Attention Induced Dual Convolutional-Capsule Network (AIDC-CN): A deep learning framework for motor imagery classification

In recent times, Electroencephalography (EEG)-based motor imagery (MI) decoding has garnered significant attention due to its extensive applicability in healthcare, including areas such as assistive robotics and rehabilitation engineering. Nevertheless, the decoding of EEG signals presents considera...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computers in biology and medicine Ročník 183; s. 109260
Hlavní autoři: Chowdhury, Ritesh Sur, Bose, Shirsha, Ghosh, Sayantani, Konar, Amit
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States Elsevier Ltd 01.12.2024
Elsevier Limited
Témata:
ISSN:0010-4825, 1879-0534, 1879-0534
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In recent times, Electroencephalography (EEG)-based motor imagery (MI) decoding has garnered significant attention due to its extensive applicability in healthcare, including areas such as assistive robotics and rehabilitation engineering. Nevertheless, the decoding of EEG signals presents considerable challenges owing to their inherent complexity, non-stationary characteristics, and low signal-to-noise ratio. Notably, deep learning-based classifiers have emerged as a prominent focus for addressing the EEG signal decoding process. This study introduces a novel deep learning classifier named the Attention Induced Dual Convolutional-Capsule Network (AIDC-CN) with the specific aim of accurately categorizing various motor imagination class labels. To enhance the classifier’s performance, a dual feature extraction approach leveraging spectrogram and brain connectivity networks has been employed, diversifying the feature set in the classification task. The main highlights of the proposed AIDC-CN classifier includes the introduction of a dual convolution layer to handle the brain connectivity and spectrogram features, addition of a novel self-attention module (SAM) to accentuate the relevant parts of the convolved spectrogram features, introduction of a new cross-attention module (CAM) to refine the outputs obtained from the dual convolution layers and incorporation of a Gaussian Error Linear Unit (GELU) based dynamic routing algorithm to strengthen the coupling among the primary and secondary capsule layers. Performance analysis undertaken on four public data sets depict the superior performance of the proposed model with respect to the state-of-the-art techniques. The code for this model is available at https://github.com/RiteshSurChowdhury/AIDC-CN. •A deep learning paradigm to classify EEG signals of subjects during motor imagination.•A dual feature extraction strategy is used to improve the accuracy of the classifier.•Design of a novel deep learning based classifier to classify motor imagery classes.•Performance analysis undertaken depicts the efficacy of the proposed classifier.
AbstractList AbstractIn recent times, Electroencephalography (EEG)-based motor imagery (MI) decoding has garnered significant attention due to its extensive applicability in healthcare, including areas such as assistive robotics and rehabilitation engineering. Nevertheless, the decoding of EEG signals presents considerable challenges owing to their inherent complexity, non-stationary characteristics, and low signal-to-noise ratio. Notably, deep learning-based classifiers have emerged as a prominent focus for addressing the EEG signal decoding process. This study introduces a novel deep learning classifier named the Attention Induced Dual Convolutional-Capsule Network (AIDC-CN) with the specific aim of accurately categorizing various motor imagination class labels. To enhance the classifier’s performance, a dual feature extraction approach leveraging spectrogram and brain connectivity networks has been employed, diversifying the feature set in the classification task. The main highlights of the proposed AIDC-CN classifier includes the introduction of a dual convolution layer to handle the brain connectivity and spectrogram features, addition of a novel self-attention module (SAM) to accentuate the relevant parts of the convolved spectrogram features, introduction of a new cross-attention module (CAM) to refine the outputs obtained from the dual convolution layers and incorporation of a Gaussian Error Linear Unit (GELU) based dynamic routing algorithm to strengthen the coupling among the primary and secondary capsule layers. Performance analysis undertaken on four public data sets depict the superior performance of the proposed model with respect to the state-of-the-art techniques. The code for this model is available at https://github.com/RiteshSurChowdhury/AIDC-CN.
