GAEM: Genetic Algorithm based Expectation-Maximization for inferring Gene Regulatory Networks from incomplete data

In Bioinformatics, inferring the structure of a Gene Regulatory Network (GRN) from incomplete gene expression data is a difficult task. One popular method for inferring the structure GRNs is to apply the Path Consistency Algorithm based on Conditional Mutual Information (PCA-CMI). Although PCA-CMI e...

Full description

Saved in:
Bibliographic Details
Published in:Computers in biology and medicine Vol. 183; p. 109238
Main Authors: Niloofar, Parisa, Aghdam, Rosa, Eslahchi, Changiz
Format: Journal Article
Language:English
Published: United States Elsevier Ltd 01.12.2024
Elsevier Limited
Subjects:
ISSN:0010-4825, 1879-0534, 1879-0534
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In Bioinformatics, inferring the structure of a Gene Regulatory Network (GRN) from incomplete gene expression data is a difficult task. One popular method for inferring the structure GRNs is to apply the Path Consistency Algorithm based on Conditional Mutual Information (PCA-CMI). Although PCA-CMI excels at extracting GRN skeletons, it struggles with missing values in datasets. As a result, applying PCA-CMI to infer GRNs, necessitates a preprocessing method for data imputation. In this paper, we present the GAEM algorithm, which uses an iterative approach based on a combination of Genetic Algorithm and Expectation-Maximization to infer the structure of GRN from incomplete gene expression datasets. GAEM learns the GRN structure from the incomplete dataset via an algorithm that iteratively updates the imputed values based on the learnt GRN until the convergence criteria are met. We evaluate the performance of this algorithm under various missingness mechanisms (ignorable and nonignorable) and percentages (5%, 15%, and 40%). The traditional approach to handling missing values in gene expression datasets involves estimating them first and then constructing the GRN. However, our methodology differs in that both missing values and the GRN are updated iteratively until convergence. Results from the DREAM3 dataset demonstrate that the GAEM algorithm appears to be a more reliable method overall, especially for smaller network sizes, GAEM outperforms methods where the incomplete dataset is imputed first, followed by learning the GRN structure from the imputed data. We have implemented the GAEM algorithm within the GAEM R package, which is accessible at the following GitHub repository: https://github.com/parniSDU/GAEM. •GAEM learns GRN from incomplete data updating the imputed values using the GRN.•GAEM uses BNs to learn GRNs and applies GRNs’ information to impute missing values.•GAEM is not limited to a specific structure learning algorithm.•GAEM’s performance is notable in NMAR mechanisms when the network size is small.
AbstractList In Bioinformatics, inferring the structure of a Gene Regulatory Network (GRN) from incomplete gene expression data is a difficult task. One popular method for inferring the structure GRNs is to apply the Path Consistency Algorithm based on Conditional Mutual Information (PCA-CMI). Although PCA-CMI excels at extracting GRN skeletons, it struggles with missing values in datasets. As a result, applying PCA-CMI to infer GRNs, necessitates a preprocessing method for data imputation. In this paper, we present the GAEM algorithm, which uses an iterative approach based on a combination of Genetic Algorithm and Expectation-Maximization to infer the structure of GRN from incomplete gene expression datasets. GAEM learns the GRN structure from the incomplete dataset via an algorithm that iteratively updates the imputed values based on the learnt GRN until the convergence criteria are met. We evaluate the performance of this algorithm under various missingness mechanisms (ignorable and nonignorable) and percentages (5%, 15%, and 40%). The traditional approach to handling missing values in gene expression datasets involves estimating them first and then constructing the GRN. However, our methodology differs in that both missing values and the GRN are updated iteratively until convergence. Results from the DREAM3 dataset demonstrate that the GAEM algorithm appears to be a more reliable method overall, especially for smaller network sizes, GAEM outperforms methods where the incomplete dataset is imputed first, followed by learning the GRN structure from the imputed data. We have implemented the GAEM algorithm within the GAEM R package, which is accessible at the following GitHub repository: https://github.com/parniSDU/GAEM.In Bioinformatics, inferring the structure of a Gene Regulatory Network (GRN) from incomplete gene expression data is a difficult task. One popular method for inferring the structure GRNs is to apply the Path Consistency Algorithm based on Conditional Mutual Information (PCA-CMI). Although PCA-CMI excels at extracting GRN skeletons, it struggles with missing values in datasets. As a result, applying PCA-CMI to infer GRNs, necessitates a preprocessing method for data imputation. In this paper, we present the GAEM algorithm, which uses an iterative approach based on a combination of Genetic Algorithm and Expectation-Maximization to infer the structure of GRN from incomplete gene expression datasets. GAEM learns the GRN structure from the incomplete dataset via an algorithm that iteratively updates the imputed values based on the learnt GRN until the convergence criteria are met. We evaluate the performance of this algorithm under various missingness mechanisms (ignorable and nonignorable) and percentages (5%, 15%, and 40%). The traditional approach to handling missing values in gene expression datasets involves estimating them first and then constructing the GRN. However, our methodology differs in that both missing values and the GRN are updated iteratively until convergence. Results from the DREAM3 dataset demonstrate that the GAEM algorithm appears to be a more reliable method overall, especially for smaller network sizes, GAEM outperforms methods where the incomplete dataset is imputed first, followed by learning the GRN structure from the imputed data. We have implemented the GAEM algorithm within the GAEM R package, which is accessible at the following GitHub repository: https://github.com/parniSDU/GAEM.
AbstractIn Bioinformatics, inferring the structure of a Gene Regulatory Network (GRN) from incomplete gene expression data is a difficult task. One popular method for inferring the structure GRNs is to apply the Path Consistency Algorithm based on Conditional Mutual Information (PCA-CMI). Although PCA-CMI excels at extracting GRN skeletons, it struggles with missing values in datasets. As a result, applying PCA-CMI to infer GRNs, necessitates a preprocessing method for data imputation. In this paper, we present the GAEM algorithm, which uses an iterative approach based on a combination of Genetic Algorithm and Expectation-Maximization to infer the structure of GRN from incomplete gene expression datasets. GAEM learns the GRN structure from the incomplete dataset via an algorithm that iteratively updates the imputed values based on the learnt GRN until the convergence criteria are met. We evaluate the performance of this algorithm under various missingness mechanisms (ignorable and nonignorable) and percentages (5%, 15%, and 40%). The traditional approach to handling missing values in gene expression datasets involves estimating them first and then constructing the GRN. However, our methodology differs in that both missing values and the GRN are updated iteratively until convergence. Results from the DREAM3 dataset demonstrate that the GAEM algorithm appears to be a more reliable method overall, especially for smaller network sizes, GAEM outperforms methods where the incomplete dataset is imputed first, followed by learning the GRN structure from the imputed data. We have implemented the GAEM algorithm within the GAEM R package, which is accessible at the following GitHub repository: https://github.com/parniSDU/GAEM.
In Bioinformatics, inferring the structure of a Gene Regulatory Network (GRN) from incomplete gene expression data is a difficult task. One popular method for inferring the structure GRNs is to apply the Path Consistency Algorithm based on Conditional Mutual Information (PCA-CMI). Although PCA-CMI excels at extracting GRN skeletons, it struggles with missing values in datasets. As a result, applying PCA-CMI to infer GRNs, necessitates a preprocessing method for data imputation. In this paper, we present the GAEM algorithm, which uses an iterative approach based on a combination of Genetic Algorithm and Expectation-Maximization to infer the structure of GRN from incomplete gene expression datasets. GAEM learns the GRN structure from the incomplete dataset via an algorithm that iteratively updates the imputed values based on the learnt GRN until the convergence criteria are met. We evaluate the performance of this algorithm under various missingness mechanisms (ignorable and nonignorable) and percentages (5%, 15%, and 40%). The traditional approach to handling missing values in gene expression datasets involves estimating them first and then constructing the GRN. However, our methodology differs in that both missing values and the GRN are updated iteratively until convergence. Results from the DREAM3 dataset demonstrate that the GAEM algorithm appears to be a more reliable method overall, especially for smaller network sizes, GAEM outperforms methods where the incomplete dataset is imputed first, followed by learning the GRN structure from the imputed data. We have implemented the GAEM algorithm within the GAEM R package, which is accessible at the following GitHub repository: https://github.com/parniSDU/GAEM. •GAEM learns GRN from incomplete data updating the imputed values using the GRN.•GAEM uses BNs to learn GRNs and applies GRNs’ information to impute missing values.•GAEM is not limited to a specific structure learning algorithm.•GAEM’s performance is notable in NMAR mechanisms when the network size is small.
