Attention Induced Dual Convolutional-Capsule Network (AIDC-CN): A deep learning framework for motor imagery classification
In recent times, Electroencephalography (EEG)-based motor imagery (MI) decoding has garnered significant attention due to its extensive applicability in healthcare, including areas such as assistive robotics and rehabilitation engineering. Nevertheless, the decoding of EEG signals presents considera...
Saved in:
| Published in: | Computers in biology and medicine Vol. 183; p. 109260 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
Elsevier Ltd
01.12.2024
Elsevier Limited |
| Subjects: | |
| ISSN: | 0010-4825, 1879-0534, 1879-0534 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In recent times, Electroencephalography (EEG)-based motor imagery (MI) decoding has garnered significant attention due to its extensive applicability in healthcare, including areas such as assistive robotics and rehabilitation engineering. Nevertheless, the decoding of EEG signals presents considerable challenges owing to their inherent complexity, non-stationary characteristics, and low signal-to-noise ratio. Notably, deep learning-based classifiers have emerged as a prominent focus for addressing the EEG signal decoding process. This study introduces a novel deep learning classifier named the Attention Induced Dual Convolutional-Capsule Network (AIDC-CN) with the specific aim of accurately categorizing various motor imagination class labels. To enhance the classifier’s performance, a dual feature extraction approach leveraging spectrogram and brain connectivity networks has been employed, diversifying the feature set in the classification task. The main highlights of the proposed AIDC-CN classifier includes the introduction of a dual convolution layer to handle the brain connectivity and spectrogram features, addition of a novel self-attention module (SAM) to accentuate the relevant parts of the convolved spectrogram features, introduction of a new cross-attention module (CAM) to refine the outputs obtained from the dual convolution layers and incorporation of a Gaussian Error Linear Unit (GELU) based dynamic routing algorithm to strengthen the coupling among the primary and secondary capsule layers. Performance analysis undertaken on four public data sets depict the superior performance of the proposed model with respect to the state-of-the-art techniques. The code for this model is available at https://github.com/RiteshSurChowdhury/AIDC-CN.
•A deep learning paradigm to classify EEG signals of subjects during motor imagination.•A dual feature extraction strategy is used to improve the accuracy of the classifier.•Design of a novel deep learning based classifier to classify motor imagery classes.•Performance analysis undertaken depicts the efficacy of the proposed classifier. |
|---|---|
| AbstractList | AbstractIn recent times, Electroencephalography (EEG)-based motor imagery (MI) decoding has garnered significant attention due to its extensive applicability in healthcare, including areas such as assistive robotics and rehabilitation engineering. Nevertheless, the decoding of EEG signals presents considerable challenges owing to their inherent complexity, non-stationary characteristics, and low signal-to-noise ratio. Notably, deep learning-based classifiers have emerged as a prominent focus for addressing the EEG signal decoding process. This study introduces a novel deep learning classifier named the Attention Induced Dual Convolutional-Capsule Network (AIDC-CN) with the specific aim of accurately categorizing various motor imagination class labels. To enhance the classifier’s performance, a dual feature extraction approach leveraging spectrogram and brain connectivity networks has been employed, diversifying the feature set in the classification task. The main highlights of the proposed AIDC-CN classifier includes the introduction of a dual convolution layer to handle the brain connectivity and spectrogram features, addition of a novel self-attention module (SAM) to accentuate the relevant parts of the convolved spectrogram features, introduction of a new cross-attention module (CAM) to refine the outputs obtained from the dual convolution layers and incorporation of a Gaussian Error Linear Unit (GELU) based dynamic routing algorithm to strengthen the coupling among the primary and secondary capsule layers. Performance analysis undertaken on four public data sets depict the superior performance of the proposed model with respect to the state-of-the-art techniques. The code for this model is available at https://github.com/RiteshSurChowdhury/AIDC-CN. In recent times, Electroencephalography (EEG)-based motor imagery (MI) decoding has garnered significant attention due to its extensive applicability in healthcare, including areas such as assistive robotics and rehabilitation engineering. Nevertheless, the decoding of EEG signals presents considerable challenges owing to their inherent complexity, non-stationary characteristics, and low signal-to-noise ratio. Notably, deep learning-based classifiers have emerged as a prominent focus for addressing the EEG signal decoding process. This study introduces a novel deep learning classifier named the Attention Induced Dual Convolutional-Capsule Network (AIDC-CN) with the specific aim of accurately categorizing various motor imagination class labels. To enhance the classifier’s performance, a dual feature extraction approach leveraging spectrogram and brain connectivity networks has been employed, diversifying the feature set in the classification task. The main highlights of the proposed AIDC-CN classifier includes the introduction of a dual convolution layer to handle the brain connectivity and spectrogram features, addition of a novel self-attention module (SAM) to accentuate the relevant parts of the convolved spectrogram features, introduction of a new cross-attention module (CAM) to refine the outputs obtained from the dual convolution layers and incorporation of a Gaussian Error Linear Unit (GELU) based dynamic routing algorithm to strengthen the coupling among the primary and secondary capsule layers. Performance analysis undertaken on four public data sets depict the superior performance of the proposed model with respect to the state-of-the-art techniques. The code for this model is available at https://github.com/RiteshSurChowdhury/AIDC-CN. In recent times, Electroencephalography (EEG)-based motor imagery (MI) decoding has garnered significant attention due to its extensive applicability in healthcare, including areas such as assistive robotics and rehabilitation engineering. Nevertheless, the decoding of EEG signals presents considerable challenges owing to their inherent complexity, non-stationary characteristics, and low signal-to-noise ratio. Notably, deep learning-based classifiers have emerged as a prominent focus for addressing the EEG signal decoding process. This study introduces a novel deep learning classifier named the Attention Induced Dual Convolutional-Capsule Network (AIDC-CN) with the specific aim of accurately categorizing various motor imagination class labels. To enhance the classifier’s performance, a dual feature extraction approach leveraging spectrogram and brain connectivity networks has been employed, diversifying the feature set in the classification task. The main highlights of the proposed AIDC-CN classifier includes the introduction of a dual convolution layer to handle the brain connectivity and spectrogram features, addition of a novel self-attention module (SAM) to accentuate the relevant parts of the convolved spectrogram features, introduction of a new cross-attention module (CAM) to refine the outputs obtained from the dual convolution layers and incorporation of a Gaussian Error Linear Unit (GELU) based dynamic routing algorithm to strengthen the coupling among the primary and secondary capsule layers. Performance analysis undertaken on four public data sets depict the superior performance of the proposed model with respect to the state-of-the-art techniques. The code for this model is available at https://github.com/RiteshSurChowdhury/AIDC-CN. •A deep learning paradigm to classify EEG signals of subjects during motor imagination.•A dual feature extraction strategy is used to improve the accuracy of the classifier.•Design of a novel deep learning based classifier to classify motor imagery classes.