convergence results in the sense that a
ν
times differentiable prior process obtains a global order of
ν
, which is demonstrated in numerical examples. |
|---|---|
| AbstractList | There is a growing interest in probabilistic numerical solutions to ordinary differential equations. In this paper, the maximum a posteriori estimate is studied under the class of ν times differentiable linear time-invariant Gauss–Markov priors, which can be computed with an iterated extended Kalman smoother. The maximum a posteriori estimate corresponds to an optimal interpolant in the reproducing kernel Hilbert space associated with the prior, which in the present case is equivalent to a Sobolev space of smoothness ν+1. Subject to mild conditions on the vector field, convergence rates of the maximum a posteriori estimate are then obtained via methods from nonlinear analysis and scattered data approximation. These results closely resemble classical convergence results in the sense that a ν times differentiable prior process obtains a global order of ν, which is demonstrated in numerical examples. There is a growing interest in probabilistic numerical solutions to ordinary differential equations. In this paper, the maximum a posteriori estimate is studied under the class of $$\nu $$ ν times differentiable linear time-invariant Gauss–Markov priors, which can be computed with an iterated extended Kalman smoother. The maximum a posteriori estimate corresponds to an optimal interpolant in the reproducing kernel Hilbert space associated with the prior, which in the present case is equivalent to a Sobolev space of smoothness $$\nu +1$$ ν + 1 . Subject to mild conditions on the vector field, convergence rates of the maximum a posteriori estimate are then obtained via methods from nonlinear analysis and scattered data approximation. These results closely resemble classical convergence results in the sense that a $$\nu $$ ν times differentiable prior process obtains a global order of $$\nu $$ ν , which is demonstrated in numerical examples. There is a growing interest in probabilistic numerical solutions to ordinary differential equations. In this paper, the maximum a posteriori estimate is studied under the class of ν times differentiable linear time-invariant Gauss–Markov priors, which can be computed with an iterated extended Kalman smoother. The maximum a posteriori estimate corresponds to an optimal interpolant in the reproducing kernel Hilbert space associated with the prior, which in the present case is equivalent to a Sobolev space of smoothness ν + 1 . Subject to mild conditions on the vector field, convergence rates of the maximum a posteriori estimate are then obtained via methods from nonlinear analysis and scattered data approximation. These results closely resemble classical convergence results in the sense that a ν times differentiable prior process obtains a global order of ν , which is demonstrated in numerical examples. |
| ArticleNumber | 23 |
| Author | Hennig, Philipp Tronarp, Filip Särkkä, Simo |
| Author_xml | – sequence: 1 givenname: Filip orcidid: 0000-0002-1102-7706 surname: Tronarp fullname: Tronarp, Filip email: filip.tronarp@uni-tueingen.de organization: University of Tübingen – sequence: 2 givenname: Simo surname: Särkkä fullname: Särkkä, Simo organization: Aalto University – sequence: 3 givenname: Philipp surname: Hennig fullname: Hennig, Philipp organization: University of Tübingen and MPI for Intelligent Systems |
| BookMark | eNp9kE1LAzEQhoNUsK3-AU8LnqOTj9003rTWDyj0oueQ3U00pbupSSr23xtdQfDQ08DwPvMOzwSNet8bhM4JXBIAcRUJoZRioASDlJJhcYTGpBQMEybKERqDrAAzIvgJmsS4BiCkYnyMxK3em-h0X6zuFkX0mw8T4nWR3kzR6U_X7bpCF1sfkwnOB1eYmFynkzlFx1Zvojn7nVP0cr94nj_i5erhaX6zxA2nMuEWpLDQ1DUtBdWGayGkLa0FYiTjoja2BGkb3ZZ1wzSvbV7OalqDbE2l24pN0cVwdxv8-y63q7XfhT5XKsplxYBLznKKDqkm-BiDsWob8pthrwiob0FqEKSyIPUjSIkMzf5BjUs6Od-noN3mMMoGNOae_tWEv68OUF8T83wo |
| CitedBy_id | crossref_primary_10_1007_s11222_020_09972_4 crossref_primary_10_1016_j_jmsy_2024_11_009 crossref_primary_10_1007_s00362_025_01697_8 crossref_primary_10_1016_j_egyr_2021_11_242 crossref_primary_10_1016_j_probengmech_2024_103620 crossref_primary_10_1063_5_0226625 crossref_primary_10_1016_j_ress_2023_109613 crossref_primary_10_1007_s11222_021_10030_w crossref_primary_10_1016_j_probengmech_2023_103474 crossref_primary_10_3390_su16052054 crossref_primary_10_1007_s13160_025_00710_9 crossref_primary_10_1016_j_aml_2023_108833 |