In Bioinformatics, inferring the structure of a Gene Regulatory Network (GRN) from incomplete gene expression data is a difficult task. One popular method for inferring the structure GRNs is to apply the Path Consistency Algorithm based on Conditional Mutual Information (PCA-CMI). Although PCA-CMI excels at extracting GRN skeletons, it struggles with missing values in datasets. As a result, applying PCA-CMI to infer GRNs, necessitates a preprocessing method for data imputation. In this paper, we present the GAEM algorithm, which uses an iterative approach based on a combination of Genetic Algorithm and Expectation-Maximization to infer the structure of GRN from incomplete gene expression datasets. GAEM learns the GRN structure from the incomplete dataset via an algorithm that iteratively updates the imputed values based on the learnt GRN until the convergence criteria are met. We evaluate the performance of this algorithm under various missingness mechanisms (ignorable and nonignorable) and percentages (5%, 15%, and 40%). The traditional approach to handling missing values in gene expression datasets involves estimating them first and then constructing the GRN. However, our methodology differs in that both missing values and the GRN are updated iteratively until convergence. Results from the DREAM3 dataset demonstrate that the GAEM algorithm appears to be a more reliable method overall, especially for smaller network sizes, GAEM outperforms methods where the incomplete dataset is imputed first, followed by learning the GRN structure from the imputed data. We have implemented the GAEM algorithm within the GAEM R package, which is accessible at the following GitHub repository: https://github.com/parniSDU/GAEM.
ArticleNumber 109238
Author Aghdam, Rosa
Niloofar, Parisa
Eslahchi, Changiz
Author_xml – sequence: 1
  givenname: Parisa
  orcidid: 0000-0002-3147-0078
  surname: Niloofar
  fullname: Niloofar, Parisa
  email: parni@mmmi.sdu.dk
  organization: Mærsk Mc-Kinney Møller Institute, University of Southern Denmark, Campusvej 55, Odense, 5230, Denmark
– sequence: 2
  givenname: Rosa
  surname: Aghdam
  fullname: Aghdam, Rosa
  organization: Wisconsin Institute for Discovery, University of Wisconsin-Madison, WI, Madison, USA
– sequence: 3
  givenname: Changiz
  surname: Eslahchi
  fullname: Eslahchi, Changiz
  organization: Department of Computer and Data Sciences, Faculty of Mathematical Sciences, Shahid Beheshti University, Iran
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39426072$$D View this record in MEDLINE/PubMed
BookMark eNqNkltvEzEQhS1URNPCX0CWeOFlg29746EiVCEgtSBB3y2vdxyc7q6D7YWGX4-3aUGKhJQXW7a-OTM6Z87QyeAGQAhTMqeEFm82c-36bWNdD-2cESbSd8149QTNaFXWGcm5OEEzQijJRMXyU3QWwoYQIggnz9AprwUrSMlmyK8Wy-u3eAUDRKvxols7b-P3HjcqQIuXd1vQUUXrhuxa3dne_r5_YOM8toMB7-2wvi_HX2E9dio6v8OfIf5y_jZg412fuGnaDiLgVkX1HD01qgvw4uE-RzcfljeXH7OrL6tPl4urTAtWx0zXwpRNXiqRF0Y0FWkKqCrG27JiWhWGipa2umjSkXNmSqoKpVXFDDS1NoKfo9d72a13P0YIUfY2aOg6NYAbg-SUVqKklBUJfXWAbtzohzRcoljyL-clSdTLB2psku9y622v_E4-mpmAiz2gvQvBg5Ha7r2LXtlOUiKn9ORG_ktPTunJfXpJoDoQeOxxROn7fSkkR39a8DJoC4OG1vqUoGydPUbk4kBEd3awWnW3sIPw1xQqA5NEfpv2a1ovJgjljE-ev_u_wHEz_AHvDeYd
CitedBy_id crossref_primary_10_2478_amns_2025_0290
crossref_primary_10_1016_j_ige_2025_07_001
crossref_primary_10_32604_cmc_2024_058294
Cites_doi 10.1101/gr.097378.109
10.1093/bioadv/vbae011
10.1093/bioinformatics/btq273
10.1186/1471-2105-7-249
10.1073/pnas.0408031102
10.1073/pnas.0913357107
10.1007/s13571-013-0061-8
10.1089/106652700750050961
10.1093/bioinformatics/btq259
10.1093/bioinformatics/17.6.520
10.1371/journal.pone.0009202
10.3389/fphar.2021.670670
10.1080/00949655.2019.1604709
10.1109/TCBB.2022.3220581
10.1093/dnares/10.1.19
10.1093/nar/gkac978
10.1016/j.tips.2005.02.007
10.1093/bib/bbp059
10.18637/jss.v047.i11
10.1093/bioinformatics/17.suppl_1.S215
10.1214/09-AOS685
10.1093/bioinformatics/bts619
10.1137/080738970
10.1016/j.csbj.2022.04.017
10.1093/bib/bbad233
10.1080/02664763.2015.1079307
10.1089/cmb.2008.09TT
10.1016/j.compbiomed.2024.108398
10.1109/TCBB.2022.3144418
10.1089/cmb.2023.0122
10.1016/j.csda.2009.03.014
10.1504/IJDMB.2015.069658
10.1016/S0888-613X(01)00041-X
10.1093/nar/gku1315
10.1093/bioinformatics/btac717
10.1039/C4MB00413B
10.1007/s00500-019-03972-x
10.1016/j.eswa.2023.120201
10.1371/journal.pone.0092600
10.1016/j.csbj.2022.06.037
10.1016/0167-9473(93)E0056-A
10.1093/bib/bbad529
10.1093/bib/bbad309
10.1214/11-AOS940
10.1039/C5MB00122F
10.1080/02664763.2013.842960
10.1093/bioinformatics/btr626
10.1093/bioinformatics/btaa032
10.1186/s12859-023-05253-9
10.1093/bioinformatics/btg287
10.1093/bioinformatics/btad072
10.1007/s10994-006-6889-7
10.1186/s12859-020-03651-x
10.1021/acs.jproteome.0c00123
10.1109/TCBB.2021.3092879
10.1093/bib/bbq080
10.1016/j.ijforecast.2006.03.001
10.1038/s41598-021-87074-5
10.1016/j.gpb.2017.08.003
ContentType Journal Article
Copyright 2024
Copyright © 2024. Published by Elsevier Ltd.
Copyright Elsevier Limited Dec 2024
Copyright_xml – notice: 2024
– notice: Copyright © 2024. Published by Elsevier Ltd.
– notice: Copyright Elsevier Limited Dec 2024
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
JQ2
K9.
M7Z
NAPCQ
P64
7X8
DOI 10.1016/j.compbiomed.2024.109238
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Biochemistry Abstracts 1
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Nursing & Allied Health Premium
Technology Research Database
ProQuest Computer Science Collection
Biochemistry Abstracts 1
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic



MEDLINE
Nursing & Allied Health Premium
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1879-0534
EndPage 109238
ExternalDocumentID 39426072
10_1016_j_compbiomed_2024_109238
S0010482524013234
1_s2_0_S0010482524013234
Genre Journal Article
GroupedDBID ---
--K
--M
--Z
-~X
.1-
.55
.DC
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5VS
7-5
71M
77I
7RV
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8G5
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMZM
ABOCM
ABUWG
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACLOT
ACNNM
ACPRK
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFKRA
AFPUW
AFRAH
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHMBA
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ARAPS
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKEYQ
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBS
EFJIC
EFKBS
EFLBG
EJD
EMOBN
EO8
EO9
EP2
EP3
EX3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GBOLZ
GNUQQ
GUQSH
HCIFZ
HLZ
HMCUK
HMK
HMO
HVGLF
HZ~
IHE
J1W
K6V
K7-
KOM
LK8
LX9
M1P
M29
M2O
M41
M7P
MO0
N9A
NAPCQ
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
P62
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
Q38
R2-
ROL
RPZ
RXW
SAE
SBC
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
SV3
T5K
TAE
UAP
UKHRP
WOW
WUQ
X7M
XPP
Z5R
ZGI
~G-
~HD
AFCTW
AGCQF
AGRNS
ALIPV
RIG
3V.
AACTN
AFKWA
AJOXV
AMFUW
M0N
9DU
AAYXX
AFFHD
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
JQ2
K9.
