Hyers–Ulam stability of non-autonomous and nonsingular delay difference equations
In this paper, we study the uniqueness and existence of the solution of a non-autonomous and nonsingular delay difference equation using the well-known principle of contraction from fixed point theory. Furthermore, we study the Hyers–Ulam stability of the given system on a bounded discrete interval...
Uloženo v:
| Vydáno v: | Advances in difference equations Ročník 2021; číslo 1; s. 1 - 15 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Cham
Springer International Publishing
26.10.2021
Springer Nature B.V SpringerOpen |
| Témata: | |
| ISSN: | 1687-1847, 1687-1839, 1687-1847 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this paper, we study the uniqueness and existence of the solution of a non-autonomous and nonsingular delay difference equation using the well-known principle of contraction from fixed point theory. Furthermore, we study the Hyers–Ulam stability of the given system on a bounded discrete interval and then on an unbounded interval. An example is also given at the end to illustrate the theoretical work. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1687-1847 1687-1839 1687-1847 |
| DOI: | 10.1186/s13662-021-03627-y |