| Cites_doi | 10.1137/17M1139357 10.1090/S0025-5718-1970-0275025-9 10.1007/978-1-4419-5783-2 10.1109/ICASSP40776.2020.9054686 10.1115/1.3662552 10.1007/978-3-642-14394-6 10.1007/s00211-007-0092-z 10.1007/978-94-017-2219-3_2 10.1162/neco.1995.7.2.219 10.1002/9780470753767 10.1115/1.3658902 10.1007/s11222-019-09900-1 10.1007/978-3-662-12607-3 10.1017/CBO9781139344203 10.1109/MLSP.2010.5589113 10.1109/TAC.2014.2353112 10.1561/2200000016 10.1109/TSP.2019.2935868 10.1016/0022-247X(79)90062-3 10.1109/MLSP.2014.6958899 10.1214/16-BA1017 10.1007/BF01396345 10.1007/s11222-019-09898-6 10.1016/0021-9045(73)90112-3 10.1137/0804035 10.1214/aos/1176342765 10.1007/978-0-387-21582-2 10.1007/s10208-018-09407-7 10.1137/20M1315968 10.1007/s11222-017-9798-7 10.1109/MLSP.2016.7738812 10.1214/aoms/1177697089 10.1017/9781108186735 10.1109/LSP.2018.2889440 10.1007/s11222-016-9671-0 10.1007/978-3-642-05221-7 10.1007/BF00263040 10.1007/s11222-020-09926-w 10.1109/TAC.1978.1101743 10.1007/s11222-019-09902-z 10.1016/0022-247X(71)90184-3 10.2514/3.3166 10.1109/MLSP.2018.8516992 10.1214/074921708000000156 10.1109/MSP.2013.2246292 10.1214/aos/1176347872 10.1007/BFb0066243 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2021 The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2021 – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION JQ2 |
| DOI | 10.1007/s11222-021-09993-7 |
| DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Computer Science Collection |
| DatabaseTitle | CrossRef ProQuest Computer Science Collection |
| DatabaseTitleList | ProQuest Computer Science Collection CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Statistics Mathematics Computer Science |
| EISSN | 1573-1375 |
| ExternalDocumentID | 10_1007_s11222_021_09993_7 |
| GrantInformation_xml | – fundername: Bundesministerium für Bildung und Forschung grantid: FKZ 01IS18052B funderid: http://dx.doi.org/10.13039/501100002347 – fundername: H2020 European Research Council grantid: 757275 funderid: http://dx.doi.org/10.13039/100010663 – fundername: Academy of Finland |
| GroupedDBID | -52 -5D -5G -BR -EM -Y2 -~C .86 .DC .VR 06D 0R~ 0VY 123 199 1N0 1SB 2.D 203 28- 29Q 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BBWZM BDATZ BGNMA BSONS C6C CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9R PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TN5 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7U Z7W Z7X Z7Y Z81 Z83 Z87 Z88 Z8O Z8R Z8U Z8W Z91 Z92 ZMTXR ZWQNP ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION JQ2 |
| ID | FETCH-LOGICAL-c429t-d097f0cbb2572ae4a779f5ff01e9347bef509fcad5bc3a4bf3478b2b09de6ad63 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 27 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000625630000004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0960-3174 |
| IngestDate | Thu Oct 02 16:27:29 EDT 2025 Tue Nov 18 20:47:43 EST 2025 Sat Nov 29 03:32:43 EST 2025 Fri Feb 21 02:48:23 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Maximum a posteriori estimation Kernel methods Probabilistic numerical methods |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c429t-d097f0cbb2572ae4a779f5ff01e9347bef509fcad5bc3a4bf3478b2b09de6ad63 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-1102-7706 |
| OpenAccessLink | https://link.springer.com/10.1007/s11222-021-09993-7 |
| PQID | 2496304943 |
| PQPubID | 2043829 |
| ParticipantIDs | proquest_journals_2496304943 crossref_primary_10_1007_s11222_021_09993_7 crossref_citationtrail_10_1007_s11222_021_09993_7 springer_journals_10_1007_s11222_021_09993_7 |
| PublicationCentury | 2000 |
| PublicationDate | 20210500 |
| PublicationDateYYYYMMDD | 2021-05-01 |
| PublicationDate_xml | – month: 5 year: 2021 text: 20210500 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Dordrecht |
| PublicationTitle | Statistics and computing |
| PublicationTitleAbbrev | Stat Comput |
| PublicationYear | 2021 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Van LoanCComputing integrals involving the matrix exponentialIEEE Trans. Autom. Control19782333954044948650387.65013 Arnol’dVIOrdinary Differential Equations1992Berlin, HeidelbergSpringer0744.34001 RauchHETungFStriebelCTMaximum likelihood estimates of linear dynamic systemAIAA J.19653814451450181489 SchoberMDuvenaudDKHennigPGhahramaniZWellingMCortesCLawrenceNDWeinbergerKQProbabilistic ODE solvers with Runge-Kutta meansAdvances in Neural Information Processing Systems 272014MontréalCurran Associates Inc739747 van der Vaart, A.W., van Zanten, J.H.: Reproducing kernel Hilbert spaces of Gaussian priors. In: Pushing the Limits of Contemporary Statistics: Contributions in Honor of Jayanta K. Ghosh. Institute of Mathematical Statistics, pp. 200–222 (2008) Kanagawa, M., Hennig, P., Sejdinovic, D., Sriperumbudur, B.K.: Gaussian processes and kernel methods: a review on connections and equivalences. arXiv:1807.02582 (2018) ArcangéliRde SilanesMCLTorrensJJAn extension of a bound for functions in Sobolev spaces, with applications to (m, s)-spline interpolation and smoothingNumer. Math.2007107218121123288451221.41012 SärkkäSSolinAApplied Stochastic Differential Equations2019CambridgeCambridge University Press06998030 GinéENicklRMathematical Foundations of Infinite-Dimensional Statistical Models2016CambridgeCambridge University Press1358.62014 Skilling, J.: Bayesian solution of ordinary differential equations. In: Maximum Entropy and Bayesian Methods. Springer, pp. 23–37 (1992) GaoRTronarpFSärkkäSIterated extended Kalman smoother-based variable splitting for L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${L}_1$$\end{document}-regularized state estimationIEEE Trans. Signal Process.2019671950785092401686407123417 NielsonOAAn