M7Z
P64
7X8
ID FETCH-LOGICAL-c429t-c94f7b57a456f4b80b6e8823d782ca6f14d1dc6b1dc532f71a6aca82feb9cf43
ISSN 0010-4825
1879-0534
IngestDate Thu Oct 02 05:56:50 EDT 2025
Tue Oct 07 06:49:59 EDT 2025
Thu Apr 03 07:09:23 EDT 2025
Sat Nov 29 05:31:51 EST 2025
Tue Nov 18 22:37:51 EST 2025
Sat Feb 08 15:52:36 EST 2025
Wed Jun 18 06:48:29 EDT 2025
Tue Oct 14 19:38:05 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Conditional Mutual Information
Gene Regulatory Network
Genetic algorithm
Bayesian network
Expectation-Maximization
Missing values
Language English
License Copyright © 2024. Published by Elsevier Ltd.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c429t-c94f7b57a456f4b80b6e8823d782ca6f14d1dc6b1dc532f71a6aca82feb9cf43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3147-0078
PMID 39426072
PQID 3128255370
PQPubID 1226355
PageCount 1
ParticipantIDs proquest_miscellaneous_3118471126
proquest_journals_3128255370
pubmed_primary_39426072
crossref_citationtrail_10_1016_j_compbiomed_2024_109238
crossref_primary_10_1016_j_compbiomed_2024_109238
elsevier_sciencedirect_doi_10_1016_j_compbiomed_2024_109238
elsevier_clinicalkeyesjournals_1_s2_0_S0010482524013234
elsevier_clinicalkey_doi_10_1016_j_compbiomed_2024_109238
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Oxford
PublicationTitle Computers in biology and medicine
PublicationTitleAlternate Comput Biol Med
PublicationYear 2024
Publisher Elsevier Ltd
Elsevier Limited
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Limited
References de Campos (b48) 2007; 7
Henao, Lauber, Azevedo, Grekova, Theis, List, Ogris, Schubert (b37) 2023; 24
J. Xu, G. Yang, G. Liu, H. Liu, Inferring Gene Regulatory Networks Via Ensemble Path Consistency Algorithm Based on Conditional Mutual Information, IEEE/ACM Trans. Comput. Biol. Bioinform. (ISSN: 1557-9964) (01) 1–10
MacNeil, Walhout (b1) 2011; 21
Spirtes, Glymour, Scheines (b45) 2000
Imoto, Goto, Miyano (b50) 2002
Wu, Sinha (b19) 2024; 4
Liu, Li, Dong, Liu, Chai (b36) 2022; 20
Troyanskaya, Cantor, Sherlock, Brown, Hastie, Tibshirani, Botstein, Altman (b38) 2001; 17
Zhang, Zhao, He, Lu, Cao, Liu, Hao, Liu, Chen (b46) 2012; 28
Ochoteco Asensio, Verheijen, Caiment (b25) 2022; 20
Kalisch, Mächler, Colombo, Maathuis, Bühlmann (b53) 2012; 47
Zhang, Liu, Liu, Duval, Richer, Zhao, Hao, Chen (b63) 2013; 29
Little, Rubin (b64) 2019
Oba, Sato, Takemasa, Monden, Matsubara, Ishii (b73) 2003; 19
Niloofar, Ganjali, Rohani (b58) 2013; 40
Gu, Ma (b20) 2024
Ajmal, Madden (b40) 2022; 19
Li, Liu, Shen, Yan, Song, Yu (b21) 2024; 25
Aghdam, Ganjali, Niloofar, Eslahchi (b34) 2016; 43
Nair, Chetty, Wangikar (b9) 2015; 11
Niloofar, Ganjali, Farid Rohani (b57) 2013; 75
Lauritzen (b56) 1995; 19
Ma, Fang, Jiao (b6) 2020; 36
Al-Janabi, Alkaim (b24) 2020; 24
Zhang, Zhao, Hao, Zhao, Chen (b10) 2015; 43
Aittokallio (b23) 2010; 11
Wang, Guo, Chen, Duan (b75) 2023; 24
Tsamardinos, Brown, Aliferis (b55) 2007; 65
Buosi, Timilsina, Torrente, Provencio, Fey, Nováček (b31) 2024; 174
Altay, Emmert-Streib (b62) 2010; 26
Brunel, Gallardo-Chacón, Buil, Vallverdú, Soria, Caminal, Perera (b61) 2010; 26
Csermely, Agoston, Pongor (b2) 2005; 26
Aghdam, Ganjali, Eslahchi (b47) 2014; 9
Zhou, Zhang, Liu (b11) 2015; 12
Cai, Candès, Shen (b29) 2010; 20
Niloofar, Ganjali (b60) 2014; 41
Marbach, Prill, Schaffter, Mattiussi, Floreano, Stolovitzky (b67) 2010; 107
Colombo, Maathuis, Kalisch, Richardson (b43) 2012; 40
Marbach, Schaffter, Mattiussi, Floreano (b68) 2009; 16
Prill, Marbach, Saez-Rodriguez, Sorger, Alexopoulos, Xue, Clarke, Altan-Bonnet, Stolovitzky (b69) 2010; 5
Seo, Kim, Han, Son, Hong, Sohn, Shim, Hwang (b71) 2021; 12
Rezaei Tabar, Zareifard, Salimi, Plewczynski (b12) 2019; 89
Lei, Cai, He, Zheng, Liu (b14) 2023; 39
Malekpour, Alizad-Rahvar, Sadeghi (b15) 2020; 21
Malekpour, Shahdoust, Aghdam, Sadeghi (b16) 2023; 39
Hyndman, Koehler (b72) 2006; 22
Dor, Tarsi (b66) 1992
Mahmoodi, Aghdam, Eslahchi (b13) 2021; 11
Liew, Law, Yan (b22) 2011; 12
Sasaki (b70) 2007; 1
Bramer, Irvahn, Piehowski, Rodland, Webb-Robertson (b27) 2020; 20
Faulkner (b49) 2007
Karlebach, Robinson (b7) 2024; 31
Walker, Cliff, Romero, Shah, Jones, Felipe Machado Gazolla, Jacobson, Kainer (b17) 2022; 20
Aghdam, Baghfalaki, Khosravi, Ansari (b65) 2017; 15
Pearl (b44) 2009
Friedman, Linial, Nachman, Pe’er (b3) 2000; 7
Scutari (b59) 2010; 35
Dojer, Gambin, Mizera, Wilczyński, Tiuryn (b32) 2006; 7
Pe’er, Regev, Elidan, Friedman (b33) 2001; 17
Lauritzen (b39) 2004
Jensen, Nielsen (b41) 2007
D.M. Chickering, D. Geiger, D. Heckerman, Learning Bayesian Networks: Search Methods and Experimental Results, in: Preliminary Papers of the 5th International Workshop on Artificial Intelligence and Statistics, 1995, pp. 112–128.
Acid, Campos (b51) 2001; 27
Chen, Martin, Montague (b28) 2009; 53
Maathuis, Kalisch, Bühlmann (b54) 2009; 37
Savoie, Aburatani, Watanabe, Eguchi, Muta, Imoto, Miyano, Kuhara, Tashiro (b4) 2003; 10
5555.