•Performance analysis undertaken depicts the efficacy of the proposed classifier. In recent times, Electroencephalography (EEG)-based motor imagery (MI) decoding has garnered significant attention due to its extensive applicability in healthcare, including areas such as assistive robotics and rehabilitation engineering. Nevertheless, the decoding of EEG signals presents considerable challenges owing to their inherent complexity, non-stationary characteristics, and low signal-to-noise ratio. Notably, deep learning-based classifiers have emerged as a prominent focus for addressing the EEG signal decoding process. This study introduces a novel deep learning classifier named the Attention Induced Dual Convolutional-Capsule Network (AIDC-CN) with the specific aim of accurately categorizing various motor imagination class labels. To enhance the classifier's performance, a dual feature extraction approach leveraging spectrogram and brain connectivity networks has been employed, diversifying the feature set in the classification task. The main highlights of the proposed AIDC-CN classifier includes the introduction of a dual convolution layer to handle the brain connectivity and spectrogram features, addition of a novel self-attention module (SAM) to accentuate the relevant parts of the convolved spectrogram features, introduction of a new cross-attention module (CAM) to refine the outputs obtained from the dual convolution layers and incorporation of a Gaussian Error Linear Unit (GELU) based dynamic routing algorithm to strengthen the coupling among the primary and secondary capsule layers. Performance analysis undertaken on four public data sets depict the superior performance of the proposed model with respect to the state-of-the-art techniques. The code for this model is available at https://github.com/RiteshSurChowdhury/AIDC-CN.In recent times, Electroencephalography (EEG)-based motor imagery (MI) decoding has garnered significant attention due to its extensive applicability in healthcare, including areas such as assistive robotics and rehabilitation engineering. Nevertheless, the decoding of EEG signals presents considerable challenges owing to their inherent complexity, non-stationary characteristics, and low signal-to-noise ratio. Notably, deep learning-based classifiers have emerged as a prominent focus for addressing the EEG signal decoding process. This study introduces a novel deep learning classifier named the Attention Induced Dual Convolutional-Capsule Network (AIDC-CN) with the specific aim of accurately categorizing various motor imagination class labels. To enhance the classifier's performance, a dual feature extraction approach leveraging spectrogram and brain connectivity networks has been employed, diversifying the feature set in the classification task. The main highlights of the proposed AIDC-CN classifier includes the introduction of a dual convolution layer to handle the brain connectivity and spectrogram features, addition of a novel self-attention module (SAM) to accentuate the relevant parts of the convolved spectrogram features, introduction of a new cross-attention module (CAM) to refine the outputs obtained from the dual convolution layers and incorporation of a Gaussian Error Linear Unit (GELU) based dynamic routing algorithm to strengthen the coupling among the primary and secondary capsule layers. Performance analysis undertaken on four public data sets depict the superior performance of the proposed model with respect to the state-of-the-art techniques. The code for this model is available at https://github.com/RiteshSurChowdhury/AIDC-CN. |
| ArticleNumber | 109260 |
| Author | Konar, Amit Bose, Shirsha Chowdhury, Ritesh Sur Ghosh, Sayantani |
| Author_xml | – sequence: 1 givenname: Ritesh Sur orcidid: 0000-0002-4494-3655 surname: Chowdhury fullname: Chowdhury, Ritesh Sur organization: Artificial Intelligence Laboratory, Department of Electronics and Telecommunication Engineering, Jadavpur University, Kolkata, 700032, West Bengal, India – sequence: 2 givenname: Shirsha orcidid: 0000-0003-4528-955X surname: Bose fullname: Bose, Shirsha organization: Department of Informatics, Technical University of Munich, Munich, Bavaria 85748, Germany – sequence: 3 givenname: Sayantani orcidid: 0000-0002-3156-9772 surname: Ghosh fullname: Ghosh, Sayantani organization: Artificial Intelligence Laboratory, Department of Electronics and Telecommunication Engineering, Jadavpur University, Kolkata, 700032, West Bengal, India – sequence: 4 givenname: Amit orcidid: 0000-0002-9474-5956 surname: Konar fullname: Konar, Amit email: konaramit@yahoo.co.in organization: Artificial Intelligence Laboratory, Department of Electronics and Telecommunication Engineering, Jadavpur University, Kolkata, 700032, West Bengal, India |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39426071$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkktv1DAUhS1URB_wF5AlNmWRwa8kDouKIeUxUlUWwNpynJvKUyee2knR8OtxOi1IIyHNxpbs7x77nnNP0dHgB0AIU7KghBbv1gvj-01jfQ_tghEm0nHFCvIMnVBZVhnJuThCJ4RQkgnJ8mN0GuOaECIIJy_QMa9Eokt6gn4vxxGG0foBr4Z2MtDiy0k7XPvh3rtpvtAuq_UmTg7wNYy_fLjF58vVZZ3V12_f4yVuATbYgQ6DHW5wF3QPD1DnA-79mFbb6xsIW2ycjtF21uhZ9yV63mkX4dXjfoZ-fv70o_6aXX37sqqXV5kRrBozIznwjpWGlGVBDCtZy3OdS94YyUpJgVNaVBzyBjgRsmmrVpd52ciq0DJvBD9D5zvdTfB3E8RR9TYacE4P4KeoUr0UJS34jL7ZQ9d-CsmBmWLJyKKQRaJeP1JTkwJQm5AaDFv15GoCLnaACT7GAJ0ydnzoeQzaOkWJmmNUa_UvRjXHqHYxJgG5J_D0xgGlH3elkCy9txBUNBaGFKwNYEbVenuIyMWeiHF2SLm5W9hC_GsKVZEpor7PgzbPGROEcpHzJPDh_wKH_eEPEOPm1g |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2025_3605265 |
| Cites_doi | 10.1016/j.knosys.2023.110292 10.1109/TNSRE.2022.3230250 10.1088/1741-2552/ab405f 10.1109/LSP.2019.2906824 10.1016/j.future.2019.06.027 10.1142/S0129065716500325 10.1109/ACCESS.2020.3043048 10.1109/TBME.2014.2312397 10.1016/j.bspc.2021.102826 10.1109/CVPR.2018.00745 10.1088/1741-2552/ab3471 10.1186/s40359-019-0308-x 10.1109/JBHI.2020.2967128 10.1007/s00500-015-1937-5 10.1088/1741-2552/aab2f2 10.1093/gigascience/giz002 10.1016/j.compeleceng.2021.107033 10.1016/j.bspc.2022.104066 10.1109/LSP.2021.3049683 10.1016/j.compbiomed.2022.105288 10.1109/TBME.2009.2026181 10.1109/TNNLS.2019.2946869 10.1016/j.eswa.2020.114031 10.1109/TNSRE.2022.3208717 10.1109/TBME.2013.2253608 10.1016/j.compbiomed.2022.105242 10.1609/aaai.v32i1.11496 10.3390/math10152689 10.1109/TNNLS.2020.3048385 10.1016/j.neuroimage.2023.120209 10.1016/j.cmpb.2022.106692 10.1109/TNNLS.2020.3010780 10.1016/j.jfa.2013.05.001 10.3389/fnins.2012.00039 10.1109/CVPR42600.2020.01155 10.1039/C8RA04846K 10.1109/86.895946 10.1109/LSP.2009.2022557 10.3390/brainsci11020197 10.1155/2020/6648574 10.1016/j.artmed.2019.101747 10.1016/j.bspc.2020.102144 10.1109/TBME.2021.3137184 10.1088/1741-2552/aace8c 10.1093/cercor/bhad511 10.1109/JAS.2020.1003336 10.1088/1741-2552/abed81 10.1109/TII.2022.3197419 10.1109/ACCESS.2018.2809453 10.1088/1741-2560/14/1/016003 10.1109/JIOT.2023.3281911 10.3390/bioengineering9070323 10.1016/j.neunet.2023.11.037 10.1016/j.compbiomed.2023.107254 10.1002/hbm.23730 10.3389/fneur.2021.700103 10.1109/TETCI.2017.2750761 10.1016/j.compbiomed.2024.108727 10.3390/s22041477 10.1007/s11517-017-1622-1 10.1007/978-3-030-01234-2_1 10.7717/peerj-cs.375 10.1016/j.robot.2014.12.010 10.1016/j.eswa.2018.08.031 10.1109/TAI.2021.3097307 10.1016/j.patcog.2017.10.003 10.1093/gigascience/gix034 10.1109/JAS.2017.7510616 10.3389/fpsyg.2020.00394 |
| ContentType | Journal Article |
| Copyright | 2024 Elsevier Ltd Elsevier Ltd Copyright © 2024 Elsevier Ltd. All rights reserved. 2024. Elsevier Ltd |
| Copyright_xml | – notice: 2024 Elsevier Ltd – notice: Elsevier Ltd – notice: Copyright © 2024 Elsevier Ltd. All rights reserved. – notice: 2024. Elsevier Ltd |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 8FD FR3 JQ2 K9. M7Z NAPCQ P64 7X8 |
| DOI | 10.1016/j.compbiomed.2024.109260 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Technology Research Database Engineering Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Biochemistry Abstracts 1 ProQuest Nursing and Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Nursing & Allied Health Premium Technology Research Database ProQuest Computer Science Collection Biochemistry Abstracts 1 ProQuest Health & Medical Complete (Alumni) Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitleList | Nursing & Allied Health Premium MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1879-0534 |
| EndPage | 109260 |
| ExternalDocumentID | 39426071 10_1016_j_compbiomed_2024_109260 S0010482524013453 1_s2_0_S0010482524013453 |
| Genre | Journal Article |
| GroupedDBID | --- --K --M --Z -~X .1- .55 .DC .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29F 4.4 457 4G. 53G 5GY 5VS 7-5 71M 77I 7RV 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8G5 8P~ 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABFNM ABJNI ABMAC ABMZM ABOCM ABUWG ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACIWK ACLOT ACNNM ACPRK ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADJOM ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFKRA AFPUW AFRAH AFRHN AFTJW AFXIZ AGHFR AGQPQ AGUBO AGYEJ AHHHB AHMBA AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AOUOD APXCP ARAPS ASPBG AVWKF AXJTR AZFZN AZQEC BBNVY BENPR BGLVJ BHPHI BKEYQ BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DU5 DWQXO EBS EFJIC EFKBS EFLBG EJD EMOBN EO8 EO9 EP2 EP3 EX3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN FYUFA G-2 G-Q GBLVA GBOLZ GNUQQ GUQSH HCIFZ HLZ HMCUK HMK HMO HVGLF HZ~ IHE J1W K6V K7- KOM LK8 LX9 M1P M29 M2O M41 M7P MO0 N9A NAPCQ O-L O9- OAUVE OZT P-8 P-9 P2P P62 PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO Q38 R2- ROL RPZ RXW SAE SBC SCC SDF SDG SDP SEL SES SEW SPC SPCBC SSH SSV SSZ SV3 T5K TAE UAP UKHRP WOW WUQ X7M XPP Z5R ZGI ~G- ~HD AFCTW AGCQF AGRNS ALIPV RIG 3V. AACTN AFKWA AJOXV AMFUW M0N 9DU AAYXX AFFHD CITATION CGR CUY CVF ECM EIF NPM 8FD FR3 JQ2 K9. M7Z P64 7X8 |
| ID | FETCH-LOGICAL-c429t-c83e3f27c07760c272d35a583bc82781e311693e5be3048bd9da757b896a85b43 |
| ISSN | 0010-4825 1879-0534 |
| IngestDate | Thu Oct 02 10:27:09 EDT 2025 Tue Oct 07 06:18:25 EDT 2025 Wed Feb 19 02:04:14 EST 2025 Tue Nov 18 22:10:16 EST 2025 Sat Nov 29 05:31:51 EST 2025 Sat Feb 08 15:52:37 EST 2025 Wed Jun 18 06:48:29 EDT 2025 Tue Oct 14 19:38:05 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Deep learning Motor imagery Electroencephalography (EEG) Capsule network |
| Language | English |
| License | Copyright © 2024 Elsevier Ltd. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c429t-c83e3f27c07760c272d35a583bc82781e311693e5be3048bd9da757b896a85b43 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-4494-3655 0000-0002-3156-9772 0000-0003-4528-955X 0000-0002-9474-5956 |