Introduction to Integration and Measure Theory1997New YorkWiley WahbaGA class of approximate solutions to linear operator equationsJ. Approx. Theory19739161773862840267.45015 Kersting, H., Krämer, N., Schiegg, M., Daniel, C., Tiemann, M., Hennig, P.: Differentiable likelihoods for fast inversion of ’likelihood-free’ dynamical systems. arXiv:2002.09301 (2020) Tronarp, F., Karvonen, T., Särkkä, S.: Mixture representation of the Matérn class with applications in state space approximations and Bayesian quadrature. In: 2018 IEEE 28th International Workshop on Machine Learning for Signal Processing (MLSP) (2018) WangJCockayneJOatesCJA role for symmetry in the Bayesian solution of differential equationsBayesian Anal.201815105710854171143 ConradPRGirolamiMSärkkäSStuartAZygalakisKStatistical analysis of differential equations: introducing probability measures on numerical solutionsStat. Comput.20172741065108236275631384.62082 KanagawaMSriperumbudurBKFukumizuKConvergence analysis of deterministic kernel-based quadrature rules in misspecified settingsFound. Comput. Math.202020155194405692807161204 Kersting, H., Hennig, P.: Active uncertainty calibration in Bayesian ODE solvers. In: Uncertainty in Artificial Intelligence (UAI) 2016, AUAI, New York City (2016) KnothOA globalization scheme for the generalized Gauss–Newton methodNumer. Math.198956659160710240130691.65051 OatesCJSullivanTJA modern retrospective on probabilistic numericsStat. Comput.20192961335135140266741431.60002 Hartikainen, J., Särkkä, S.: Kalman filtering and smoothing solutions to temporal Gaussian process regression models. In: 2010 IEEE International Workshop on Machine Learning for Signal Processing. IEEE, pp. 379–384 (2010) SchultzMHError bounds for polynomial spline interpolationMath. Comput.1970241115075152750250216.23002 Hennig, P., Hauberg, S.: Probabilistic solutions to differential equations and their application to Riemannian statistics. In: Proceedings of the 17th International Conference on Artificial Intelligence and Statistics (AISTATS), JMLR, W&CP, vol. 33 (2014) KalmanREA new approach to linear filtering and prediction problemsJ. Basic Eng.196082135453931993 Karvonen, T., Wynne, G., Tronarp, F., Oates, C.J., Särkkä, S.: Maximum likelihood estimation and uncertainty quantification for Gaussian process approximation of deterministic functions. arXiv:2001.10965 (2020) HennigPOsborneMAGirolamiMProbabilistic numerics and uncertainty in computationsProc. R. Soc. A Math. Phys. Eng. Sci.201547121792015014233787441372.65010 ØksendalBStochastic Differential Equations—An Introduction with Applications2003BerlinSpringer1025.60026 AxelssonPGustafssonFDiscrete-time solutions to the continuous-time differential Lyapunov equation with applications to Kalman filteringIEEE Trans. Autom. Control201460363264333183921360.93685 KimeldorfGWahbaGSome results on Tchebycheffian spline functionsJ. Math. Anal. Appl.197133182952900130201.39702 MarcusMMizelVJNemytsky operators on Sobolev spacesArch. Ration. Mech. Anal.1973513473700266.46029 ValentTA property of multiplication in Sobolev spaces. Some applicationsRendiconti del Seminario Matematico della Università di Padova19857463738187170587.46037 LieHCStuartAMSullivanTJStrong convergence rates of probabilistic integrators for ordinary differential equationsStat. Comput.20192961265128340266701431.65122 Solin, A., Särkkä, S.: Gaussian quadratures for state space approximation of scale mixtures of squared exponential covariance functions. In: 2014 IEEE International Workshop on Machine Learning for Signal Processing (MLSP) (2014) AdamsRAFournierJJSobolev Spaces2003LondonElsevier1098.46001 WeinertHLKailathTStochastic interpretations and recursive algorithms for spline functionsAnn. Stat.1974247877943842900287.65009 DeuflhardPBornemannFScientific Computing with Ordinary Differential Equations2002BerlinSpringer1001.65071 HairerENørsettSWannerGSolving Ordinary Differential Equations I—Nonstiff Problems1987BerlinSpringer0638.65058 Matsuda, T., Miyatake, Y.: Estimation of ordinary differential equation models with discretization error quantification. arXiv:1907.10565 (2019) ChkrebtiiOACampbellDACalderheadBGirolamiMABayesian solution uncertainty quantification for differential equationsBayesian Anal.20161141239126735773781357.62108 HairerEWannerGSolving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems1996BerlinSpringer0859.65067 SärkkäSBayesian Filtering and Smoothing2013CambridgeCambridge University Press1274.62021 Kersting, H., Sullivan, T.J., Hennig, P.: Convergence rates of Gaussian ODE filters. arXiv:1807.09737 (2018) John, D., Heuveline, V., Schober, M.: GOODE: A Gaussian off-the-shelf ordinary differential equation solver. In: Chaudhuri K, Salakhutdinov R (eds) Proceedings of the 36th International Conference on Machine Learning, PMLR, Long Beach, California, USA, Proceedings of Machine Learning Research, vol. 97, pp. 3152–3162 (2019) ValentTBoundary Value Problems of Finite Elasticity: Local Theorems on Existence, Uniqueness, and Analytic Dependence on Data2013BerlinSpringer0648.73019 