Aghdam, Ganjali, Zhang, Eslahchi (b8) 2015; 11
Kong, Wong, Hui, Lim, Wang, Wong, Goh (b30) 2023; 24
Levine, Davidson (b5) 2005; 102
Chai, Mohamad, Deris, Chong, Choon, Ibrahim, Omatu (b35) 2012
Zhou, Tan, Chau, Jiang, Ke, Chen, Cao, Kwok, Bellgard, Leung (b74) 2023; 51
Liu, Sun, Peng, Zhou, Lin, Jiang (b18) 2020; 11
Sun, Li, Xu, Zhang, Wang (b26) 2023; 227
MacNeil (10.1016/j.compbiomed.2024.109238_b1) 2011; 21
Malekpour (10.1016/j.compbiomed.2024.109238_b16) 2023; 39
Lauritzen (10.1016/j.compbiomed.2024.109238_b39) 2004
Walker (10.1016/j.compbiomed.2024.109238_b17) 2022; 20
Scutari (10.1016/j.compbiomed.2024.109238_b59) 2010; 35
Kong (10.1016/j.compbiomed.2024.109238_b30) 2023; 24
Henao (10.1016/j.compbiomed.2024.109238_b37) 2023; 24
Aghdam (10.1016/j.compbiomed.2024.109238_b65) 2017; 15
Marbach (10.1016/j.compbiomed.2024.109238_b68) 2009; 16
Aittokallio (10.1016/j.compbiomed.2024.109238_b23) 2010; 11
Pearl (10.1016/j.compbiomed.2024.109238_b44) 2009
Little (10.1016/j.compbiomed.2024.109238_b64) 2019
Pe’er (10.1016/j.compbiomed.2024.109238_b33) 2001; 17
Aghdam (10.1016/j.compbiomed.2024.109238_b34) 2016; 43
Prill (10.1016/j.compbiomed.2024.109238_b69) 2010; 5
Oba (10.1016/j.compbiomed.2024.109238_b73) 2003; 19
Liu (10.1016/j.compbiomed.2024.109238_b18) 2020; 11
Zhang (10.1016/j.compbiomed.2024.109238_b46) 2012; 28
Acid (10.1016/j.compbiomed.2024.109238_b51) 2001; 27
Dor (10.1016/j.compbiomed.2024.109238_b66) 1992
Zhou (10.1016/j.compbiomed.2024.109238_b74) 2023; 51
Seo (10.1016/j.compbiomed.2024.109238_b71) 2021; 12
Cai (10.1016/j.compbiomed.2024.109238_b29) 2010; 20
Niloofar (10.1016/j.compbiomed.2024.109238_b58) 2013; 40
Hyndman (10.1016/j.compbiomed.2024.109238_b72) 2006; 22
Wang (10.1016/j.compbiomed.2024.109238_b75) 2023; 24
Niloofar (10.1016/j.compbiomed.2024.109238_b60) 2014; 41
Ma (10.1016/j.compbiomed.2024.109238_b6) 2020; 36
Dojer (10.1016/j.compbiomed.2024.109238_b32) 2006; 7
Maathuis (10.1016/j.compbiomed.2024.109238_b54) 2009; 37
Gu (10.1016/j.compbiomed.2024.109238_b20) 2024
Aghdam (10.1016/j.compbiomed.2024.109238_b47) 2014; 9
Liu (10.1016/j.compbiomed.2024.109238_b36) 2022; 20
Aghdam (10.1016/j.compbiomed.2024.109238_b8) 2015; 11
Mahmoodi (10.1016/j.compbiomed.2024.109238_b13) 2021; 11
10.1016/j.compbiomed.2024.109238_b52
Tsamardinos (10.1016/j.compbiomed.2024.109238_b55) 2007; 65
Karlebach (10.1016/j.compbiomed.2024.109238_b7) 2024; 31
Wu (10.1016/j.compbiomed.2024.109238_b19) 2024; 4
Altay (10.1016/j.compbiomed.2024.109238_b62) 2010; 26
Malekpour (10.1016/j.compbiomed.2024.109238_b15) 2020; 21
Buosi (10.1016/j.compbiomed.2024.109238_b31) 2024; 174
Faulkner (10.1016/j.compbiomed.2024.109238_b49) 2007
Spirtes (10.1016/j.compbiomed.2024.109238_b45) 2000
Imoto (10.1016/j.compbiomed.2024.109238_b50) 2002
Troyanskaya (10.1016/j.compbiomed.2024.109238_b38) 2001; 17
Ochoteco Asensio (10.1016/j.compbiomed.2024.109238_b25) 2022; 20
Lei (10.1016/j.compbiomed.2024.109238_b14) 2023; 39
de Campos (10.1016/j.compbiomed.2024.109238_b48) 2007; 7
Li (10.1016/j.compbiomed.2024.109238_b21) 2024; 25
Liew (10.1016/j.compbiomed.2024.109238_b22) 2011; 12
Rezaei Tabar (10.1016/j.compbiomed.2024.109238_b12) 2019; 89
Bramer (10.1016/j.compbiomed.2024.109238_b27) 2020; 20
Zhang (10.1016/j.compbiomed.2024.109238_b63) 2013; 29
Chai (10.1016/j.compbiomed.2024.109238_b35) 2012
10.1016/j.compbiomed.2024.109238_b42
Friedman (10.1016/j.compbiomed.2024.109238_b3) 2000; 7
Marbach (10.1016/j.compbiomed.2024.109238_b67) 2010; 107
Zhou (10.1016/j.compbiomed.2024.109238_b11) 2015; 12
Lauritzen (10.1016/j.compbiomed.2024.109238_b56) 1995; 19
Ajmal (10.1016/j.compbiomed.2024.109238_b40) 2022; 19
Jensen (10.1016/j.compbiomed.2024.109238_b41) 2007
Brunel (10.1016/j.compbiomed.2024.109238_b61) 2010; 26
Csermely (10.1016/j.compbiomed.2024.109238_b2) 2005; 26
Zhang (10.1016/j.compbiomed.2024.109238_b10) 2015; 43
Kalisch (10.1016/j.compbiomed.2024.109238_b53) 2012; 47
Niloofar (10.1016/j.compbiomed.2024.109238_b57) 2013; 75
Levine (10.1016/j.compbiomed.2024.109238_b5) 2005; 102
Colombo (10.1016/j.compbiomed.2024.109238_b43) 2012; 40
Savoie (10.1016/j.compbiomed.2024.109238_b4) 2003; 10
Sun (10.1016/j.compbiomed.2024.109238_b26) 2023; 227
Nair (10.1016/j.compbiomed.2024.109238_b9) 2015; 11
Al-Janabi (10.1016/j.compbiomed.2024.109238_b24) 2020; 24
Chen (10.1016/j.compbiomed.2024.109238_b28) 2009; 53
Sasaki (10.1016/j.compbiomed.2024.109238_b70) 2007; 1
References_xml – volume: 26
  start-page: 1738
  year: 2010
  end-page: 1744
  ident: b62
  article-title: Revealing differences in gene network inference algorithms on the network level by ensemble methods
  publication-title: Bioinformatics
– reference: J. Xu, G. Yang, G. Liu, H. Liu, Inferring Gene Regulatory Networks Via Ensemble Path Consistency Algorithm Based on Conditional Mutual Information, IEEE/ACM Trans. Comput. Biol. Bioinform. (ISSN: 1557-9964) (01) 1–10,
– volume: 26
  start-page: 1811
  year: 2010
  end-page: 1818
  ident: b61
  article-title: MISS: a non-linear methodology based on mutual information for genetic association studies in both population and sib-pairs analysis
  publication-title: Bioinformatics
– volume: 53
  start-page: 3706
  year: 2009
  end-page: 3716
  ident: b28
  article-title: Robust probabilistic PCA with missing data and contribution analysis for outlier detection
  publication-title: Comput. Statist. Data Anal.
– volume: 107
  start-page: 6286
  year: 2010
  end-page: 6291
  ident: b67
  article-title: Revealing strengths and weaknesses of methods for gene network inference
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 75
  start-page: 90
  year: 2013
  end-page: 111
  ident: b57
  article-title: Performance evaluation of imputation based on Bayesian networks
  publication-title: Sankhya B
– start-page: 379
  year: 2012
  end-page: 386
  ident: b35
  article-title: Inferring gene regulatory networks from gene expression data by a dynamic bayesian network-based model
  publication-title: Distributed Computing and Artificial Intelligence
– volume: 24
  start-page: 555
  year: 2020
  end-page: 569
  ident: b24
  article-title: A nifty collaborative analysis to predicting a novel tool (DRFLLS) for missing values estimation
  publication-title: Soft Comput.
– volume: 20
  start-page: 3372
  year: 2022
  end-page: 3386
  ident: b17
  article-title: Evaluating the performance of random forest and iterative random forest based methods when applied to gene expression data
  publication-title: Comput. Struct. Biotechnol. J.
– volume: 16
  start-page: 229
  year: 2009
  end-page: 239
  ident: b68
  article-title: Generating realistic in silico gene networks for performance assessment of reverse engineering methods
  publication-title: J. Comput. Biol.
– volume: 20
  start-page: 1
  year: 2020
  end-page: 13
  ident: b27
  article-title: A review of imputation strategies for isobaric labeling-based shotgun proteomics
  publication-title: J. Proteome Res.
– volume: 41
  start-page: 501
  year: 2014
  end-page: 518
  ident: b60
  article-title: A new multivariate imputation method based on Bayesian networks
  publication-title: J. Appl. Stat.
– volume: 26
  start-page: 178
  year: 2005
  end-page: 182
  ident: b2
  article-title: The efficiency of multi-target drugs: the network approach might help drug design
  publication-title: Trends Pharmacol. Sci.