| PMID | 39426071 |
| PQID | 3128256686 |
| PQPubID | 1226355 |
| PageCount | 1 |
| ParticipantIDs | proquest_miscellaneous_3118471634 proquest_journals_3128256686 pubmed_primary_39426071 crossref_citationtrail_10_1016_j_compbiomed_2024_109260 crossref_primary_10_1016_j_compbiomed_2024_109260 elsevier_sciencedirect_doi_10_1016_j_compbiomed_2024_109260 elsevier_clinicalkeyesjournals_1_s2_0_S0010482524013453 elsevier_clinicalkey_doi_10_1016_j_compbiomed_2024_109260 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-12-01 |
| PublicationDateYYYYMMDD | 2024-12-01 |
| PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Oxford |
| PublicationTitle | Computers in biology and medicine |
| PublicationTitleAlternate | Comput Biol Med |
| PublicationYear | 2024 |
| Publisher | Elsevier Ltd Elsevier Limited |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier Limited |
| References | Zhang, Yao, Chen, Monaghan (b65) 2019; 26 Lian, Li (b72) 2024 Hou, Jia, Lun, Hao, Shi, Li, Zeng, Lv (b74) 2022 Miao, Zhao, Zhang, Ming (b85) 2023 Xu, Xu, Sun, Li, Dong, Wang, Li, Wang, Zhang, Pang (b66) 2022; 218 Sadiq, Aziz, Almogren, Yousaf, Siuly, Rehman (b45) 2022 Moran, O’Shea (b11) 2020; 11 Saha, Konar, Nagar (b2) 2017; 1 Lee (b92) 2023 Bhattacharyya, Konar, Tibarewala (b10) 2017; 4 Mastyło (b89) 2013; 265 Kumar, Sharma, Sharma (b71) 2021; 7 Yu, Wang, Wang, Chen, Yao, Xu, Zhang, Wang, Zhang (b53) 2024; 34 Chen, Liu, Wang, Gao (b104) 2022; 30 Li, Zhu, Zhang, Sun, Wang (b62) 2017 Khasnobish, Datta, Sardar, Tibarewala, Konar (b5) 2015; 71 Defferrard, Bresson, Vandergheynst (b27) 2016; 29 Amin, Altaheri, Muhammad, Alsulaiman, Abdul (b54) 2021 de Wit, Vervoort, van Eerden, Van Den Berg, Visser-Meily, Beelen, Schröder (b8) 2019; 7 Raza, Cecotti, Li, Prasad (b40) 2016; 20 Zhao, Zheng, Ma, Li, Zheng (b80) 2020; 32 Zhang, Kim, Eskandarian (b69) 2021; 18 Coogan, He (b1) 2018; 6 Hendrycks, Gimpel (b28) 2016 Luo, Xie, Zhang, Li (b38) 2015 Kingma, Ba (b97) 2014 Thomas, Guan, Lau, Vinod, Ang (b33) 2009; 56 Altaheri, Muhammad, Alsulaiman (b88) 2023 Wang, Wang, Qi, Kong, Wang (b59) 2024; 170 Yuan, He (b4) 2014; 61 Sabour, Frosst, Hinton (b21) 2017; 30 Park, Woo, Lee, Kweon (b101) 2018 Zhao, Chen, Zhang, Zhang (b100) 2022 Zhang, Ding (b43) 2023; 263 Howard, Zhu, Chen, Kalenichenko, Wang, Weyand, Andreetto, Adam (b102) 2017 Patrick, Adekoya, Mighty, Edward (b22) 2022; 34 Lee, Xie, Gallagher, Zhang, Tu (b29) 2015 Hardiman, Al-Chalabi, Chio, Corr, Logroscino, Robberecht, Shaw, Simmons, Van Den Berg (b6) 2017; 3 Li, Zhao, Song, Liu, Qian, Chen (b25) 2022 Lawhern, Solon, Waytowich, Gordon, Hung, Lance (b55) 2018; 15 Miao, Wang, Liu (b37) 2017; 55 Zhang, Zong, Dou, Zhao (b68) 2019; 16 Amin, Alsulaiman, Muhammad, Mekhtiche, Hossain (b50) 2019; 101 Bublitz, Weck, Egger-Rainer, Lex, Paal, Lorenzl (b7) 2021; 12 Musallam, AlFassam, Muhammad, Amin, Alsulaiman, Abdul, Altaheri, Bencherif, Algabri (b52) 2021; 69 Bose, Ghosh, Konar, Nagar (b24) 2021 Cho, Ahn, Ahn (b94) 2017 Lee, Kwon, Kim, Kim, Lee, Williamson, Fazli, Lee (b95) 2019; 8 Roomi, Imran, Shah, Almogren, Ali, Zuair (b14) 2020; 8 Sanghyun Woo, Jongchan Park, Joon-Young Lee, In So Kweon, Cbam: Convolutional block attention module, in: Proceedings of the European Conference on Computer Vision, ECCV, 2018, pp. 3–19. Kwon, Lee, Guan, Lee (b51) 2019; 31 Altuwaijri, Muhammad (b57) 2022; 9 Dose, Møller, Iversen, Puthusserypady (b47) 2018; 114 Li, Chen, Jia, Zhang, Yin (b48) 2023; 79 Bruna, Zaremba, Szlam, LeCun (b73) 2013 Zhang, Wang, Jin, Wang (b36) 2017; 27 Lu, Gao, Lu, Yang, Bai, Li (b67) 2019 Qilong Wang, Banggu Wu, Pengfei Zhu, Peihua Li, Wangmeng Zuo, Qinghua Hu, ECA-Net: Efficient channel attention for deep convolutional neural networks, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 11534–11542. Schirrmeister, Springenberg, Fiederer, Glasstetter, Eggensperger, Tangermann, Hutter, Burgard, Ball (b46) 2017; 38 Kumar, Sharma, Tsunoda (b63) 2019; 9 Ukil, Yeap, Satpathi, Ukil, Yeap, Satpathi (b20) 2020 Dalin Zhang, Lina Yao, Xiang Zhang, Sen Wang, Weitong Chen, Robert Boots, Boualem Benatallah, Cascade and parallel convolutional recurrent neural networks on EEG-based intention recognition for brain computer interface, in: Proceedings of the Aaai Conference on Artificial Intelligence, Vol. 32, No. 1, 2018. Ang, Chin, Zhang, Guan (b31) 2008 Wang, Zhang, Fu, Sun (b18) 2018; 8 Rakshit, Konar, Nagar (b9) 2020; 7 Lakshmi, Prasad, Prakash (b16) 2014; 4 Ramachandran, Zoph, Le (b90) 2017 Ang, Chin, Wang, Guan, Zhang (b32) 2012; 6 Autthasan, Chaisaen, Sudhawiyangkul, Rangpong, Kiatthaveephong, Dilokthanakul, Bhakdisongkhram, Phan, Guan, Wilaiprasitporn (b77) 2021; 69 Ibtehaz, Chowdhury, Khandakar, Kiranyaz, Rahman, Zughaier (b103) 2023; 35 Bibi, Sikandar, Ud Din, Almogren, Ali (b15) 2020; 2020 Tangermann, Müller, Aertsen, Birbaumer, Braun, Brunner, Leeb, Mehring, Miller, Mueller-Putz (b93) 2012 Khademi, Ebrahimi, Kordy (b70) 2022; 143 Bergstra, Bardenet, Bengio, Kégl (b96) 2011; 24 Sun, Zhang, Wu, Zhang, Li (b75) 2021; 28 Venkatachalam, Devipriya, Maniraj, Sivaram, Ambikapathy, Iraj (b82) 2020; 103 Yang, Sakhavi, Ang, Guan (b44) 2015 Samek, Meinecke, Müller (b35) 2013; 60 Hollander, Wolfe, Chicken (b105) 2013 Šverko, Vrankić, Vlahinić, Rogelj (b19) 2022; 22 Sadiq, Yu, Yuan (b13) 2021; 164 Zhang, Chen, Jian, Yao (b76) 2020; 24 Zheng, Zhu, Qin, Chen, Heng (b39) 2018; 76 Kang, Nam, Choi (b34) 2009; 16 Luo, Wang, Xia, Lu, Ren, Shi, Hei (b86) 2023; 164 Liu, Yang (b58) 2021; 11 Bashivan, Rish, Yeasin, Codella (b61) 2015 Saadatmorad, Talookolaei, Pashaei, Khatir, Wahab (b17) 2022; 10 Tabar, Halici (b49) 2016; 14 Song, Zheng, Liu, Gao (b84) 2022; 31 Datta, Sengupta, Das, Dasgupta, Ghosh, Konar (b60) 2023 Bang, Lee, Fazli, Guan, Lee (b81) 2021; 33 Mane, Chew, Chua, Ang, Robinson, Vinod, Lee, Guan (b83) 2021 Lotte, Bougrain, Cichocki, Clerc, Congedo, Rakotomamonjy, Yger (b3) 2018; 15 Yu, Aziz, Hou, Li, Lv, Jamil (b41) 2021 Altaheri, Muhammad, Alsulaiman (b87) 2022; 19 Kwon-Woo, Jin-Woo (b23) 2019; 19 Dai, Zhou, Huang, Wang (b56) 2020; 17 Zhang, Zong, Dou, Zhao, Tang, Li (b79) 2021; 63 Sadiq, Yu, Yuan, Aziz, Siuly, Ding (b42) 2021; 2 Ramoser, Muller-Gerking, Pfurtscheller (b30) 2000; 8 Tang, Wang, Du, Dai (b78) 2019; 101 Batula, Ayaz, Kim (b12) 2014 Toraman (b26) 2021; 91 Jie Hu, Li Shen, Gang Sun, Squeeze-and-excitation networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 7132–7141. Tabar (10.1016/j.compbiomed.2024.109260_b49) 2016; 14 Bang (10.1016/j.compbiomed.2024.109260_b81) 2021; 33 Li (10.1016/j.compbiomed.2024.109260_b48) 2023; 79 Musallam (10.1016/j.compbiomed.2024.109260_b52) 2021; 69 Miao (10.1016/j.compbiomed.2024.109260_b37) 2017; 55 Datta (10.1016/j.compbiomed.2024.109260_b60) 2023 Altaheri (10.1016/j.compbiomed.2024.109260_b88) 2023 Šverko (10.1016/j.compbiomed.2024.109260_b19) 2022; 22 Sadiq (10.1016/j.compbiomed.2024.109260_b13) 2021; 164 Toraman (10.1016/j.compbiomed.2024.109260_b26) 2021; 91 Defferrard (10.1016/j.compbiomed.2024.109260_b27) 2016; 29 Rakshit (10.1016/j.compbiomed.2024.109260_b9) 2020; 7 Mastyło (10.1016/j.compbiomed.2024.109260_b89) 2013; 265 Amin (10.1016/j.compbiomed.2024.109260_b50) 2019; 101 Liu (10.1016/j.compbiomed.2024.109260_b58) 2021; 11 Thomas (10.1016/j.compbiomed.2024.109260_b33) 2009; 56 Kwon-Woo (10.1016/j.compbiomed.2024.109260_b23) 2019; 19 Wang (10.1016/j.compbiomed.2024.109260_b18) 2018; 8 Cho (10.1016/j.compbiomed.2024.109260_b94) 2017 Khademi (10.1016/j.compbiomed.2024.109260_b70) 2022; 143 Bublitz (10.1016/j.compbiomed.2024.109260_b7) 2021; 12 Lotte (10.1016/j.compbiomed.2024.109260_b3) 2018; 15 Zhang (10.1016/j.compbiomed.2024.109260_b69) 2021; 18 Zhang (10.1016/j.compbiomed.2024.109260_b68) 2019; 16 Lu (10.1016/j.compbiomed.2024.109260_b67) 2019 Zhang (10.1016/j.compbiomed.2024.109260_b79) 2021; 63 Ramachandran (10.1016/j.compbiomed.2024.109260_b90) 2017 Bhattacharyya (10.1016/j.compbiomed.2024.109260_b10) 2017; 4 Ukil (10.1016/j.compbiomed.2024.109260_b20) 2020 Lee (10.1016/j.compbiomed.2024.109260_b29) 2015 Kwon (10.1016/j.compbiomed.2024.109260_b51) 2019; 31 Schirrmeister (10.1016/j.compbiomed.2024.109260_b46) 2017; 38 Zhang (10.1016/j.compbiomed.2024.109260_b76) 2020; 24 Moran (10.1016/j.compbiomed.2024.109260_b11) 2020; 11 Bose (10.1016/j.compbiomed.2024.109260_b24) 2021 Wang (10.1016/j.compbiomed.2024.109260_b59) 2024; 170 Sadiq (10.1016/j.compbiomed.2024.109260_b45) 2022 Samek (10.1016/j.compbiomed.2024.109260_b35) 2013; 60 Altaheri (10.1016/j.compbiomed.2024.109260_b87) 2022; 19 Yu (10.1016/j.compbiomed.2024.109260_b53) 2024; 34 Li (10.1016/j.compbiomed.2024.109260_b62) 2017 Autthasan (10.1016/j.compbiomed.2024.109260_b77) 2021; 69 Zhang (10.1016/j.compbiomed.2024.109260_b43) 2023; 263 Zhang (10.1016/j.compbiomed.2024.109260_b65) 2019; 26 Coogan (10.1016/j.compbiomed.2024.109260_b1) 2018; 6 Hendrycks (10.1016/j.compbiomed.2024.109260_b28) 2016 Yu (10.1016/j.compbiomed.2024.109260_b41) 2021 Howard (10.1016/j.compbiomed.2024.109260_b102) 2017 Ang (10.1016/j.compbiomed.2024.109260_b32) 2012; 6 Sabour (10.1016/j.compbiomed.2024.109260_b21) 2017; 30 Park (10.1016/j.compbiomed.2024.109260_b101) 2018 Sadiq (10.1016/j.compbiomed.2024.109260_b42) 2021; 2 Khasnobish (10.1016/j.compbiomed.2024.109260_b5) 2015; 71 Ramoser (10.1016/j.compbiomed.2024.109260_b30) 2000; 8 Luo (10.1016/j.compbiomed.2024.109260_b86) 2023; 164 Xu (10.1016/j.compbiomed.2024.109260_b66) 2022; 218 Tangermann (10.1016/j.compbiomed.2024.109260_b93) 2012 Roomi (10.1016/j.compbiomed.2024.109260_b14) 2020; 8 Mane (10.1016/j.compbiomed.2024.109260_b83) 2021 Yuan (10.1016/j.compbiomed.2024.109260_b4) 2014; 61 Zhao (10.1016/j.compbiomed.2024.109260_b80) 2020; 32 Yang (10.1016/j.compbiomed.2024.109260_b44) 2015 Venkatachalam (10.1016/j.compbiomed.2024.109260_b82) 2020; 103 Sun (10.1016/j.compbiomed.2024.109260_b75) 2021; 28 Saha (10.1016/j.compbiomed.2024.109260_b2) 2017; 1 Kang (10.1016/j.compbiomed.2024.109260_b34) 2009; 16 Hou (10.1016/j.compbiomed.2024.109260_b74) 2022 Ang (10.1016/j.compbiomed.2024.109260_b31) 2008 Zhao (10.1016/j.compbiomed.2024.109260_b100) 2022 Ibtehaz (10.1016/j.compbiomed.2024.109260_b103) 2023; 35 Lee (10.1016/j.compbiomed.2024.109260_b95) 2019; 8 Saadatmorad (10.1016/j.compbiomed.2024.109260_b17) 2022; 10 Kumar (10.1016/j.compbiomed.2024.109260_b71) 2021; 7 Lakshmi (10.1016/j.compbiomed.2024.109260_b16) 2014; 4 Chen (10.1016/j.compbiomed.2024.109260_b104) 2022; 30 10.1016/j.compbiomed.2024.109260_b98 Bashivan (10.1016/j.compbiomed.2024.109260_b61) 2015 Bergstra (10.1016/j.compbiomed.2024.109260_b96) 2011; 24 10.1016/j.compbiomed.2024.109260_b91 Altuwaijri (10.1016/j.compbiomed.2024.109260_b57) 2022; 9 Patrick (10.1016/j.compbiomed.2024.109260_b22) 2022; 34 Raza (10.1016/j.compbiomed.2024.109260_b40) 2016; 20 Kumar (10.1016/j.compbiomed.2024.109260_b63) 2019; 9 10.1016/j.compbiomed.2024.109260_b99 Zhang (10.1016/j.compbiomed.2024.109260_b36) 2017; 27 Zheng (10.1016/j.compbiomed.2024.109260_b39) 2018; 76 Kingma (10.1016/j.compbiomed.2024.109260_b97) 2014 Dai (10.1016/j.compbiomed.2024.109260_b56) 2020; 17 10.1016/j.compbiomed.2024.109260_b64 Hollander (10.1016/j.compbiomed.2024.109260_b105) 2013 Hardiman (10.1016/j.compbiomed.2024.109260_b6) 2017; 3 Miao (10.1016/j.compbiomed.2024.109260_b85) 2023 Lian (10.1016/j.compbiomed.2024.109260_b72) 2024 Amin (10.1016/j.compbiomed.2024.109260_b54) 2021 Dose (10.1016/j.compbiomed.2024.109260_b47) 2018; 114 Li (10.1016/j.compbiomed.2024.109260_b25) 2022 Song (10.1016/j.compbiomed.2024.109260_b84) 2022; 31 Lawhern (10.1016/j.compbiomed.2024.109260_b55) 2018; 15 Bruna (10.1016/j.compbiomed.2024.109260_b73) 2013 Tang (10.1016/j.compbiomed.2024.109260_b78) 2019; 101 Batula (10.1016/j.compbiomed.2024.109260_b12) 2014 de Wit (10.1016/j.compbiomed.2024.109260_b8) 2019; 7 Bibi (10.1016/j.compbiomed.2024.109260_b15) 2020; 2020 Lee (10.1016/j.compbiomed.2024.109260_b92) 2023 Luo (10.1016/j.compbiomed.2024.109260_b38) 2015 |
| References_xml | – volume: 60 start-page: 2289 year: 2013 end-page: 2298 ident: b35 article-title: Transferring subspaces between subjects in brain–computer interfacing publication-title: IEEE Trans. Biomed. Eng. – volume: 16 year: 2019 ident: b68 article-title: A novel hybrid deep learning scheme for four-class motor imagery classification publication-title: J. Neural Eng. – volume: 3 start-page: 1 year: 2017 end-page: 19 ident: b6 article-title: Amyotrophic lateral sclerosis publication-title: Nature Rev. Disease Prim. – start-page: 55 year: 2012 ident: b93 article-title: Review of the BCI competition IV publication-title: Front. Neurosci. – year: 2022 ident: b45 article-title: Exploiting pretrained CNN models for the development of an EEG-based robust BCI framework publication-title: Comput. Biol. Med. – volume: 265 start-page: 185 year: 2013 end-page: 207 ident: b89 article-title: Bilinear interpolation theorems and applications publication-title: J. Funct. Anal. – volume: 4 start-page: 639 year: 2017 end-page: 650 ident: b10 article-title: Motor imagery and error related potential induced position control of a robotic arm publication-title: IEEE/CAA J. Autom. Sin. – volume: 38 start-page: 5391 year: 2017 end-page: 5420 ident: b46 article-title: Deep learning with convolutional neural networks for EEG decoding and visualization publication-title: Human Brain Map. – year: 2013 ident: b73 article-title: Spectral networks and locally connected networks on graphs – volume: 2020 year: 2020 ident: b15 article-title: IoMT-based automated detection and classification of leukemia using deep learning publication-title: J. Healthc. Eng. – start-page: 475 year: 2021 end-page: 480 ident: b41 article-title: An extended computer aided diagnosis system for robust BCI applications publication-title: 2021 IEEE 9th International Conference on Information, Communication and Networks – volume: 9 start-page: 1 year: 2019 end-page: 13 ident: b63 article-title: Brain wave classification using long short-term memory network based OPTICAL predictor publication-title: Sci. Rep. – year: 2023 ident: b88 article-title: Dynamic convolution with multilevel attention for EEG-based motor imagery decoding publication-title: IEEE Internet Things J. – volume: 35 start-page: 18719 year: 2023 end-page: 18735 ident: b103 article-title: RamanNet: a generalized neural network architecture for Raman spectrum analysis publication-title: Neural Comput. Appl. – volume: 9 start-page: 323 year: 2022 ident: b57 article-title: Electroencephalogram-based motor imagery signals classification using a multi-branch convolutional neural network model with attention blocks publication-title: Bioengineering – volume: 20 start-page: 3085 year: 2016 end-page: 3096 ident: b40 article-title: Adaptive learning with covariate shift-detection for motor imagery-based brain–computer interface publication-title: Soft Comput. – volume: 10 start-page: 2689 year: 2022 ident: b17 article-title: Pearson correlation and discrete wavelet transform for crack identification in steel beams publication-title: Mathematics – volume: 6 start-page: 39 year: 2012 ident: b32 article-title: Filter bank common spatial pattern algorithm on BCI competition iv datasets 2a and 2b publication-title: Front. Neurosci. – year: 2017 ident: b90 article-title: Searching for activation functions – volume: 8 start-page: giz002 year: 2019 ident: b95 article-title: EEG dataset and openbmi toolbox for three BCI paradigms: An investigation into BCI illiteracy publication-title: GigaScience – year: 2016 ident: b28 article-title: Gaussian error linear units (gelus) – year: 2023 ident: b92 article-title: GELU activation function in deep learning: A comprehensive mathematical analysis and performance – volume: 55 start-page: 1589 year: 2017 end-page: 1603 ident: b37 article-title: A spatial-frequency-temporal optimized feature sparse representation-based classification method for motor imagery EEG pattern recognition publication-title: Med. Biol. Eng. Comput. – volume: 31 start-page: 3839 year: 2019 end-page: 3852 ident: b51 article-title: Subject-independent brain–computer interfaces based on deep convolutional neural networks publication-title: IEEE Trans. Neural Netw. Learn. Syst. – reference: Qilong Wang, Banggu Wu, Pengfei Zhu, Peihua Li, Wangmeng Zuo, Qinghua Hu, ECA-Net: Efficient channel attention for deep convolutional neural networks, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 11534–11542. – volume: 28 start-page: 219 year: 2021 end-page: 223 ident: b75 article-title: Adaptive spatiotemporal graph convolutional networks for motor imagery classification publication-title: IEEE Signal Process. Lett. – year: 2021 ident: b83 article-title: FBCNet: A multi-view convolutional neural network for brain-computer interface – start-page: 2390 year: 2008 end-page: 2397 ident: b31 article-title: Filter bank common spatial pattern (FBCSP) in brain-computer interface publication-title: 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence) – volume: 16 start-page: 683 year: 2009 end-page: 686 ident: b34 article-title: Composite common spatial pattern for subject-to-subject transfer publication-title: IEEE Signal Process. Lett. – start-page: 2620 year: 2015 end-page: 2623 ident: b44 article-title: On the use of convolutional neural networks and augmented CSP features for multi-class motor imagery of EEG signals classification publication-title: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society – volume: 114 start-page: 532 year: 2018 end-page: 542 ident: b47 article-title: An end-to-end deep learning approach to MI-EEG signal classification for BCIs publication-title: Expert Syst. Appl. – volume: 15 year: 2018 ident: b3 article-title: A review of classification algorithms for EEG-based brain–computer interfaces: a 10 year update publication-title: J. Neural Eng. – year: 2015 ident: b61 article-title: Learning representations from EEG with deep recurrent-convolutional neural networks – start-page: 1 year: 2021 end-page: 6 ident: b54 article-title: Attention based inception model for robust EEG motor imagery classification publication-title: 2021 IEEE International Instrumentation and Measurement Technology Conference – volume: 1 start-page: 437 year: 2017 end-page: 453 ident: b2 article-title: EEG analysis for cognitive failure detection in driving using type-2 fuzzy classifiers publication-title: IEEE Trans. Emerg. Top. Comput. Intell. – volume: 71 start-page: 166 year: 2015 end-page: 179 ident: b5 article-title: Interfacing robotic tactile sensation with human vibrotactile perception for digit recognition publication-title: Robot. Auton. Syst. – volume: 14 year: 2016 ident: b49 article-title: A novel deep learning approach for classification of EEG motor imagery signals publication-title: J. Neural Eng. – volume: 7 start-page: 1344 year: 2020 end-page: 1360 ident: b9 article-title: A hybrid brain-computer interface for closed-loop position control of a robot arm publication-title: IEEE/CAA