CockayneJOatesCJSullivanTJGirolamiMBayesian probabilistic numerical methodsSIAM Rev.201961475678940278361451.65179 Schumaker, L.L.: Optimal spline solutions of systems of ordinary differential equations. In: Differential Equations. Springer, pp. 272–283 (1982) Cox, D.D., O’Sullivan, F.: Asymptotic analysis of penalized likelihood and related estimators. Ann. Stat. 18, 1676–1695 (1990) GirosiFJonesMPoggioTRegularization theory and neural networks architecturesNeural Comput.199572219269 SchoberMSärkkäSHennigPA probabilistic model for the numerical solution of initial value problemsStat. Comput.201929199122390554307119314 Teymur, O., Zygalakis, K., Calderhead, B.: Probabilistic linear multistep methods. In: Advances in Neural Information Processing Systems (NIPS) (2016) TronarpFKarvonenTSärkkäSStudent’s t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ t $$\end{document}-filters for noise scale estimationIEEE Signal Process. Lett.2019262352356 TronarpFKerstingHSärkkäSHennigPProbabilistic solutions to ordinary differential equations as nonlinear Bayesian filtering: a new perspectiveStat. Comput.20192961297131540266721435.65020 Karvonen, T., Sarkkä, S.: Approximate state-space Gaussian processes via spectral transformation. In: 2016 IEEE 26th International Workshop on Machine Learning for Signal Processing (MLSP) (2016) BellBMThe iterated Kalman smoother as a Gauss–Newton methodSIAM J. Optim.19944362663612878200814.93079 KelleyWGPetersonACThe Theory of Differential Equations: Classical and Qualitative2010BerlinSpringer1201.34001 Teymur, O., Lie, H.C., Sullivan, T., Calderhead, B.: Implicit probabilistic integrators for ODEs. In: Advances in Neural Information Processing Systems (NIPS) (2018) Magnani, E., Kersting, H., Schober, M., Hennig, P.: Bayesian Filtering for ODEs with bounded derivatives. arXiv:1709.08471 [csNA] (2017) SärkkäSSolinAHartikainenJSpatiotemporal learning via infinite-dimensional Bayesian filtering and smoothing: a look at Gaussian process regression through Kalman filteringIEEE Signal Process. Mag.20133045161 Abdulle, A., Garegnani, G.: Random time step probabilistic methods for uncertainty quantification in chaotic and geometric numerical integration. Stat. Comput. 30, 907–932 (2020) ButcherJCNumerical Methods for Ordinary Differential Equations20082LondonWiley1167.65041 BoydSParikhNChuEPeleatoBEcksteinJDistributed optimization and statistical learning via the alternating direction method of multipliersFound. Trends Mach. Learn.20113111221229.90122 RasmussenCEWilliamsCKIGaussian Processes for Machine Learning2006New YorkMIT Press1177.68165 KalmanRBucyRNew results in linear filtering and prediction theoryTrans. ASME J. Basic Eng.19618395108234760 SidhuGSWeinertHLVector-valued Lg-splines II interpolating splinesJ. Math. Anal. Appl.19797025055295435910435.65007 Särkkä, S., Svensson, L.: Levenb J Wang (9993_CR66) 2018; 15 R Arcangéli (9993_CR3) 2007; 107 VI Arnol’d (9993_CR4) 1992 M Schober (9993_CR49) 2014 9993_CR47 HL Weinert (9993_CR67) 1974; 2 F Girosi (9993_CR16) 1995; 7 R Kalman (9993_CR24) 1961; 83 BM Bell (9993_CR6) 1994; 4 S Särkkä (9993_CR48) 2013; 30 M Kanagawa (9993_CR26) 2020; 20 9993_CR55 9993_CR12 9993_CR56 9993_CR57 9993_CR58 9993_CR52 G Kimeldorf (9993_CR33) 1971; 33 9993_CR54 F Tronarp (9993_CR59) 2019; 26 9993_CR1 E Giné (9993_CR15) 2016 9993_CR19 C Van Loan (9993_CR64) 1978; 23 T Valent (9993_CR63) 2013 S Särkkä (9993_CR46) 2019 P Deuflhard (9993_CR13) 2002 GS Kimeldorf (9993_CR34) 1970; 41 CE Rasmussen (9993_CR43) 2006 F Tronarp (9993_CR60) 2019; 29 OA Nielson (9993_CR40) 1997 9993_CR61 T Valent (9993_CR62) 1985; 74 9993_CR22 HE Rauch (9993_CR44) 1965; 3 9993_CR25 MH Schultz (9993_CR51) 1970; 24 S Boyd (9993_CR7) 2011; 3 B Øksendal (9993_CR42) 2003 WG Kelley (9993_CR29) 2010 9993_CR20 OA Chkrebtii (9993_CR9) 2016; 11 G Wahba (9993_CR65) 1973; 9 JC Butcher (9993_CR8) 2008 9993_CR27 9993_CR28 J Cockayne (9993_CR10) 2019; 61 RE Kalman (9993_CR23) 1960; 82 O Knoth (9993_CR35) 1989; 56 R Gao (9993_CR14) 2019; 67 RA Adams (9993_CR2) 2003 S Särkkä (9993_CR45) 2013 E Hairer (9993_CR17) 1996 P Hennig (9993_CR21) 2015; 471 HC Lie (9993_CR36) 2019; 29 9993_CR30 M Schober (9993_CR50) 2019; 29 9993_CR31 E Hairer (9993_CR18) 1987 9993_CR32 M Marcus (9993_CR38) 1973; 51 CJ Oates (9993_CR41) 2019; 29 GS Sidhu (9993_CR53) 1979; 70 9993_CR37 P Axelsson (9993_CR5) 2014; 60 PR Conrad (9993_CR11) 2017; 27 9993_CR39 |