– start-page: 18
  year: 2007
  end-page: 25
  ident: b49
  article-title: K2GA: Heuristically guided evolution of Bayesian network structures from data
  publication-title: CIDM
– volume: 27
  start-page: 235
  year: 2001
  end-page: 262
  ident: b51
  article-title: A hybrid methodology for learning belief networks: BENEDICT
  publication-title: Internat. J. Approx. Reason.
– volume: 37
  start-page: 3133
  year: 2009
  end-page: 3164
  ident: b54
  article-title: Estimating high-dimensional intervention effects from observational data
  publication-title: Ann. Statist.
– start-page: 175
  year: 2002
  end-page: 186
  ident: b50
  article-title: Estimation of genetic networks and functional structures between genes by using Bayesian networks and nonparametric regression
  publication-title: Pacific Symposium on Biocomputing
– volume: 19
  start-page: 2088
  year: 2003
  end-page: 2096
  ident: b73
  article-title: A Bayesian missing value estimation method for gene expression profile data
  publication-title: Bioinformatics
– volume: 24
  start-page: 163
  year: 2023
  ident: b75
  article-title: A gene regulatory network inference model based on pseudo-siamese network
  publication-title: BMC Bioinform.
– volume: 28
  start-page: 98
  year: 2012
  end-page: 104
  ident: b46
  article-title: Inferring gene regulatory networks from gene expression data by path consistency algorithm based on conditional mutual information
  publication-title: Bioinformatics
– volume: 4
  year: 2024
  ident: b19
  article-title: SPREd: a simulation-supervised neural network tool for gene regulatory network reconstruction
  publication-title: Bioinform. Adv.
– volume: 40
  start-page: 294
  year: 2012
  end-page: 321
  ident: b43
  article-title: Learning high-dimensional directed acyclic graphs with latent and selection variables
  publication-title: Ann. Statist.
– volume: 11
  start-page: 2449
  year: 2015
  end-page: 2463
  ident: b9
  article-title: Improving gene regulatory network inference using network topology information
  publication-title: Mol. Biosyst.
– volume: 174
  year: 2024
  ident: b31
  article-title: Boosting predictive models and augmenting patient data with relevant genomic and pathway information
  publication-title: Comput. Biol. Med.
– volume: 227
  year: 2023
  ident: b26
  article-title: Deep learning versus conventional methods for missing data imputation: A review and comparative study
  publication-title: Expert Syst. Appl.
– volume: 35
  year: 2010
  ident: b59
  article-title: Learning Bayesian networks with the bnlearn R package
  publication-title: J. Stat. Softw.
– year: 2024
  ident: b20
  article-title: PGBTR: A powerful and general method for inferring bacterial transcriptional regulatory networks
– volume: 1
  start-page: 1
  year: 2007
  end-page: 5
  ident: b70
  article-title: The truth of the F-measure
  publication-title: Teach Tutor Mater
– volume: 39
  year: 2023
  ident: b14
  article-title: An approach of gene regulatory network construction using mixed entropy optimizing context-related likelihood mutual information
  publication-title: Bioinformatics
– volume: 102
  start-page: 4936
  year: 2005
  end-page: 4942
  ident: b5
  article-title: Gene regulatory networks for development
  publication-title: Proc. Natl. Acad. Sci. USA
– reference: , 5555.
– volume: 43
  start-page: e31
  year: 2015
  ident: b10
  article-title: Conditional mutual inclusive information enables accurate quantification of associations in gene regulatory networks
  publication-title: Nucleic Acids Res.
– volume: 17
  start-page: S215
  year: 2001
  end-page: S224
  ident: b33
  article-title: Inferring subnetworks from perturbed expression profiles
  publication-title: Bioinformatics
– volume: 21
  start-page: 645
  year: 2011
  end-page: 657
  ident: b1
  article-title: Gene regulatory networks and the role of robustness and stochasticity in the control of gene expression
  publication-title: Genome Res.
– volume: 36
  start-page: 4885
  year: 2020
  end-page: 4893
  ident: b6
  article-title: Inference of gene regulatory networks based on nonlinear ordinary differential equations
  publication-title: Bioinformatics
– volume: 12
  year: 2021
  ident: b71
  article-title: Predicting successes and failures of clinical trials with outer product–based convolutional neural network
  publication-title: Front. Pharmacol.
– volume: 21
  start-page: 318
  year: 2020
  ident: b15
  article-title: LogicNet: probabilistic continuous logics in reconstructing gene regulatory networks
  publication-title: BMC Bioinform.
– volume: 11
  start-page: 942
  year: 2015
  end-page: 949
  ident: b8
  article-title: CN: a consensus algorithm for inferring gene regulatory networks using the SORDER algorithm and conditional mutual information test
  publication-title: Mol. Biosyst.
– volume: 25
  year: 2024
  ident: b21
  article-title: GMFGRN: a matrix factorization and graph neural network approach for gene regulatory network inference
  publication-title: Brief. Bioinform.
– volume: 10
  start-page: 19
  year: 2003
  end-page: 25
  ident: b4
  article-title: Use of gene networks from full genome microarray libraries to identify functionally relevant drug-affected genes and gene regulation cascades
  publication-title: DNA Res.
– volume: 22
  start-page: 679
  year: 2006
  end-page: 688
  ident: b72
  article-title: Another look at measures of forecast accuracy
  publication-title: Int. J. Forecast.
– volume: 15
  start-page: 396
  year: 2017
  end-page: 404
  ident: b65
  article-title: The ability of different imputation methods to preserve the significant genes and pathways in cancer
  publication-title: Genom. Proteom. Bioinform.
– volume: 47
  start-page: 1
  year: 2012
  end-page: 26
  ident: b53
  article-title: Causal inference using graphical models with the R package pcalg
  publication-title: J. Stat. Softw.
– volume: 20
  start-page: 2057
  year: 2022
  end-page: 2069
  ident: b25
  article-title: Predicting missing proteomics values using machine learning: Filling the gap using transcriptomics and other biological features
  publication-title: Comput. Struct. Biotechnol. J.
– volume: 20
  start-page: 399
  year: 2022
  end-page: 409
  ident: b36
  article-title: Identification of gene regulatory networks using variational bayesian inference in the presence of missing data
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform.
– year: 2019
  ident: b64
  article-title: Statistical Analysis with Missing Data
– year: 2009
  ident: b44
  article-title: Causality: Models, Reasoning and Inference
– volume: 7
  start-page: 2149
  year: 2007
  end-page: 2187
  ident: b48
  article-title: A scoring function for learning Bayesian networks based on mutual information and conditional independence tests
  publication-title: J. Mach. Learn. Res.
– volume: 40
  year: 2013
  ident: b58
  article-title: Improving the performance of Bayesian networks in non-ignorable missing data imputation
  publication-title: Kuwait J. Sci.
– year: 2004
  ident: b39
  article-title: Graphical Models
– volume: 5
  start-page: 1
  year: 2010
  end-page: 18
  ident: b69
  article-title: Towards a rigorous assessment of systems biology models: The DREAM3 challenges
  publication-title: PLoS ONE
– volume: 89
  start-page: 1957
  year: 2019
  end-page: 1970
  ident: b12
  article-title: Learning directed acyclic graphs by determination of candidate causes for discrete variables
  publication-title: J. Stat. Comput. Simul.
– volume: 11
  start-page: 1
  year: 2021
  end-page: 15
  ident: b13
  article-title: An order independent algorithm for inferring gene regulatory network using quantile value for conditional independence tests
  publication-title: Sci. Rep.
– year: 1992
  ident: b66
  article-title: A Simple Algorithm to Construct a Consistent Extension of a Partially Oriented Graph
– volume: 9
  year: 2014
  ident: b47
  article-title: IPCA-CMI: an algorithm for inferring gene regulatory networks based on a combination of PCA-CMI and MIT score
  publication-title: PLoS One
– volume: 7
  start-page: 601
  year: 2000
  end-page: 620
  ident: b3
  article-title: Using Bayesian networks to analyze expression data
  publication-title: J. Comput. Biol.
– volume: 11
  year: 2020
  ident: b18
  article-title: RWRNET: a gene regulatory network inference algorithm using random walk with restart
  publication-title: Front. Genet.
– reference: D.M. Chickering, D. Geiger, D. Heckerman, Learning Bayesian Networks: Search Methods and Experimental Results, in: Preliminary Papers of the 5th International Workshop on Artificial Intelligence and Statistics, 1995, pp. 112–128.
– volume: 24
  year: 2023
  ident: b37
  article-title: Multi-omics regulatory network inference in the presence of missing data
  publication-title: Brief. Bioinform.