J. Autom. Sin. – volume: 24 start-page: 2570 year: 2020 end-page: 2579 ident: b76 article-title: Motor imagery classification via temporal attention cues of graph embedded EEG signals publication-title: IEEE J. Biomed. Health Inform. – year: 2024 ident: b72 article-title: An end-to-end multi-task motor imagery EEG classification neural network based on dynamic fusion of spectral-temporal features publication-title: Comput. Biol. Med. – year: 2014 ident: b97 article-title: Adam: A method for stochastic optimization – volume: 33 start-page: 3038 year: 2021 end-page: 3049 ident: b81 article-title: Spatio-spectral feature representation for motor imagery classification using convolutional neural networks publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 26 start-page: 715 year: 2019 end-page: 719 ident: b65 article-title: A convolutional recurrent attention model for subject-independent EEG signal analysis publication-title: IEEE Signal Process. Lett. – volume: 31 start-page: 710 year: 2022 end-page: 719 ident: b84 article-title: EEG conformer: Convolutional transformer for EEG decoding and visualization publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 103 year: 2020 ident: b82 article-title: A novel method of motor imagery classification using EEG signal publication-title: Artif. Intell. Med. – volume: 143 year: 2022 ident: b70 article-title: A transfer learning-based CNN and LSTM hybrid deep learning model to classify motor imagery EEG signals publication-title: Comput. Biol. Med. – volume: 8 start-page: 29745 year: 2018 end-page: 29755 ident: b18 article-title: EEG characteristic analysis of coach bus drivers based on brain connectivity as revealed via a graph theoretical network publication-title: RSC Adv. – year: 2022 ident: b25 article-title: Patient-specific seizure prediction from electroencephalogram signal via multi-channel feedback capsule network publication-title: IEEE Trans. Cogn. Dev. Syst. – reference: Sanghyun Woo, Jongchan Park, Joon-Young Lee, In So Kweon, Cbam: Convolutional block attention module, in: Proceedings of the European Conference on Computer Vision, ECCV, 2018, pp. 3–19. – volume: 34 start-page: 1295 year: 2022 end-page: 1310 ident: b22 article-title: Capsule networks–a survey publication-title: J. King Saud Univ. Comput. Inf. Sci. – start-page: 562 year: 2015 end-page: 570 ident: b29 article-title: Deeply-supervised nets publication-title: Artificial Intelligence and Statistics – volume: 30 start-page: 2764 year: 2022 end-page: 2772 ident: b104 article-title: A spectrally-dense encoding method for designing a high-speed SSVEP-BCI with 120 stimuli publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 101 year: 2019 ident: b78 article-title: Motor imagery EEG recognition with KNN-based smooth auto-encoder publication-title: Artif. Intell. Med. – start-page: 2000 year: 2014 end-page: 2003 ident: b12 article-title: Evaluating a four-class motor-imagery-based optical brain-computer interface publication-title: 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society – volume: 61 start-page: 1425 year: 2014 end-page: 1435 ident: b4 article-title: Brain–computer interfaces using sensorimotor rhythms: current state and future perspectives publication-title: IEEE Trans. Biomed. Eng. – volume: 218 year: 2022 ident: b66 article-title: A framework for motor imagery with LSTM neural network publication-title: Comput. Methods Programs Biomed. – volume: 69 year: 2021 ident: b52 article-title: Electroencephalography-based motor imagery classification using temporal convolutional network fusion publication-title: Biomed. Signal Process. Control – volume: 79 year: 2023 ident: b48 article-title: A parallel multi-scale time-frequency block convolutional neural network based on channel attention module for motor imagery classification publication-title: Biomed. Signal Process. Control – volume: 8 start-page: 219656 year: 2020 end-page: 219671 ident: b14 article-title: A novel de-ghosting image fusion technique for multi-exposure, multi-focus images using guided image filtering publication-title: IEEE Access – volume: 263 year: 2023 ident: b43 article-title: Motor imagery classification via stacking-based Takagi–Sugeno–Kang fuzzy classifier ensemble publication-title: Knowl.-Based Syst. – volume: 22 start-page: 1477 year: 2022 ident: b19 article-title: Complex Pearson correlation coefficient for EEG connectivity analysis publication-title: Sensors – volume: 27 year: 2017 ident: b36 article-title: Sparse Bayesian learning for obtaining sparsity of EEG frequency bands based feature vectors in motor imagery classification publication-title: Int. J. Neural Syst. – volume: 101 start-page: 542 year: 2019 end-page: 554 ident: b50 article-title: Deep learning for EEG motor imagery classification based on multi-layer CNNs feature fusion publication-title: Future Gener. Comput. Syst. – volume: 164 year: 2023 ident: b86 article-title: A shallow mirror transformer for subject-independent motor imagery BCI publication-title: Comput. Biol. Med. – start-page: 195 year: 2020 end-page: 221 ident: b20 article-title: Frequency-domain based fault detection: Application of short-time fourier transform publication-title: Fault Analysis and Protection System Design for DC Grids – start-page: 584 year: 2017 end-page: 589 ident: b62 article-title: The novel recognition method with optimal wavelet packet and LSTM based recurrent neural network publication-title: 2017 IEEE International Conference on Mechatronics and Automation – volume: 17 year: 2020 ident: b56 article-title: HS-CNN: a CNN with hybrid convolution scale for EEG motor imagery classification publication-title: J. Neural Eng. – volume: 32 start-page: 535 year: 2020 end-page: 545 ident: b80 article-title: Deep representation-based domain adaptation for nonstationary EEG classification publication-title: IEEE Trans. Neural Netw. Learn. Syst. – reference: Jie Hu, Li Shen, Gang Sun, Squeeze-and-excitation networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 7132–7141. – volume: 18 year: 2021 ident: b69 article-title: EEG-inception: an accurate and robust end-to-end neural network for EEG-based motor imagery classification publication-title: J. Neural Eng. – volume: 29 year: 2016 ident: b27 article-title: Convolutional neural networks on graphs with fast localized spectral filtering publication-title: Adv. Neural Inf. Process. Syst. – volume: 69 start-page: 2105 year: 2021 end-page: 2118 ident: b77 article-title: Min2net: End-to-end multi-task learning for subject-independent motor imagery eeg classification publication-title: IEEE Trans. Biomed. Eng. – start-page: 1 year: 2021 end-page: 8 ident: b24 article-title: Decoding the confidence level of subjects in answering multiple choice questions using EEG induced capsule network publication-title: 2021 IEEE Symposium Series on Computational Intelligence – volume: 4 year: 2014 ident: b16 article-title: Survey on EEG signal processing methods publication-title: Int. J. Adv. Res. Comput. Sci. Softw. Eng. – year: 2023 ident: b85 article-title: LMDA-Net: A lightweight multi-dimensional attention network for general EEG-based brain-computer interfaces and interpretability publication-title: NeuroImage – start-page: 297 year: 2022 end-page: 312 ident: b100 article-title: BA-net: Bridge attention for deep convolutional neural networks publication-title: European Conference on Computer Vision – year: 2013 ident: b105 publication-title: Nonparametric Statistical Methods – year: 2017 ident: b94 article-title: Supporting data for “EEG datasets for motor imagery brain computer interface.” publication-title: GigaSci. Database – volume: 2 start-page: 314 year: 2021 end-page: 328 ident: b42 article-title: Toward the development of versatile brain–computer interfaces publication-title: IEEE Trans. Artif. Intell. – volume: 19 start-page: 2249 year: 2022 end-page: 2258 ident: b87 article-title: Physics-informed attention temporal convolutional network for EEG-based motor imagery classification publication-title: IEEE Trans. Ind. Inform. – volume: 30 year: 2017 ident: b21 article-title: Dynamic routing between capsules publication-title: Adv. Neural Inf. Process. Syst. – volume: 34 start-page: bhad511 year: 2024 ident: b53 article-title: Multiclass classification of motor imagery tasks based on multi-branch convolutional neural network and temporal convolutional network model publication-title: Cerebral Cortex – volume: 56 start-page: 2730 year: 2009 end-page: 2733 ident: b33 article-title: A new discriminative common spatial pattern method for motor imagery brain–computer interfaces publication-title: IEEE Trans. Biomed. Eng. – volume: 8 start-page: 441 year: 2000 end-page: 446 ident: b30 article-title: Optimal spatial filtering of single trial EEG during imagined hand movement publication-title: IEEE Trans. Rehabilit. Eng. – volume: 11 start-page: 197 year: 2021 ident: b58 article-title: A Densely connected multi-Branch 3D convolutional neural network for motor imagery EEG decoding publication-title: Brain Sci. – start-page: 1 year: 2019 end-page: 6 ident: b67 article-title: Combined CNN and LSTM for motor imagery classification publication-title: 2019 12th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics – volume: 7 year: 2021 ident: b71 article-title: OPTICAL+: a frequency-based deep learning scheme for recognizing brain wave signals publication-title: Peerj Comput. Sci. – volume: 170 start-page: 312 year: 2024 end-page: 324 ident: b59 article-title: BrainGridNet: A two-branch depthwise CNN for decoding EEG-based multi-class motor imagery publication-title: Neural Netw. – volume: 91 year: 2021 ident: b26 article-title: Automatic recognition of preictal and interictal EEG signals using 1D-capsule networks publication-title: Comput. Electr. Eng. – start-page: 938 year: 2015 end-page: 947 ident: b38 article-title: Support matrix machines publication-title: International Conference on Machine Learning – volume: 19 year: 2019 ident: b23 article-title: Motor imagery EEG classification using capsule networks publication-title: Sensors – reference: Dalin Zhang, Lina Yao, Xiang Zhang, Sen Wang, Weitong Chen, Robert Boots, Boualem Benatallah, Cascade and parallel convolutional recurrent neural networks on EEG-based intention recognition for brain computer interface, in: Proceedings of the Aaai Conference on Artificial Intelligence, Vol. 32, No. 1, 2018. – volume: 24 year: 2011 ident: b96 article-title: Algorithms for hyper-parameter optimization publication-title: Adv. Neural Inf. Process. Syst. – volume: 7 start-page: 1 year: 2019 end-page: 13 ident: b8 article-title: User perspectives on a psychosocial blended support program for partners of patients with amyotrophic lateral sclerosis and progressive muscular atrophy: a qualitative study publication-title: BMC Psychol. – volume: 164 year: 2021 ident: b13 article-title: Exploiting dimensionality reduction and neural network techniques for the development of expert brain–computer interfaces publication-title: Expert Syst. Appl. – volume: 76 start-page: 715 year: 2018 end-page: 726 ident: b39 article-title: Sparse support matrix machine publication-title: Pattern Recognit. – volume: 12 year: 2021 ident: b7 article-title: Palliative care challenges of patients with progressive bulbar palsy: a retrospective case series of 14 patients publication-title: Front. Neurol. – volume: 15 year: 2018 ident: b55 article-title: Eegnet: a compact convolutional neural network for EEG-based brain–computer interfaces publication-title: J. Neural Eng. – volume: 63 year: 2021 ident: b79 article-title: Hybrid deep neural network using transfer learning for EEG motor imagery decoding publication-title: Biomed. Signal Process. Control – volume: 6 start-page: 10840 year: 2018 end-page: 10849 ident: b1 article-title: Brain-computer interface control in a virtual reality environment and applications for the internet of things publication-title: IEEE Access – volume: 11 start-page: 394 year: 2020 ident: b11 article-title: Motor imagery practice and cognitive processes publication-title: Front. Psychol. – start-page: 1 year: 2023 end-page: 2 ident: b60 article-title: A deep learning approach for position control of a mobile robot publication-title: 2023 8th International Conference on Computers and Devices for Communication – year: 2018 ident: b101 article-title: Bam: Bottleneck attention module – year: 2022 ident: b74 article-title: GCNs-net: a graph convolutional neural network approach for decoding time-resolved eeg motor imagery signals publication-title: IEEE Trans. Neural Netw. Learn. Syst. – year: 2017 ident: b102 article-title: Mobilenets: Efficient convolutional neural networks for mobile vision applications – volume: 263 year: 2023 ident: 10.1016/j.compbiomed.2024.109260_b43 article-title: Motor imagery classification via stacking-based Takagi–Sugeno–Kang fuzzy classifier ensemble publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2023.110292 – volume: 31 start-page: 710 year: 2022 ident: 10.1016/j.compbiomed.2024.109260_b84 article-title: EEG conformer: Convolutional transformer for EEG decoding and visualization publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2022.3230250 – volume: 17 issue: 1 year: 2020 ident: 10.1016/j.compbiomed.2024.109260_b56 article-title: HS-CNN: a CNN with hybrid convolution scale for EEG motor imagery classification publication-title: J. Neural Eng. doi: 10.1088/1741-2552/ab405f – start-page: 1 year: 2023 ident: 10.1016/j.compbiomed.2024.109260_b60 article-title: A deep learning approach for position control of a mobile robot – start-page: 475 year: 2021 ident: 10.1016/j.compbiomed.2024.109260_b41 article-title: An extended computer aided diagnosis system for robust BCI applications – volume: 26 start-page: 715 issue: 5 year: 2019 ident: 10.1016/j.compbiomed.2024.109260_b65 article-title: A convolutional recurrent attention model for subject-independent EEG signal analysis publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2019.2906824 – start-page: 1 year: 2021 ident: 10.1016/j.compbiomed.2024.109260_b54 article-title: Attention based inception model for robust EEG motor imagery classification – volume: 101 start-page: 542 year: 2019 ident: 10.1016/j.compbiomed.2024.109260_b50 article-title: Deep learning for EEG motor imagery classification based on multi-layer CNNs feature fusion publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2019.06.027 – year: 2013 ident: 10.1016/j.compbiomed.2024.109260_b105 – volume: 27 issue: 02 year: 2017 ident: 10.1016/j.compbiomed.2024.109260_b36 article-title: Sparse Bayesian learning for obtaining sparsity of EEG frequency bands based feature vectors in motor imagery classification publication-title: Int. J. Neural Syst. doi: 10.1142/S0129065716500325 – volume: 8 start-page: 219656 year: 2020 ident: 10.1016/j.compbiomed.2024.109260_b14 article-title: A novel de-ghosting image fusion technique for multi-exposure, multi-focus images using guided image filtering publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3043048 – volume: 61 start-page: 1425 issue: 5 year: 2014 ident: 10.1016/j.compbiomed.2024.109260_b4 article-title: Brain–computer interfaces using sensorimotor rhythms: current state and future perspectives publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2014.2312397 – volume: 69 year: 2021 ident: 10.1016/j.compbiomed.2024.109260_b52 article-title: Electroencephalography-based motor imagery classification using temporal convolutional network fusion publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2021.102826 – ident: 10.1016/j.compbiomed.2024.109260_b98 doi: 10.1109/CVPR.2018.00745 – volume: 29 year: 2016 ident: 10.1016/j.compbiomed.2024.109260_b27 article-title: Convolutional neural networks on graphs with fast localized spectral filtering publication-title: Adv. Neural Inf. Process. Syst. – volume: 16 issue: 6 year: 2019 ident: 10.1016/j.compbiomed.2024.109260_b68 article-title: A novel hybrid deep learning scheme for four-class motor imagery classification publication-title: J. Neural Eng. doi: 10.1088/1741-2552/ab3471 – volume: 4 issue: 1 year: 2014 ident: 10.1016/j.compbiomed.2024.109260_b16 article-title: Survey on EEG signal processing methods publication-title: Int. J. Adv. Res. Comput. Sci. Softw. Eng. – volume: 9 start-page: 1 issue: 1 year: 2019 ident: 10.1016/j.compbiomed.2024.109260_b63 article-title: Brain wave classification using long short-term memory network based OPTICAL predictor publication-title: Sci. Rep. – volume: 7 start-page: 1 issue: 1 year: 2019 ident: 10.1016/j.compbiomed.2024.109260_b8 article-title: User perspectives on a psychosocial blended support program for partners of patients with amyotrophic lateral sclerosis and progressive muscular atrophy: a qualitative study publication-title: BMC Psychol. doi: 10.1186/s40359-019-0308-x – volume: 24 start-page: 2570 issue: 9 year: 2020 ident: 10.1016/j.compbiomed.2024.109260_b76 article-title: Motor imagery classification via temporal attention cues of graph embedded EEG signals publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2020.2967128 – volume: 20 start-page: 3085 issue: 8 year: 2016 ident: 10.1016/j.compbiomed.2024.109260_b40 article-title: Adaptive learning with covariate shift-detection for motor imagery-based brain–computer interface publication-title: Soft Comput. doi: 10.1007/s00500-015-1937-5 – volume: 15 issue: 3 year: 2018 ident: 10.1016/j.compbiomed.2024.109260_b3 article-title: A review of classification algorithms for EEG-based brain–computer interfaces: a 10 year update publication-title: J. Neural Eng. doi: 10.1088/1741-2552/aab2f2 – volume: 8 start-page: giz002 issue: 5 year: 2019 ident: 10.1016/j.compbiomed.2024.109260_b95 article-title: EEG dataset and openbmi toolbox for three BCI paradigms: An investigation into BCI illiteracy publication-title: GigaScience doi: 10.1093/gigascience/giz002 – volume: 91 year: 2021 ident: 10.1016/j.compbiomed.2024.109260_b26 article-title: Automatic recognition of preictal and interictal EEG signals using 1D-capsule networks publication-title: Comput. Electr. Eng. doi: 10.1016/j.compeleceng.2021.107033 – start-page: 562 year: 2015 ident: 10.1016/j.compbiomed.2024.109260_b29 article-title: Deeply-supervised nets – year: 2017 ident: 10.1016/j.compbiomed.2024.109260_b102 – volume: 79 year: 2023 ident: 10.1016/j.compbiomed.2024.109260_b48 article-title: A parallel multi-scale time-frequency block convolutional neural network based on channel attention module for motor imagery classification publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2022.104066 – start-page: 1 year: 2021 ident: 10.1016/j.compbiomed.2024.109260_b24 article-title: Decoding the confidence level of subjects in answering multiple choice questions using EEG induced capsule network – year: 2014 ident: 10.1016/j.compbiomed.2024.109260_b97 – year: 2022 ident: 10.1016/j.compbiomed.2024.109260_b74 article-title: GCNs-net: a graph convolutional neural network approach for