| References_xml | – reference: AdamsRAFournierJJSobolev Spaces2003LondonElsevier1098.46001 – reference: HennigPOsborneMAGirolamiMProbabilistic numerics and uncertainty in computationsProc. R. Soc. A Math. Phys. Eng. Sci.201547121792015014233787441372.65010 – reference: DeuflhardPBornemannFScientific Computing with Ordinary Differential Equations2002BerlinSpringer1001.65071 – reference: KimeldorfGWahbaGSome results on Tchebycheffian spline functionsJ. Math. Anal. Appl.197133182952900130201.39702 – reference: SärkkäSSolinAApplied Stochastic Differential Equations2019CambridgeCambridge University Press06998030 – reference: ValentTA property of multiplication in Sobolev spaces. Some applicationsRendiconti del Seminario Matematico della Università di Padova19857463738187170587.46037 – reference: RasmussenCEWilliamsCKIGaussian Processes for Machine Learning2006New YorkMIT Press1177.68165 – reference: KalmanRBucyRNew results in linear filtering and prediction theoryTrans. ASME J. Basic Eng.19618395108234760 – reference: HairerENørsettSWannerGSolving Ordinary Differential Equations I—Nonstiff Problems1987BerlinSpringer0638.65058 – reference: Karvonen, T., Sarkkä, S.: Approximate state-space Gaussian processes via spectral transformation. In: 2016 IEEE 26th International Workshop on Machine Learning for Signal Processing (MLSP) (2016) – reference: SärkkäSBayesian Filtering and Smoothing2013CambridgeCambridge University Press1274.62021 – reference: SärkkäSSolinAHartikainenJSpatiotemporal learning via infinite-dimensional Bayesian filtering and smoothing: a look at Gaussian process regression through Kalman filteringIEEE Signal Process. Mag.20133045161 – reference: CockayneJOatesCJSullivanTJGirolamiMBayesian probabilistic numerical methodsSIAM Rev.201961475678940278361451.65179 – reference: Teymur, O., Lie, H.C., Sullivan, T., Calderhead, B.: Implicit probabilistic integrators for ODEs. In: Advances in Neural Information Processing Systems (NIPS) (2018) – reference: Solin, A., Särkkä, S.: Gaussian quadratures for state space approximation of scale mixtures of squared exponential covariance functions. In: 2014 IEEE International Workshop on Machine Learning for Signal Processing (MLSP) (2014) – reference: ButcherJCNumerical Methods for Ordinary Differential Equations20082LondonWiley1167.65041 – reference: WahbaGA class of approximate solutions to linear operator equationsJ. Approx. Theory19739161773862840267.45015 – reference: GaoRTronarpFSärkkäSIterated extended Kalman smoother-based variable splitting for L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${L}_1$$\end{document}-regularized state estimationIEEE Trans. Signal Process.2019671950785092401686407123417 – reference: Teymur, O., Zygalakis, K., Calderhead, B.: Probabilistic linear multistep methods. In: Advances in Neural Information Processing Systems (NIPS) (2016) – reference: GinéENicklRMathematical Foundations of Infinite-Dimensional Statistical Models2016CambridgeCambridge University Press1358.62014 – reference: Abdulle, A., Garegnani, G.: Random time step probabilistic methods for uncertainty quantification in chaotic and geometric numerical integration. Stat. Comput. 30, 907–932 (2020) – reference: NielsonOAAn Introduction to Integration and Measure Theory1997New YorkWiley – reference: SchoberMSärkkäSHennigPA probabilistic model for the numerical solution of initial value problemsStat. Comput.201929199122390554307119314 – reference: ConradPRGirolamiMSärkkäSStuartAZygalakisKStatistical analysis of differential equations: introducing probability measures on numerical solutionsStat. Comput.20172741065108236275631384.62082 – reference: Kanagawa, M., Hennig, P., Sejdinovic, D., Sriperumbudur, B.K.: Gaussian processes and kernel methods: a review on connections and equivalences. arXiv:1807.02582 (2018) – reference: ArcangéliRde SilanesMCLTorrensJJAn extension of a bound for functions in Sobolev spaces, with applications to (m, s)-spline interpolation and smoothingNumer. Math.2007107218121123288451221.41012 – reference: WangJCockayneJOatesCJA role for symmetry in the Bayesian solution of differential equationsBayesian Anal.201815105710854171143 – reference: BellBMThe iterated Kalman smoother as a Gauss–Newton methodSIAM J. Optim.19944362663612878200814.93079 – reference: HairerEWannerGSolving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems1996BerlinSpringer0859.65067 – reference: Magnani, E., Kersting, H., Schober, M., Hennig, P.: Bayesian Filtering for ODEs with bounded derivatives. arXiv:1709.08471 [csNA] (2017) – reference: OatesCJSullivanTJA modern retrospective on probabilistic numericsStat. Comput.20192961335135140266741431.60002 – reference: AxelssonPGustafssonFDiscrete-time solutions to the continuous-time differential Lyapunov equation with applications to Kalman filteringIEEE Trans. Autom. Control201460363264333183921360.93685 – reference: Kersting, H., Hennig, P.: Active uncertainty calibration in Bayesian ODE solvers. In: Uncertainty in Artificial Intelligence (UAI) 2016, AUAI, New York City (2016) – reference: TronarpFKerstingHSärkkäSHennigPProbabilistic solutions to ordinary differential equations as nonlinear Bayesian filtering: a new perspectiveStat. Comput.20192961297131540266721435.65020 – reference: GirosiFJonesMPoggioTRegularization theory and neural networks architecturesNeural Comput.199572219269 – reference: van der Vaart, A.W., van Zanten, J.H.: Reproducing kernel Hilbert spaces of Gaussian priors. In: Pushing the Limits of Contemporary Statistics: Contributions in Honor of Jayanta K. Ghosh. Institute of Mathematical Statistics, pp. 200–222 (2008) – reference: Cox, D.D., O’Sullivan, F.: Asymptotic analysis of penalized likelihood and