– volume: 29
  start-page: 106
  year: 2013
  end-page: 113
  ident: b63
  article-title: NARROMI: a noise and redundancy reduction technique improves accuracy of gene regulatory network inference
  publication-title: Bioinformatics
– volume: 43
  start-page: 893
  year: 2016
  end-page: 913
  ident: b34
  article-title: Inferring gene regulatory networks by an order independent algorithm using incomplete data sets
  publication-title: J. Appl. Stat.
– volume: 24
  year: 2023
  ident: b30
  article-title: ProJect: a powerful mixed-model missing value imputation method
  publication-title: Brief. Bioinform.
– volume: 51
  start-page: D1168
  year: 2023
  end-page: D1178
  ident: b74
  article-title: TEDD: a database of temporal gene expression patterns during multiple developmental periods in human and model organisms
  publication-title: Nucleic Acids Res.
– year: 2007
  ident: b41
  article-title: Bayesian Networks and Decision Graphs
– volume: 31
  start-page: 117
  year: 2024
  end-page: 127
  ident: b7
  article-title: Computing minimal boolean models of gene regulatory networks
  publication-title: J. Comput. Biol.
– volume: 39
  year: 2023
  ident: b16
  article-title: WpLogicNet: logic gate and structure inference in gene regulatory networks
  publication-title: Bioinformatics
– volume: 12
  start-page: 328
  year: 2015
  end-page: 342
  ident: b11
  article-title: An ensemble method for reconstructing gene regulatory network with jackknife resampling and arithmetic mean fusion
  publication-title: Int. J. Data Min. Bioinform.
– volume: 11
  start-page: 253
  year: 2010
  end-page: 264
  ident: b23
  article-title: Dealing with missing values in large-scale studies: microarray data imputation and beyond
  publication-title: Brief. Bioinform.
– volume: 20
  start-page: 1956
  year: 2010
  end-page: 1982
  ident: b29
  article-title: A singular value thresholding algorithm for matrix completion
  publication-title: SIAM J. Optim.
– volume: 17
  start-page: 520
  year: 2001
  end-page: 525
  ident: b38
  article-title: Missing value estimation methods for DNA microarrays
  publication-title: Bioinformatics
– volume: 19
  start-page: 2794
  year: 2022
  end-page: 2805
  ident: b40
  article-title: Dynamic Bayesian network learning to infer sparse models from time series gene expression data
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform.
– volume: 12
  start-page: 498
  year: 2011
  end-page: 513
  ident: b22
  article-title: Missing value imputation for gene expression data: computational techniques to recover missing data from available information
  publication-title: Brief. Bioinform.
– volume: 65
  start-page: 31
  year: 2007
  end-page: 78
  ident: b55
  article-title: The max-min hill-climbing Bayesian network structure learning algorithm.
  publication-title: Mach. Learn.
– volume: 7
  start-page: 249
  year: 2006
  ident: b32
  article-title: Applying dynamic Bayesian networks to perturbed gene expression data
  publication-title: BMC Bioinformatics
– volume: 19
  start-page: 191
  year: 1995
  end-page: 201
  ident: b56
  article-title: The EM algorithm for graphical association models with missing data
  publication-title: Comput. Statist. Data Anal.
– year: 2000
  ident: b45
  article-title: Causation, Prediction, and Search
– volume: 21
  start-page: 645
  issue: 5
  year: 2011
  ident: 10.1016/j.compbiomed.2024.109238_b1
  article-title: Gene regulatory networks and the role of robustness and stochasticity in the control of gene expression
  publication-title: Genome Res.
  doi: 10.1101/gr.097378.109
– volume: 4
  issue: 1
  year: 2024
  ident: 10.1016/j.compbiomed.2024.109238_b19
  article-title: SPREd: a simulation-supervised neural network tool for gene regulatory network reconstruction
  publication-title: Bioinform. Adv.
  doi: 10.1093/bioadv/vbae011
– volume: 40
  issue: 2
  year: 2013
  ident: 10.1016/j.compbiomed.2024.109238_b58
  article-title: Improving the performance of Bayesian networks in non-ignorable missing data imputation
  publication-title: Kuwait J. Sci.
– volume: 26
  start-page: 1811
  issue: 15
  year: 2010
  ident: 10.1016/j.compbiomed.2024.109238_b61
  article-title: MISS: a non-linear methodology based on mutual information for genetic association studies in both population and sib-pairs analysis
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq273
– volume: 7
  start-page: 249
  issue: 1
  year: 2006
  ident: 10.1016/j.compbiomed.2024.109238_b32
  article-title: Applying dynamic Bayesian networks to perturbed gene expression data
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-7-249
– volume: 35
  issue: i03
  year: 2010
  ident: 10.1016/j.compbiomed.2024.109238_b59
  article-title: Learning Bayesian networks with the bnlearn R package
  publication-title: J. Stat. Softw.
– volume: 102
  start-page: 4936
  issue: 14
  year: 2005
  ident: 10.1016/j.compbiomed.2024.109238_b5
  article-title: Gene regulatory networks for development
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0408031102
– volume: 107
  start-page: 6286
  issue: 14
  year: 2010
  ident: 10.1016/j.compbiomed.2024.109238_b67
  article-title: Revealing strengths and weaknesses of methods for gene network inference
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0913357107
– volume: 75
  start-page: 90
  issue: 1
  year: 2013
  ident: 10.1016/j.compbiomed.2024.109238_b57
  article-title: Performance evaluation of imputation based on Bayesian networks
  publication-title: Sankhya B
  doi: 10.1007/s13571-013-0061-8
– volume: 7
  start-page: 601
  issue: 3–4
  year: 2000
  ident: 10.1016/j.compbiomed.2024.109238_b3
  article-title: Using Bayesian networks to analyze expression data
  publication-title: J. Comput. Biol.
  doi: 10.1089/106652700750050961
– volume: 26
  start-page: 1738
  issue: 14
  year: 2010
  ident: 10.1016/j.compbiomed.2024.109238_b62
  article-title: Revealing differences in gene network inference algorithms on the network level by ensemble methods
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq259
– volume: 17
  start-page: 520
  issue: 6
  year: 2001
  ident: 10.1016/j.compbiomed.2024.109238_b38
  article-title: Missing value estimation methods for DNA microarrays
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/17.6.520
– year: 2009
  ident: 10.1016/j.compbiomed.2024.109238_b44
– year: 2000
  ident: 10.1016/j.compbiomed.2024.109238_b45
– volume: 5
  start-page: 1
  issue: 2
  year: 2010
  ident: 10.1016/j.compbiomed.2024.109238_b69
  article-title: Towards a rigorous assessment of systems biology models: The DREAM3 challenges
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0009202
– volume: 12
  year: 2021
  ident: 10.1016/j.compbiomed.2024.109238_b71
  article-title: Predicting successes and failures of clinical trials with outer product–based convolutional neural network
  publication-title: Front. Pharmacol.
  doi: 10.3389/fphar.2021.670670
– volume: 89
  start-page: 1957
  issue: 10
  year: 2019
  ident: 10.1016/j.compbiomed.2024.109238_b12
  article-title: Learning directed acyclic graphs by determination of candidate causes for discrete variables
  publication-title: J. Stat. Comput. Simul.
  doi: 10.1080/00949655.2019.1604709
– ident: 10.1016/j.compbiomed.2024.109238_b42
  doi: 10.1109/TCBB.2022.3220581
– year: 2007
  ident: 10.1016/j.compbiomed.2024.109238_b41
– volume: 10
  start-page: 19
  issue: 1
  year: 2003
  ident: 10.1016/j.compbiomed.2024.109238_b4
  article-title: Use of gene networks from full genome microarray libraries to identify functionally relevant drug-affected genes and gene regulation cascades
  publication-title: DNA Res.
  doi: 10.1093/dnares/10.1.19
– volume: 7
  start-page: 2149
  year: 2007
  ident: 10.1016/j.compbiomed.2024.109238_b48
  article-title: A scoring function for learning Bayesian networks based on mutual information and conditional independence tests
  publication-title: J. Mach. Learn. Res.