decoding time-resolved eeg motor imagery signals publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 28 start-page: 219 year: 2021 ident: 10.1016/j.compbiomed.2024.109260_b75 article-title: Adaptive spatiotemporal graph convolutional networks for motor imagery classification publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2021.3049683 – volume: 103 year: 2020 ident: 10.1016/j.compbiomed.2024.109260_b82 article-title: A novel method of motor imagery classification using EEG signal publication-title: Artif. Intell. Med. – volume: 143 year: 2022 ident: 10.1016/j.compbiomed.2024.109260_b70 article-title: A transfer learning-based CNN and LSTM hybrid deep learning model to classify motor imagery EEG signals publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2022.105288 – volume: 56 start-page: 2730 issue: 11 year: 2009 ident: 10.1016/j.compbiomed.2024.109260_b33 article-title: A new discriminative common spatial pattern method for motor imagery brain–computer interfaces publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2009.2026181 – volume: 31 start-page: 3839 issue: 10 year: 2019 ident: 10.1016/j.compbiomed.2024.109260_b51 article-title: Subject-independent brain–computer interfaces based on deep convolutional neural networks publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2019.2946869 – volume: 164 year: 2021 ident: 10.1016/j.compbiomed.2024.109260_b13 article-title: Exploiting dimensionality reduction and neural network techniques for the development of expert brain–computer interfaces publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.114031 – volume: 30 start-page: 2764 year: 2022 ident: 10.1016/j.compbiomed.2024.109260_b104 article-title: A spectrally-dense encoding method for designing a high-speed SSVEP-BCI with 120 stimuli publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2022.3208717 – year: 2021 ident: 10.1016/j.compbiomed.2024.109260_b83 – volume: 60 start-page: 2289 issue: 8 year: 2013 ident: 10.1016/j.compbiomed.2024.109260_b35 article-title: Transferring subspaces between subjects in brain–computer interfacing publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2013.2253608 – start-page: 1 year: 2019 ident: 10.1016/j.compbiomed.2024.109260_b67 article-title: Combined CNN and LSTM for motor imagery classification – start-page: 2620 year: 2015 ident: 10.1016/j.compbiomed.2024.109260_b44 article-title: On the use of convolutional neural networks and augmented CSP features for multi-class motor imagery of EEG signals classification – volume: 3 start-page: 1 issue: 1 year: 2017 ident: 10.1016/j.compbiomed.2024.109260_b6 article-title: Amyotrophic lateral sclerosis publication-title: Nature Rev. Disease Prim. – year: 2022 ident: 10.1016/j.compbiomed.2024.109260_b45 article-title: Exploiting pretrained CNN models for the development of an EEG-based robust BCI framework publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2022.105242 – year: 2017 ident: 10.1016/j.compbiomed.2024.109260_b90 – ident: 10.1016/j.compbiomed.2024.109260_b64 doi: 10.1609/aaai.v32i1.11496 – volume: 10 start-page: 2689 issue: 15 year: 2022 ident: 10.1016/j.compbiomed.2024.109260_b17 article-title: Pearson correlation and discrete wavelet transform for crack identification in steel beams publication-title: Mathematics doi: 10.3390/math10152689 – volume: 33 start-page: 3038 issue: 7 year: 2021 ident: 10.1016/j.compbiomed.2024.109260_b81 article-title: Spatio-spectral feature representation for motor imagery classification using convolutional neural networks publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2020.3048385 – year: 2023 ident: 10.1016/j.compbiomed.2024.109260_b85 article-title: LMDA-Net: A lightweight multi-dimensional attention network for general EEG-based brain-computer interfaces and interpretability publication-title: NeuroImage doi: 10.1016/j.neuroimage.2023.120209 – start-page: 2000 year: 2014 ident: 10.1016/j.compbiomed.2024.109260_b12 article-title: Evaluating a four-class motor-imagery-based optical brain-computer interface – volume: 218 year: 2022 ident: 10.1016/j.compbiomed.2024.109260_b66 article-title: A framework for motor imagery with LSTM neural network publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2022.106692 – volume: 32 start-page: 535 issue: 2 year: 2020 ident: 10.1016/j.compbiomed.2024.109260_b80 article-title: Deep representation-based domain adaptation for nonstationary EEG classification publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2020.3010780 – volume: 265 start-page: 185 issue: 2 year: 2013 ident: 10.1016/j.compbiomed.2024.109260_b89 article-title: Bilinear interpolation theorems and applications publication-title: J. Funct. Anal. doi: 10.1016/j.jfa.2013.05.001 – volume: 6 start-page: 39 year: 2012 ident: 10.1016/j.compbiomed.2024.109260_b32 article-title: Filter bank common spatial pattern algorithm on BCI competition iv datasets 2a and 2b publication-title: Front. Neurosci. doi: 10.3389/fnins.2012.00039 – ident: 10.1016/j.compbiomed.2024.109260_b99 doi: 10.1109/CVPR42600.2020.01155 – year: 2022 ident: 10.1016/j.compbiomed.2024.109260_b25 article-title: Patient-specific seizure prediction from electroencephalogram signal via multi-channel feedback capsule network publication-title: IEEE Trans. Cogn. Dev. Syst. – volume: 8 start-page: 29745 issue: 52 year: 2018 ident: 10.1016/j.compbiomed.2024.109260_b18 article-title: EEG characteristic analysis of coach bus drivers based on brain connectivity as revealed via a graph theoretical network publication-title: RSC Adv. doi: 10.1039/C8RA04846K – volume: 8 start-page: 441 issue: 4 year: 2000 ident: 10.1016/j.compbiomed.2024.109260_b30 article-title: Optimal spatial filtering of single trial EEG during imagined hand movement publication-title: IEEE Trans. Rehabilit. Eng. doi: 10.1109/86.895946 – start-page: 55 year: 2012 ident: 10.1016/j.compbiomed.2024.109260_b93 article-title: Review of the BCI competition IV publication-title: Front. Neurosci. – volume: 16 start-page: 683 issue: 8 year: 2009 ident: 10.1016/j.compbiomed.2024.109260_b34 article-title: Composite common spatial pattern for subject-to-subject transfer publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2009.2022557 – volume: 11 start-page: 197 issue: 2 year: 2021 ident: 10.1016/j.compbiomed.2024.109260_b58 article-title: A Densely connected multi-Branch 3D convolutional neural network for motor imagery EEG decoding publication-title: Brain Sci. doi: 10.3390/brainsci11020197 – volume: 2020 year: 2020 ident: 10.1016/j.compbiomed.2024.109260_b15 article-title: IoMT-based automated detection and classification of leukemia using deep learning publication-title: J. Healthc. Eng. doi: 10.1155/2020/6648574 – volume: 101 year: 2019 ident: 10.1016/j.compbiomed.2024.109260_b78 article-title: Motor imagery EEG recognition with KNN-based smooth auto-encoder publication-title: Artif. Intell. Med. doi: 10.1016/j.artmed.2019.101747 – volume: 19 issue: 13 year: 2019 ident: 10.1016/j.compbiomed.2024.109260_b23 article-title: Motor imagery EEG classification using capsule networks publication-title: Sensors – volume: 63 year: 2021 ident: 10.1016/j.compbiomed.2024.109260_b79 article-title: Hybrid deep neural network using transfer learning for EEG motor imagery decoding publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2020.102144 – volume: 69 start-page: 2105 issue: 6 year: 2021 ident: 10.1016/j.compbiomed.2024.109260_b77 article-title: Min2net: End-to-end multi-task learning for subject-independent motor imagery eeg classification publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2021.3137184 – volume: 15 issue: 5 year: 2018 ident: 10.1016/j.compbiomed.2024.109260_b55 article-title: Eegnet: a compact convolutional neural network for EEG-based brain–computer interfaces publication-title: J. Neural Eng. doi: 10.1088/1741-2552/aace8c – volume: 30 year: 2017 ident: 10.1016/j.compbiomed.2024.109260_b21 article-title: Dynamic routing between capsules publication-title: Adv. Neural Inf. Process. Syst. – start-page: 2390 year: 2008 ident: 10.1016/j.compbiomed.2024.109260_b31 article-title: Filter bank common spatial pattern (FBCSP) in brain-computer interface – volume: 34 start-page: bhad511 issue: 2 year: 2024 ident: 10.1016/j.compbiomed.2024.109260_b53 article-title: Multiclass classification of motor imagery tasks based on multi-branch convolutional neural network and temporal convolutional network model publication-title: Cerebral Cortex doi: 10.1093/cercor/bhad511 – volume: 7 start-page: 1344 issue: 5 year: 2020 ident: 10.1016/j.compbiomed.2024.109260_b9 article-title: A hybrid brain-computer interface for closed-loop position control of a robot arm publication-title: IEEE/CAA J. Autom. Sin. doi: 10.1109/JAS.2020.1003336 – volume: 18 issue: 4 year: 2021 ident: 10.1016/j.compbiomed.2024.109260_b69 article-title: EEG-inception: an accurate and robust end-to-end neural network for EEG-based motor imagery classification publication-title: J. Neural Eng. doi: 10.1088/1741-2552/abed81 – volume: 19 start-page: 2249 issue: 2 year: 2022 ident: 10.1016/j.compbiomed.2024.109260_b87 article-title: Physics-informed attention temporal convolutional network for EEG-based motor imagery classification publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2022.3197419 – volume: 35 start-page: 18719 issue: 25 year: 2023 ident: 10.1016/j.compbiomed.2024.109260_b103 article-title: RamanNet: a generalized neural network architecture for Raman spectrum analysis publication-title: Neural Comput. Appl. – volume: 6 start-page: 10840 year: 2018 ident: 10.1016/j.compbiomed.2024.109260_b1 article-title: Brain-computer interface control in a virtual reality environment and applications for the internet of things publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2809453 – volume: 14 issue: 1 year: 2016 ident: 10.1016/j.compbiomed.2024.109260_b49 article-title: A novel deep learning approach for classification of EEG motor imagery signals publication-title: J. Neural Eng. doi: 10.1088/1741-2560/14/1/016003 – year: 2023 ident: 10.1016/j.compbiomed.2024.109260_b88 article-title: Dynamic convolution with multilevel attention for EEG-based motor imagery decoding publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2023.3281911 – volume: 9 start-page: 323 issue: 7 year: 2022 ident: 10.1016/j.compbiomed.2024.109260_b57 article-title: Electroencephalogram-based motor imagery signals classification using a multi-branch convolutional neural network model with attention blocks publication-title: Bioengineering doi: 10.3390/bioengineering9070323 – volume: 170 start-page: 312 year: 2024 ident: 10.1016/j.compbiomed.2024.109260_b59 article-title: BrainGridNet: A two-branch depthwise CNN for decoding EEG-based multi-class motor imagery publication-title: Neural Netw. doi: 10.1016/j.neunet.2023.11.037 – year: 2013 ident: 10.1016/j.compbiomed.2024.109260_b73 – volume: 164 year: 2023 ident: 10.1016/j.compbiomed.2024.109260_b86 article-title: A shallow mirror transformer for subject-independent motor imagery BCI publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2023.107254 – volume: 34 start-page: 1295 issue: 1 year: 2022 ident: 10.1016/j.compbiomed.2024.109260_b22 article-title: Capsule networks–a survey publication-title: J. King Saud Univ. Comput. Inf. Sci. – volume: 38 start-page: 5391 issue: 11 year: 2017 ident: 10.1016/j.compbiomed.2024.109260_b46 article-title: Deep learning with convolutional neural networks for EEG decoding and visualization publication-title: Human Brain Map. doi: 10.1002/hbm.23730 – volume: 12 year: 2021 ident: 10.1016/j.compbiomed.2024.109260_b7 article-title: Palliative care challenges of patients with progressive bulbar palsy: a retrospective case series of 14 patients publication-title: Front. Neurol. doi: 10.3389/fneur.2021.700103 – volume: 1 start-page: 437 issue: 6 year: 2017 ident: 10.1016/j.compbiomed.2024.109260_b2 article-title: EEG analysis for cognitive failure detection in driving using type-2 fuzzy classifiers publication-title: IEEE Trans. Emerg. Top. Comput. Intell. doi: 10.1109/TETCI.2017.2750761 – year: 2024 ident: 10.1016/j.compbiomed.2024.109260_b72 article-title: An end-to-end multi-task motor imagery EEG classification neural network based on dynamic fusion of spectral-temporal features publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2024.108727 – volume: 22 start-page: 1477 issue: 4 year: 2022 ident: 10.1016/j.compbiomed.2024.109260_b19 article-title: Complex Pearson correlation coefficient for EEG connectivity analysis publication-title: Sensors doi: 10.3390/s22041477 – start-page: 195 year: 2020 ident: 10.1016/j.compbiomed.2024.109260_b20 article-title: Frequency-domain based fault detection: Application of short-time fourier transform – volume: 55 start-page: 1589 issue: 9 year: 2017 ident: 10.1016/j.compbiomed.2024.109260_b37 article-title: A spatial-frequency-temporal optimized feature sparse representation-based classification method for motor imagery EEG pattern recognition publication-title: Med. Biol. Eng. Comput. doi: 10.1007/s11517-017-1622-1 – ident: 10.1016/j.compbiomed.2024.109260_b91 doi: 10.1007/978-3-030-01234-2_1 – volume: 7 year: 2021 ident: 10.1016/j.compbiomed.2024.109260_b71 article-title: OPTICAL+: a frequency-based deep learning scheme for recognizing brain wave signals publication-title: Peerj Comput. Sci. doi: 10.7717/peerj-cs.375 – volume: 71 start-page: 166 year: 2015 ident: 10.1016/j.compbiomed.2024.109260_b5 article-title: Interfacing robotic tactile sensation with human vibrotactile perception for digit recognition publication-title: Robot. Auton. Syst. doi: 10.1016/j.robot.2014.12.010 – year: 2015 ident: 10.1016/j.compbiomed.2024.109260_b61 – year: 2018 ident: 10.1016/j.compbiomed.2024.109260_b101 – year: 2016 ident: 10.1016/j.compbiomed.2024.109260_b28 – start-page: 297 year: 2022 ident: 10.1016/j.compbiomed.2024.109260_b100 article-title: BA-net: Bridge attention for deep convolutional neural networks – volume: 114 start-page: 532 year: 2018 ident: 10.1016/j.compbiomed.2024.109260_b47 article-title: An end-to-end deep learning approach to MI-EEG signal classification for BCIs publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2018.08.031 – volume: 2 start-page: 314 issue: 4 year: 2021 ident: 10.1016/j.compbiomed.2024.109260_b42 article-title: Toward the development of versatile brain–computer interfaces publication-title: IEEE Trans. Artif. Intell. doi: 10.1109/TAI.2021.3097307 – volume: 76 start-page: 715 year: 2018 ident: 10.1016/j.compbiomed.2024.109260_b39 article-title: Sparse support matrix machine publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2017.10.003 – year: 2023 ident: 10.1016/j.compbiomed.2024.109260_b92 – start-page: 938 year: 2015 ident: 10.1016/j.compbiomed.2024.109260_b38 article-title: Support matrix machines – start-page: 584 year: 2017 ident: 10.1016/j.compbiomed.2024.109260_b62 article-title: The novel recognition method with optimal wavelet packet and LSTM based recurrent neural network – year: 2017 ident: 10.1016/j.compbiomed.2024.109260_b94 article-title: Supporting data for “EEG datasets for motor imagery brain computer interface.” publication-title: GigaSci. Database doi: 10.1093/gigascience/gix034 – volume: 4 start-page: 639 issue: 4 year: 2017 ident: 10.1016/j.compbiomed.2024.109260_b10 article-title: Motor imagery and error related potential induced position control of a robotic arm publication-title: IEEE/CAA J. Autom. Sin. doi: 10.1109/JAS.2017.7510616 – volume: 24 year: 2011 ident: 10.1016/j.compbiomed.2024.109260_b96 article-title: Algorithms for hyper-parameter optimization publication-title: Adv. Neural Inf. Process. Syst. – volume: 11 start-page: 394 year: 2020 ident: 10.1016/j.compbiomed.2024.109260_b11 article-title: Motor imagery practice and cognitive processes publication-title: Front. Psychol. doi: 10.3389/fpsyg.2020.00394 |
| SSID | ssj0004030 |
| Score | 2.3966076 |
| Snippet | In recent times, Electroencephalography (EEG)-based motor imagery (MI) decoding has garnered significant attention due to its extensive applicability in... AbstractIn recent times, Electroencephalography (EEG)-based motor imagery (MI) decoding has garnered significant attention due to its extensive applicability... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 109260 |
| SubjectTerms | Algorithms Attention Attention - physiology Brain Brain - physiology Brain-Computer Interfaces Capsule network Classification Convolution Decoding Deep Learning EEG Electroencephalography Electroencephalography (EEG) Electroencephalography - methods Error analysis Feature extraction Humans Imagery Imagination - physiology Internal Medicine Machine learning Mental task performance Modules Motor imagery Motor skill learning Motor task performance Neural networks Neural Networks, Computer Other Robotics Signal Processing, Computer-Assisted Signal to noise ratio |
| Title | Attention Induced Dual Convolutional-Capsule Network (AIDC-CN): A deep learning framework for motor imagery classification |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0010482524013453 https://www.clinicalkey.es/playcontent/1-s2.0-S0010482524013453 https://dx.doi.org/10.1016/j.compbiomed.2024.109260 https://www.ncbi.nlm.nih.gov/pubmed/39426071 https://www.proquest.com/docview/3128256686 https://www.proquest.com/docview/3118471634 |
| Volume | 183 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1tb9MwELa6DiG-IN4pjMlIfABNmWI7iRP4VLoBQzAhNlC_RXlxSacurZq0bPw0fh13sZN2oxMFCamKorS2k9zTu7P93B0hz5hyuWIsspi0I8sRPLEiGXsWZs-KE2WrpEpg-vWDPDz0-_3gU6v1s46FmY9knvtnZ8Hkv4oaroGwMXT2L8TddAoX4ByEDkcQOxzXEny3LA2FEcty4Pb-3qxaIcjnZtxoZPUimB2PkN5YscDRz-we7PUs3PUPdLR6qtSkLirxbWdQk7gqXiLIF3nsp5gA43wnQQ8cKUcLKde5D0zNiIp0u5zv6fKWfi8bf08zs6f_GdzgIgOd1hCHX5v6j0fZcFpkjSV5m42LTK9rnwNConzY2A94Sl2m-3RYLq9scGeJJWK0NdgIx9eB0QttLZb0LbMDrusR_GYK9KrECUpyolMZ7OIgu4smF7NvX7KKDVexpsGdhIueQuwp1D1tkE0u3cBvk83uwX7__SIq1xY6AMo8heGRaXbh6ru6yjm6avJTOUHHt8hNM3uhXY2626Sl8jvk-kcjzLvkRwM-asBHEXx0JfioAR99bqD34iXtUoQdrWFHG9hRgB2tYEcN7OhF2N0jX97sH_feWaa6h5WAD1RaiS-UGHCZYEIpO-GSp8KNXF_Eic-lz5RgmChIubESYGbiNEgj6crYD7wI9Igj7pN2Ps7VQ0I5SwU8EXeTQeTAx1cyglMw3YGCGY3dIbJ-rWFiUt9jBZZR-CfhdghrWk50-pc12gS15MI6vBkMcgjAXKOtXNVWFUbBFCELCx7a4VGVWAtQxXGBxHFFh7xqWhrnWTvFa467VUMsbIYSDAPbPc_3OuRp8zWYH9xTjHI1nuFvGPq3nnA65IGGZvOiRIDlLyR79A8v8TG5sVAJW6RdTmfqCbmWzMthMd0mG7Lvb5s_3C9Qxwyp |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Attention+Induced+Dual+Convolutional-Capsule+Network+%28AIDC-CN%29%3A+A+deep+learning+framework+for+motor+imagery+classification&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Chowdhury%2C+Ritesh+Sur&rft.au=Bose%2C+Shirsha&rft.au=Ghosh%2C+Sayantani&rft.au=Konar%2C+Amit&rft.date=2024-12-01&rft.issn=0010-4825&rft.volume=183&rft.spage=109260&rft_id=info:doi/10.1016%2Fj.compbiomed.2024.109260&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_compbiomed_2024_109260 |
| thumbnail_m | http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00104825%2FS0010482524X00153%2Fcov150h.gif |