related estimators. Ann. Stat. 18, 1676–1695 (1990) – reference: KalmanREA new approach to linear filtering and prediction problemsJ. Basic Eng.196082135453931993 – reference: ValentTBoundary Value Problems of Finite Elasticity: Local Theorems on Existence, Uniqueness, and Analytic Dependence on Data2013BerlinSpringer0648.73019 – reference: Hartikainen, J., Särkkä, S.: Kalman filtering and smoothing solutions to temporal Gaussian process regression models. In: 2010 IEEE International Workshop on Machine Learning for Signal Processing. IEEE, pp. 379–384 (2010) – reference: Kersting, H., Sullivan, T.J., Hennig, P.: Convergence rates of Gaussian ODE filters. arXiv:1807.09737 (2018) – reference: SchoberMDuvenaudDKHennigPGhahramaniZWellingMCortesCLawrenceNDWeinbergerKQProbabilistic ODE solvers with Runge-Kutta meansAdvances in Neural Information Processing Systems 272014MontréalCurran Associates Inc739747 – reference: ØksendalBStochastic Differential Equations—An Introduction with Applications2003BerlinSpringer1025.60026 – reference: ChkrebtiiOACampbellDACalderheadBGirolamiMABayesian solution uncertainty quantification for differential equationsBayesian Anal.20161141239126735773781357.62108 – reference: Skilling, J.: Bayesian solution of ordinary differential equations. In: Maximum Entropy and Bayesian Methods. Springer, pp. 23–37 (1992) – reference: Karvonen, T., Wynne, G., Tronarp, F., Oates, C.J., Särkkä, S.: Maximum likelihood estimation and uncertainty quantification for Gaussian process approximation of deterministic functions. arXiv:2001.10965 (2020) – reference: KnothOA globalization scheme for the generalized Gauss–Newton methodNumer. Math.198956659160710240130691.65051 – reference: Särkkä, S., Svensson, L.: Levenberg–Marquardt and line-search extended Kalman smoothers. In: 2020 IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE, Virtual location (2020) – reference: SchultzMHError bounds for polynomial spline interpolationMath. Comput.1970241115075152750250216.23002 – reference: KelleyWGPetersonACThe Theory of Differential Equations: Classical and Qualitative2010BerlinSpringer1201.34001 – reference: Kersting, H., Krämer, N., Schiegg, M., Daniel, C., Tiemann, M., Hennig, P.: Differentiable likelihoods for fast inversion of ’likelihood-free’ dynamical systems. arXiv:2002.09301 (2020) – reference: RauchHETungFStriebelCTMaximum likelihood estimates of linear dynamic systemAIAA J.19653814451450181489 – reference: Hennig, P., Hauberg, S.: Probabilistic solutions to differential equations and their application to Riemannian statistics. In: Proceedings of the 17th International Conference on Artificial Intelligence and Statistics (AISTATS), JMLR, W&CP, vol. 33 (2014) – reference: TronarpFKarvonenTSärkkäSStudent’s t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ t $$\end{document}-filters for noise scale estimationIEEE Signal Process. Lett.2019262352356 – reference: Van LoanCComputing integrals involving the matrix exponentialIEEE Trans. Autom. Control19782333954044948650387.65013 – reference: Tronarp, F., Karvonen, T., Särkkä, S.: Mixture representation of the Matérn class with applications in state space approximations and Bayesian quadrature. In: 2018 IEEE 28th International Workshop on Machine Learning for Signal Processing (MLSP) (2018) – reference: Schumaker, L.L.: Optimal spline solutions of systems of ordinary differential equations. In: Differential Equations. Springer, pp. 272–283 (1982) – reference: MarcusMMizelVJNemytsky operators on Sobolev spacesArch. Ration. Mech. Anal.1973513473700266.46029 – reference: KimeldorfGSWahbaGA correspondence between Bayesian estimation on stochastic processes and smoothing by splinesAnn. Math. Stat.19704124955022549990193.45201 – reference: Matsuda, T., Miyatake, Y.: Estimation of ordinary differential equation models with discretization error quantification. arXiv:1907.10565 (2019) – reference: LieHCStuartAMSullivanTJStrong convergence rates of probabilistic integrators for ordinary differential equationsStat. Comput.20192961265128340266701431.65122 – reference: John, D., Heuveline, V., Schober, M.: GOODE: A Gaussian off-the-shelf ordinary differential equation solver. In: Chaudhuri K, Salakhutdinov R (eds) Proceedings of the 36th International Conference on Machine Learning, PMLR, Long Beach, California, USA, Proceedings of Machine Learning Research, vol. 97, pp. 3152–3162 (2019) – reference: KanagawaMSriperumbudurBKFukumizuKConvergence analysis of deterministic kernel-based quadrature rules in misspecified settingsFound. Comput. Math.202020155194405692807161204 – reference: Arnol’dVIOrdinary Differential Equations1992Berlin, HeidelbergSpringer0744.34001 – reference: SidhuGSWeinertHLVector-valued Lg-splines II interpolating splinesJ. Math. Anal. Appl.19797025055295435910435.65007 – reference: BoydSParikhNChuEPeleatoBEcksteinJDistributed optimization and statistical learning via the alternating direction method of multipliersFound. Trends Mach. Learn.20113111221229.90122 – reference: WeinertHLKailathTStochastic interpretations