– volume: 51
  start-page: D1168
  issue: D1
  year: 2023
  ident: 10.1016/j.compbiomed.2024.109238_b74
  article-title: TEDD: a database of temporal gene expression patterns during multiple developmental periods in human and model organisms
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkac978
– volume: 26
  start-page: 178
  issue: 4
  year: 2005
  ident: 10.1016/j.compbiomed.2024.109238_b2
  article-title: The efficiency of multi-target drugs: the network approach might help drug design
  publication-title: Trends Pharmacol. Sci.
  doi: 10.1016/j.tips.2005.02.007
– volume: 11
  start-page: 253
  issue: 2
  year: 2010
  ident: 10.1016/j.compbiomed.2024.109238_b23
  article-title: Dealing with missing values in large-scale studies: microarray data imputation and beyond
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/bbp059
– start-page: 18
  year: 2007
  ident: 10.1016/j.compbiomed.2024.109238_b49
  article-title: K2GA: Heuristically guided evolution of Bayesian network structures from data
– volume: 47
  start-page: 1
  issue: 11
  year: 2012
  ident: 10.1016/j.compbiomed.2024.109238_b53
  article-title: Causal inference using graphical models with the R package pcalg
  publication-title: J. Stat. Softw.
  doi: 10.18637/jss.v047.i11
– volume: 17
  start-page: S215
  year: 2001
  ident: 10.1016/j.compbiomed.2024.109238_b33
  article-title: Inferring subnetworks from perturbed expression profiles
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/17.suppl_1.S215
– year: 2019
  ident: 10.1016/j.compbiomed.2024.109238_b64
– start-page: 379
  year: 2012
  ident: 10.1016/j.compbiomed.2024.109238_b35
  article-title: Inferring gene regulatory networks from gene expression data by a dynamic bayesian network-based model
– volume: 37
  start-page: 3133
  issue: 6A
  year: 2009
  ident: 10.1016/j.compbiomed.2024.109238_b54
  article-title: Estimating high-dimensional intervention effects from observational data
  publication-title: Ann. Statist.
  doi: 10.1214/09-AOS685
– volume: 29
  start-page: 106
  issue: 1
  year: 2013
  ident: 10.1016/j.compbiomed.2024.109238_b63
  article-title: NARROMI: a noise and redundancy reduction technique improves accuracy of gene regulatory network inference
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts619
– volume: 1
  start-page: 1
  issue: 5
  year: 2007
  ident: 10.1016/j.compbiomed.2024.109238_b70
  article-title: The truth of the F-measure
  publication-title: Teach Tutor Mater
– volume: 20
  start-page: 1956
  issue: 4
  year: 2010
  ident: 10.1016/j.compbiomed.2024.109238_b29
  article-title: A singular value thresholding algorithm for matrix completion
  publication-title: SIAM J. Optim.
  doi: 10.1137/080738970
– volume: 20
  start-page: 2057
  year: 2022
  ident: 10.1016/j.compbiomed.2024.109238_b25
  article-title: Predicting missing proteomics values using machine learning: Filling the gap using transcriptomics and other biological features
  publication-title: Comput. Struct. Biotechnol. J.
  doi: 10.1016/j.csbj.2022.04.017
– volume: 24
  issue: 4
  year: 2023
  ident: 10.1016/j.compbiomed.2024.109238_b30
  article-title: ProJect: a powerful mixed-model missing value imputation method
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/bbad233
– volume: 43
  start-page: 893
  issue: 5
  year: 2016
  ident: 10.1016/j.compbiomed.2024.109238_b34
  article-title: Inferring gene regulatory networks by an order independent algorithm using incomplete data sets
  publication-title: J. Appl. Stat.
  doi: 10.1080/02664763.2015.1079307
– start-page: 175
  year: 2002
  ident: 10.1016/j.compbiomed.2024.109238_b50
  article-title: Estimation of genetic networks and functional structures between genes by using Bayesian networks and nonparametric regression
– volume: 16
  start-page: 229
  issue: 2
  year: 2009
  ident: 10.1016/j.compbiomed.2024.109238_b68
  article-title: Generating realistic in silico gene networks for performance assessment of reverse engineering methods
  publication-title: J. Comput. Biol.
  doi: 10.1089/cmb.2008.09TT
– volume: 174
  year: 2024
  ident: 10.1016/j.compbiomed.2024.109238_b31
  article-title: Boosting predictive models and augmenting patient data with relevant genomic and pathway information
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2024.108398
– volume: 20
  start-page: 399
  issue: 1
  year: 2022
  ident: 10.1016/j.compbiomed.2024.109238_b36
  article-title: Identification of gene regulatory networks using variational bayesian inference in the presence of missing data
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform.
  doi: 10.1109/TCBB.2022.3144418
– volume: 31
  start-page: 117
  issue: 2
  year: 2024
  ident: 10.1016/j.compbiomed.2024.109238_b7
  article-title: Computing minimal boolean models of gene regulatory networks
  publication-title: J. Comput. Biol.
  doi: 10.1089/cmb.2023.0122
– volume: 53
  start-page: 3706
  issue: 10
  year: 2009
  ident: 10.1016/j.compbiomed.2024.109238_b28
  article-title: Robust probabilistic PCA with missing data and contribution analysis for outlier detection
  publication-title: Comput. Statist. Data Anal.
  doi: 10.1016/j.csda.2009.03.014
– volume: 12
  start-page: 328
  issue: 3
  year: 2015
  ident: 10.1016/j.compbiomed.2024.109238_b11
  article-title: An ensemble method for reconstructing gene regulatory network with jackknife resampling and arithmetic mean fusion
  publication-title: Int. J. Data Min. Bioinform.
  doi: 10.1504/IJDMB.2015.069658
– year: 1992
  ident: 10.1016/j.compbiomed.2024.109238_b66
– volume: 27
  start-page: 235
  issue: 3
  year: 2001
  ident: 10.1016/j.compbiomed.2024.109238_b51
  article-title: A hybrid methodology for learning belief networks: BENEDICT
  publication-title: Internat. J. Approx. Reason.
  doi: 10.1016/S0888-613X(01)00041-X
– volume: 43
  start-page: e31
  issue: 5
  year: 2015
  ident: 10.1016/j.compbiomed.2024.109238_b10
  article-title: Conditional mutual inclusive information enables accurate quantification of associations in gene regulatory networks
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gku1315
– volume: 39
  issue: 1
  year: 2023
  ident: 10.1016/j.compbiomed.2024.109238_b14
  article-title: An approach of gene regulatory network construction using mixed entropy optimizing context-related likelihood mutual information
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btac717
– year: 2024
  ident: 10.1016/j.compbiomed.2024.109238_b20
– volume: 11
  start-page: 942
  issue: 3
  year: 2015
  ident: 10.1016/j.compbiomed.2024.109238_b8
  article-title: CN: a consensus algorithm for inferring gene regulatory networks using the SORDER algorithm and conditional mutual information test
  publication-title: Mol. Biosyst.
  doi: 10.1039/C4MB00413B
– volume: 24
  start-page: 555
  issue: 1
  year: 2020
  ident: 10.1016/j.compbiomed.2024.109238_b24
  article-title: A nifty collaborative analysis to predicting a novel tool (DRFLLS) for missing values estimation
  publication-title: Soft Comput.
  doi: 10.1007/s00500-019-03972-x
– volume: 227
  year: 2023
  ident: 10.1016/j.compbiomed.2024.109238_b26
  article-title: Deep learning versus conventional methods for missing data imputation: A review and comparative study
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2023.120201
– volume: 9
  issue: 4
  year: 2014
  ident: 10.1016/j.compbiomed.2024.109238_b47
  article-title: IPCA-CMI: an algorithm for inferring gene regulatory networks based on a combination of PCA-CMI and MIT score
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0092600
– volume: 20
  start-page: 3372
  year: 2022
  ident: 10.1016/j.compbiomed.2024.109238_b17
  article-title: Evaluating the performance of random forest and iterative random forest based methods when applied to gene expression data
  publication-title: Comput. Struct. Biotechnol. J.
  doi: 10.1016/j.csbj.2022.06.037
– volume: 19
  start-page: 191
  issue: 2
  year: 1995
  ident: 10.1016/j.compbiomed.2024.109238_b56
  article-title: The EM algorithm for graphical association models with missing data
  publication-title: Comput. Statist. Data Anal.
  doi: 10.1016/0167-9473(93)E0056-A
– volume: 25
  issue: 2
  year: 2024
  ident: 10.1016/j.compbiomed.2024.109238_b21
  article-title: GMFGRN: a matrix factorization and graph neural network approach for gene regulatory network inference
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/bbad529
– volume: 24
  issue: 5
  year: 2023
  ident: 10.1016/j.compbiomed.2024.109238_b37
  article-title: Multi-omics regulatory network inference in the presence of missing data
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/bbad309
– volume: 40
  start-page: 294
  issue: 1
  year: 2012
  ident: 10.1016/j.compbiomed.2024.109238_b43
  article-title: Learning high-dimensional directed acyclic graphs with latent and selection variables
  publication-title: Ann. Statist.