and recursive algorithms for spline functionsAnn. Stat.1974247877943842900287.65009 – volume: 61 start-page: 756 issue: 4 year: 2019 ident: 9993_CR10 publication-title: SIAM Rev. doi: 10.1137/17M1139357 – volume-title: Boundary Value Problems of Finite Elasticity: Local Theorems on Existence, Uniqueness, and Analytic Dependence on Data year: 2013 ident: 9993_CR63 – volume: 24 start-page: 507 issue: 111 year: 1970 ident: 9993_CR51 publication-title: Math. Comput. doi: 10.1090/S0025-5718-1970-0275025-9 – volume-title: The Theory of Differential Equations: Classical and Qualitative year: 2010 ident: 9993_CR29 doi: 10.1007/978-1-4419-5783-2 – ident: 9993_CR47 doi: 10.1109/ICASSP40776.2020.9054686 – volume: 82 start-page: 35 issue: 1 year: 1960 ident: 9993_CR23 publication-title: J. Basic Eng. doi: 10.1115/1.3662552 – volume-title: Stochastic Differential Equations—An Introduction with Applications year: 2003 ident: 9993_CR42 doi: 10.1007/978-3-642-14394-6 – ident: 9993_CR39 – volume-title: Gaussian Processes for Machine Learning year: 2006 ident: 9993_CR43 – volume-title: Sobolev Spaces year: 2003 ident: 9993_CR2 – ident: 9993_CR56 – volume: 107 start-page: 181 issue: 2 year: 2007 ident: 9993_CR3 publication-title: Numer. Math. doi: 10.1007/s00211-007-0092-z – ident: 9993_CR54 doi: 10.1007/978-94-017-2219-3_2 – volume: 7 start-page: 219 issue: 2 year: 1995 ident: 9993_CR16 publication-title: Neural Comput. doi: 10.1162/neco.1995.7.2.219 – volume-title: Numerical Methods for Ordinary Differential Equations year: 2008 ident: 9993_CR8 doi: 10.1002/9780470753767 – volume-title: Ordinary Differential Equations year: 1992 ident: 9993_CR4 – volume: 83 start-page: 95 year: 1961 ident: 9993_CR24 publication-title: Trans. ASME J. Basic Eng. doi: 10.1115/1.3658902 – volume: 29 start-page: 1297 issue: 6 year: 2019 ident: 9993_CR60 publication-title: Stat. Comput. doi: 10.1007/s11222-019-09900-1 – ident: 9993_CR25 – volume-title: Solving Ordinary Differential Equations I—Nonstiff Problems year: 1987 ident: 9993_CR18 doi: 10.1007/978-3-662-12607-3 – volume-title: Bayesian Filtering and Smoothing year: 2013 ident: 9993_CR45 doi: 10.1017/CBO9781139344203 – ident: 9993_CR22 – ident: 9993_CR19 doi: 10.1109/MLSP.2010.5589113 – volume: 60 start-page: 632 issue: 3 year: 2014 ident: 9993_CR5 publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.2014.2353112 – volume: 3 start-page: 1 issue: 1 year: 2011 ident: 9993_CR7 publication-title: Found. Trends Mach. Learn. doi: 10.1561/2200000016 – volume: 67 start-page: 5078 issue: 19 year: 2019 ident: 9993_CR14 publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2019.2935868 – volume: 70 start-page: 505 issue: 2 year: 1979 ident: 9993_CR53 publication-title: J. Math. Anal. Appl. doi: 10.1016/0022-247X(79)90062-3 – ident: 9993_CR55 doi: 10.1109/MLSP.2014.6958899 – volume: 11 start-page: 1239 issue: 4 year: 2016 ident: 9993_CR9 publication-title: Bayesian Anal. doi: 10.1214/16-BA1017 – volume: 56 start-page: 591 issue: 6 year: 1989 ident: 9993_CR35 publication-title: Numer. Math. doi: 10.1007/BF01396345 – volume: 29 start-page: 1265 issue: 6 year: 2019 ident: 9993_CR36 publication-title: Stat. Comput. doi: 10.1007/s11222-019-09898-6 – ident: 9993_CR32 – volume: 74 start-page: 63 year: 1985 ident: 9993_CR62 publication-title: Rendiconti del Seminario Matematico della Università di Padova – volume: 471 start-page: 20150142 issue: 2179 year: 2015 ident: 9993_CR21 publication-title: Proc. R. Soc. A Math. Phys. Eng. Sci. – volume: 9 start-page: 61 issue: 1 year: 1973 ident: 9993_CR65 publication-title: J. Approx. Theory doi: 10.1016/0021-9045(73)90112-3 – ident: 9993_CR57 – volume: 4 start-page: 626 issue: 3 year: 1994 ident: 9993_CR6 publication-title: SIAM J. Optim. doi: 10.1137/0804035 – volume: 15 start-page: 1057 year: 2018 ident: 9993_CR66 publication-title: Bayesian Anal. – volume: 2 start-page: 787 issue: 4 year: 1974 ident: 9993_CR67 publication-title: Ann. Stat. doi: 10.1214/aos/1176342765 – volume-title: An Introduction to Integration and Measure Theory year: 1997 ident: 9993_CR40 – volume-title: Scientific Computing with Ordinary Differential Equations year: 2002 ident: 9993_CR13 doi: 10.1007/978-0-387-21582-2 – volume: 20 start-page: 155 year: 2020 ident: 9993_CR26 publication-title: Found. Comput. Math. doi: 10.1007/s10208-018-09407-7 – ident: 9993_CR28 doi: 10.1137/20M1315968 – volume: 29 start-page: 99 issue: 1 year: 2019 ident: 9993_CR50 publication-title: Stat. Comput. doi: 10.1007/s11222-017-9798-7 – ident: 9993_CR27 doi: 10.1109/MLSP.2016.7738812 – volume: 41 start-page: 495 issue: 2 year: 1970 ident: 9993_CR34 publication-title: Ann. Math. Stat. doi: 10.1214/aoms/1177697089 – volume-title: Applied Stochastic Differential Equations year: 2019 ident: 9993_CR46 doi: 10.1017/9781108186735 – volume: 26 start-page: 352 issue: 2 year: 2019 ident: 9993_CR59 publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2018.2889440 – volume: 27 start-page: 1065 issue: 4 year: 2017 ident: 9993_CR11 publication-title: Stat. Comput. doi: 10.1007/s11222-016-9671-0 – ident: 9993_CR31 – ident: 9993_CR37 – volume-title: Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems year: 1996 ident: 9993_CR17 doi: 10.1007/978-3-642-05221-7 – volume: 51 start-page: 347 year: 1973 ident: 9993_CR38 publication-title: Arch. Ration. Mech. Anal. doi: 10.1007/BF00263040 – ident: 9993_CR1 doi: 10.1007/s11222-020-09926-w – volume: 23 start-page: 395 issue: 3 year: 1978 ident: 9993_CR64 publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.1978.1101743 – volume: 29 start-page: 1335 issue: 6 year: 2019 ident: 9993_CR41 publication-title: Stat. Comput. doi: 10.1007/s11222-019-09902-z – volume: 33 start-page: 82 issue: 1 year: 1971 ident: 9993_CR33 publication-title: J. Math. Anal. Appl. doi: 10.1016/0022-247X(71)90184-3 – volume-title: Mathematical Foundations of Infinite-Dimensional Statistical Models year: 2016 ident: 9993_CR15 – ident: 9993_CR20 – start-page: 739 volume-title: Advances in Neural Information Processing Systems 27 year: 2014 ident: 9993_CR49 – volume: 3 start-page: 1445 issue: 8 year: 1965 ident: 9993_CR44 publication-title: AIAA J. doi: 10.2514/3.3166 – ident: 9993_CR58 doi: 10.1109/MLSP.2018.8516992 – ident: 9993_CR61 doi: 10.1214/074921708000000156 – ident: 9993_CR30 – volume: 30 start-page: 51 issue: 4 year: 2013 ident: 9993_CR48 publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2013.2246292 – ident: 9993_CR12 doi: 10.1214/aos/1176347872 – ident: 9993_CR52 doi: 10.1007/BFb0066243 |
| SSID | ssj0011634 |
| Score | 2.4750123 |
| Snippet | There is a growing interest in probabilistic numerical solutions to ordinary differential equations. In this paper, the
maximum a posteriori estimate
is... There is a growing interest in probabilistic numerical solutions to ordinary differential equations. In this paper, the maximum a posteriori estimate is... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Artificial Intelligence Convergence Differential equations Fields (mathematics) Hilbert space Mathematics and Statistics Nonlinear analysis Ordinary differential equations Probability and Statistics in Computer Science Smoothness Sobolev space Statistical Theory and Methods Statistics Statistics and Computing/Statistics Programs |
| Title | Bayesian ODE solvers: the maximum a posteriori estimate |
| URI | https://link.springer.com/article/10.1007/s11222-021-09993-7 https://www.proquest.com/docview/2496304943 |
| Volume | 31 |
| WOSCitedRecordID | wos000625630000004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-1375 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011634 issn: 0960-3174 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgcIADgwFiMFAO3KBSH2nTcOOxiQsD8dJuVZIm0iT2ULch-Pc4XbsKBEhwbROr8iN2avszwLHUnomjSDsRs79uQqqc2JfMkei8KU_T0EvjfNgE63bjXo_fFU1hk7LavUxJ5id11ezmoS9zbEmBjWoChy3DCrq72Jrj_cPzIneAEUYOGoWxOZ4wjBatMt_T-OyOqhjzS1o09zad-v--cxM2iuiSnM_VYQuW9LAB9XJyAykMuQHrNwu01kkD1mzEOQds3gZ2Id617awkt1dtgppp6zbOCC4nA_HWH8wGRJCxbQ3J-qOsTyxKBxLSO_DUaT9eXjvFdAVHoQ-aOqnLmXGVlGi0vtBUMMZNaIzraR5QJrVB5hol0lCqQFBp8GEsfenyVEcijYJdqA1HQ70HJBKS-5HwDdWS6lhwwbUyeP0VOlaMhk3wSiYnqoAetxMwXpIKNNkyLUGmJTnTEtaEk8We8Rx449fVrVJ2SWGEkwRvlpHNItKgCaelrKrXP1Pb_9vyA1jzc3HbMsgW1KbZTB_CqnpF0WVHuXJ-AOT93Lg |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgIDEOPAaI8cyBG1Ra27RpuPEUiDEQL3GrkjSRJrGHug3Bv8fp2lUgQIJrm0SV7cRfavszwJ7UronCUDshs79uAqqcyJPMkei8KU-SwE2irNkEa7Wi52d-mxeFDYps9yIkmZ3UZbGbi77MsSkFFtX4DpuGGYoeyyby3d0_TWIHiDAy0ijE5njCMJqXyny_xmd3VGLML2HRzNucL_7vO5dgIUeX5GhsDsswpbs1WCw6N5B8I9dg_nrC1jqoQdUizjFh8wqwY_GubWUluTk9I2iZNm_jkOBw0hFv7c6oQwTp29KQtN1L28SydOBCehUez88eTi6cvLuCo9AHDZ2kwZlpKClx03pCU8EYN4ExDVdznzKpDWIJo0QSSOULKg0-jKQnGzzRoUhCfw0q3V5XrwMJheReKDxDtaQ6ElxwrQxef4WOFKNBHdxCyLHKqcdtB4yXuCRNtkKLUWhxJrSY1WF_Mqc_Jt74dfRWobs434SDGG-WoY0iUr8OB4Wuytc_r7bxt-G7MHfxcN2Mm5etq02oepnqbUrkFlSG6Uhvw6x6RTWmO5mhfgBGhd-c |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZgIDQODAaIwYAcuEG1tU2bhhuwTSBgTOKh3aokTaRJ7KE9EPx7kj5WQICEuLapVdlJ_bm2PwMccWmrwPel5RPz68bDwgocTiyunTemUeTZURAPmyDtdtDt0s6HLv642j1LSSY9DYalaTCtjSJVyxvfbO3XLFNeYBCOa5FFWMJmaJCJ1--f5nkEjTZiAimN0_XXhuC0beZ7GZ9dU443v6RIY8_TKv3_nddhLUWd6CzZJhuwIAdlKGUTHVB6wMuwejtncZ2UoWiQaELkvAnknL1J03GJ7hpNpHesqec4RXo56rPXXn_WRwyNTMvIuDcc95Bh79CC5BY8tpoPF5dWOnXBEto3Ta2oTomqC871YXaYxIwQqjyl6rakLiZcKo0xlGCRx4XLMFf6YsAdXqeR9Fnku9tQGAwHcgeQzzh1fOYoLDmWAaOMSqF0WMxkIAj2KmBnCg9FSkluJmM8hzmZslFaqJUWxkoLSQWO58-MEkKOX1dXMzuG6eGchDri9E12EbsVOMnslt_-Wdru35Yfwkqn0QpvrtrXe1B0YsubSskqFKbjmdyHZfGirTg-iPfsO7xn6IA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bayesian+ODE+solvers%3A+the+maximum+a+posteriori+estimate&rft.jtitle=Statistics+and+computing&rft.au=Tronarp%2C+Filip&rft.au=S%C3%A4rkk%C3%A4%2C+Simo&rft.au=Hennig%2C+Philipp&rft.date=2021-05-01&rft.issn=0960-3174&rft.eissn=1573-1375&rft.volume=31&rft.issue=3&rft_id=info:doi/10.1007%2Fs11222-021-09993-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11222_021_09993_7 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-3174&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-3174&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-3174&client=summon |