  doi: 10.1214/11-AOS940
– volume: 11
  start-page: 2449
  issue: 9
  year: 2015
  ident: 10.1016/j.compbiomed.2024.109238_b9
  article-title: Improving gene regulatory network inference using network topology information
  publication-title: Mol. Biosyst.
  doi: 10.1039/C5MB00122F
– volume: 41
  start-page: 501
  issue: 3
  year: 2014
  ident: 10.1016/j.compbiomed.2024.109238_b60
  article-title: A new multivariate imputation method based on Bayesian networks
  publication-title: J. Appl. Stat.
  doi: 10.1080/02664763.2013.842960
– volume: 28
  start-page: 98
  issue: 1
  year: 2012
  ident: 10.1016/j.compbiomed.2024.109238_b46
  article-title: Inferring gene regulatory networks from gene expression data by path consistency algorithm based on conditional mutual information
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr626
– volume: 36
  start-page: 4885
  issue: 19
  year: 2020
  ident: 10.1016/j.compbiomed.2024.109238_b6
  article-title: Inference of gene regulatory networks based on nonlinear ordinary differential equations
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btaa032
– volume: 24
  start-page: 163
  issue: 1
  year: 2023
  ident: 10.1016/j.compbiomed.2024.109238_b75
  article-title: A gene regulatory network inference model based on pseudo-siamese network
  publication-title: BMC Bioinform.
  doi: 10.1186/s12859-023-05253-9
– volume: 19
  start-page: 2088
  issue: 16
  year: 2003
  ident: 10.1016/j.compbiomed.2024.109238_b73
  article-title: A Bayesian missing value estimation method for gene expression profile data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btg287
– volume: 39
  issue: 2
  year: 2023
  ident: 10.1016/j.compbiomed.2024.109238_b16
  article-title: WpLogicNet: logic gate and structure inference in gene regulatory networks
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btad072
– volume: 65
  start-page: 31
  issue: 1
  year: 2007
  ident: 10.1016/j.compbiomed.2024.109238_b55
  article-title: The max-min hill-climbing Bayesian network structure learning algorithm.
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-006-6889-7
– ident: 10.1016/j.compbiomed.2024.109238_b52
– volume: 11
  year: 2020
  ident: 10.1016/j.compbiomed.2024.109238_b18
  article-title: RWRNET: a gene regulatory network inference algorithm using random walk with restart
  publication-title: Front. Genet.
– volume: 21
  start-page: 318
  issue: 1
  year: 2020
  ident: 10.1016/j.compbiomed.2024.109238_b15
  article-title: LogicNet: probabilistic continuous logics in reconstructing gene regulatory networks
  publication-title: BMC Bioinform.
  doi: 10.1186/s12859-020-03651-x
– year: 2004
  ident: 10.1016/j.compbiomed.2024.109238_b39
– volume: 20
  start-page: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.compbiomed.2024.109238_b27
  article-title: A review of imputation strategies for isobaric labeling-based shotgun proteomics
  publication-title: J. Proteome Res.
  doi: 10.1021/acs.jproteome.0c00123
– volume: 19
  start-page: 2794
  issue: 5
  year: 2022
  ident: 10.1016/j.compbiomed.2024.109238_b40
  article-title: Dynamic Bayesian network learning to infer sparse models from time series gene expression data
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform.
  doi: 10.1109/TCBB.2021.3092879
– volume: 12
  start-page: 498
  issue: 5
  year: 2011
  ident: 10.1016/j.compbiomed.2024.109238_b22
  article-title: Missing value imputation for gene expression data: computational techniques to recover missing data from available information
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/bbq080
– volume: 22
  start-page: 679
  issue: 4
  year: 2006
  ident: 10.1016/j.compbiomed.2024.109238_b72
  article-title: Another look at measures of forecast accuracy
  publication-title: Int. J. Forecast.
  doi: 10.1016/j.ijforecast.2006.03.001
– volume: 11
  start-page: 1
  issue: 1
  year: 2021
  ident: 10.1016/j.compbiomed.2024.109238_b13
  article-title: An order independent algorithm for inferring gene regulatory network using quantile value for conditional independence tests
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-87074-5
– volume: 15
  start-page: 396
  issue: 6
  year: 2017
  ident: 10.1016/j.compbiomed.2024.109238_b65
  article-title: The ability of different imputation methods to preserve the significant genes and pathways in cancer
  publication-title: Genom. Proteom. Bioinform.
  doi: 10.1016/j.gpb.2017.08.003
SSID ssj0004030
Score 2.396768
Snippet In Bioinformatics, inferring the structure of a Gene Regulatory Network (GRN) from incomplete gene expression data is a difficult task. One popular method for...
AbstractIn Bioinformatics, inferring the structure of a Gene Regulatory Network (GRN) from incomplete gene expression data is a difficult task. One popular...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 109238
SubjectTerms Algorithms
Bayesian network
Bioinformatics
Computational Biology - methods
Conditional Mutual Information
Convergence
Databases, Genetic
Datasets
Expectation-Maximization
Gene expression
Gene Expression Profiling - methods
Gene Regulatory Network
Gene Regulatory Networks - genetics
Genetic algorithm
Genetic algorithms
Humans
Internal Medicine
Machine learning
Maximization
Missing values
Models, Genetic
Optimization
Other
Title GAEM: Genetic Algorithm based Expectation-Maximization for inferring Gene Regulatory Networks from incomplete data
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0010482524013234
https://www.clinicalkey.es/playcontent/1-s2.0-S0010482524013234
https://dx.doi.org/10.1016/j.compbiomed.2024.109238
https://www.ncbi.nlm.nih.gov/pubmed/39426072
https://www.proquest.com/docview/3128255370
https://www.proquest.com/docview/3118471126
Volume 183
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Li9swEBbd3VJ6KX037XZRobfFxZYfsttTKOkLEpY2h9yEbEubLNk4xNkS-us7I8n2kiaQUnoRwclYQd9naWTNfEPIW1nKEtY138uYzLwo5tpLta-8nIErVyZJmcrSFJvgo1E6mWQX7rigNuUE-GKRbjbZ8r9CDdcAbEyd_Qu425vCBfgMoEMLsEN7EPCf-4Mh7vNRUBrVWPvzy2o1W0-vz3HFKo24cWEP4L2h3MyuXSamCTjE2KyVCclDcxh8U6kez-FHNl68tgkpqOmAusJrde6y2zq9A1cnwgTa3tZ42j7GH83mVaVtgPcF1kJsV4j-5bS0RP1edVcHwN5pYYoQ26SI2a_b7yxYtBX_0SbTdJFLZnKGJSFKbR50NzmHOyd6-87hCnFaWqGCd9gRqmMxKxezJaP9wygRwd0Z7ihZGB2RE8bjDCbzk_7XweRbl03rhzZxyf0dF_9lowJ397fPqdm3aTHOy_gheeB2HbRv2fKI3FGLx-Te0AHyhKyQNO-powxtKUMNZeg-ylCgDG0pY8xpRxnaUIYiZWhHGYqUeUrGnwbjj188V43DK8BnWXtFFmmex1yCy62jPPXzRMH2LCzBxyxkooOoDMoiyaGJQ6Z5IBNZyJRplWeFjsJn5HhRLdQLQn2tYpXrVDGmo6TUOTi9fsjBTumwSGWP8GY0ReGU6rFgylw0IYlXosNBIA7C4tAjQWu5tGotB9hkDWCiyUaG9VMA0w6w5btsVe3mg1oEombCF3-wr0c-tJbO17U-7IH9njbMEm1XYYB56HHI_R55034NqwUeAcqFqm7wNwG6owFLeuS5ZWQ7UGGG1So4e_kPA_KK3O-e91NyvF7dqNfkbvFzPatXZ-SIT9Iz97z9Bt6w94M
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GAEM%3A+Genetic+Algorithm+based+Expectation-Maximization+for+inferring+Gene+Regulatory+Networks+from+incomplete+data&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Niloofar%2C+Parisa&rft.au=Aghdam%2C+Rosa&rft.au=Eslahchi%2C+Changiz&rft.date=2024-12-01&rft.pub=Elsevier+Ltd&rft.issn=0010-4825&rft.volume=183&rft_id=info:doi/10.1016%2Fj.compbiomed.2024.109238&rft.externalDocID=S0010482524013234
thumbnail_m http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00104825%2FS0010482524X00153%2Fcov150h.gif