In recent times, Electroencephalography (EEG)-based motor imagery (MI) decoding has garnered significant attention due to its extensive applicability in healthcare, including areas such as assistive robotics and rehabilitation engineering. Nevertheless, the decoding of EEG signals presents considerable challenges owing to their inherent complexity, non-stationary characteristics, and low signal-to-noise ratio. Notably, deep learning-based classifiers have emerged as a prominent focus for addressing the EEG signal decoding process. This study introduces a novel deep learning classifier named the Attention Induced Dual Convolutional-Capsule Network (AIDC-CN) with the specific aim of accurately categorizing various motor imagination class labels. To enhance the classifier’s performance, a dual feature extraction approach leveraging spectrogram and brain connectivity networks has been employed, diversifying the feature set in the classification task. The main highlights of the proposed AIDC-CN classifier includes the introduction of a dual convolution layer to handle the brain connectivity and spectrogram features, addition of a novel self-attention module (SAM) to accentuate the relevant parts of the convolved spectrogram features, introduction of a new cross-attention module (CAM) to refine the outputs obtained from the dual convolution layers and incorporation of a Gaussian Error Linear Unit (GELU) based dynamic routing algorithm to strengthen the coupling among the primary and secondary capsule layers. Performance analysis undertaken on four public data sets depict the superior performance of the proposed model with respect to the state-of-the-art techniques. The code for this model is available at https://github.com/RiteshSurChowdhury/AIDC-CN.
In recent times, Electroencephalography (EEG)-based motor imagery (MI) decoding has garnered significant attention due to its extensive applicability in healthcare, including areas such as assistive robotics and rehabilitation engineering. Nevertheless, the decoding of EEG signals presents considerable challenges owing to their inherent complexity, non-stationary characteristics, and low signal-to-noise ratio. Notably, deep learning-based classifiers have emerged as a prominent focus for addressing the EEG signal decoding process. This study introduces a novel deep learning classifier named the Attention Induced Dual Convolutional-Capsule Network (AIDC-CN) with the specific aim of accurately categorizing various motor imagination class labels. To enhance the classifier’s performance, a dual feature extraction approach leveraging spectrogram and brain connectivity networks has been employed, diversifying the feature set in the classification task. The main highlights of the proposed AIDC-CN classifier includes the introduction of a dual convolution layer to handle the brain connectivity and spectrogram features, addition of a novel self-attention module (SAM) to accentuate the relevant parts of the convolved spectrogram features, introduction of a new cross-attention module (CAM) to refine the outputs obtained from the dual convolution layers and incorporation of a Gaussian Error Linear Unit (GELU) based dynamic routing algorithm to strengthen the coupling among the primary and secondary capsule layers. Performance analysis undertaken on four public data sets depict the superior performance of the proposed model with respect to the state-of-the-art techniques. The code for this model is available at https://github.com/RiteshSurChowdhury/AIDC-CN. •A deep learning paradigm to classify EEG signals of subjects during motor imagination.•A dual feature extraction strategy is used to improve the accuracy of the classifier.•Design of a novel deep learning based classifier to classify motor imagery classes.•Performance analysis undertaken depicts the efficacy of the proposed classifier.
In recent times, Electroencephalography (EEG)-based motor imagery (MI) decoding has garnered significant attention due to its extensive applicability in healthcare, including areas such as assistive robotics and rehabilitation engineering. Nevertheless, the decoding of EEG signals presents considerable challenges owing to their inherent complexity, non-stationary characteristics, and low signal-to-noise ratio. Notably, deep learning-based classifiers have emerged as a prominent focus for addressing the EEG signal decoding process. This study introduces a novel deep learning classifier named the Attention Induced Dual Convolutional-Capsule Network (AIDC-CN) with the specific aim of accurately categorizing various motor imagination class labels. To enhance the classifier's performance, a dual feature extraction approach leveraging spectrogram and brain connectivity networks has been employed, diversifying the feature set in the classification task. The main highlights of the proposed AIDC-CN classifier includes the introduction of a dual convolution layer to handle the brain connectivity and spectrogram features, addition of a novel self-attention module (SAM) to accentuate the relevant parts of the convolved spectrogram features, introduction of a new cross-attention module (CAM) to refine the outputs obtained from the dual convolution layers and incorporation of a Gaussian Error Linear Unit (GELU) based dynamic routing algorithm to strengthen the coupling among the primary and secondary capsule layers. Performance analysis undertaken on four public data sets depict the superior performance of the proposed model with respect to the state-of-the-art techniques. The code for this model is available at https://github.com/RiteshSurChowdhury/AIDC-CN.In recent times, Electroencephalography (EEG)-based motor imagery (MI) decoding has garnered significant attention due to its extensive applicability in healthcare, including areas such as assistive robotics and rehabilitation engineering. Nevertheless, the decoding of EEG signals presents considerable challenges owing to their inherent complexity, non-stationary characteristics, and low signal-to-noise ratio. Notably, deep learning-based classifiers have emerged as a prominent focus for addressing the EEG signal decoding process. This study introduces a novel deep learning classifier named the Attention Induced Dual Convolutional-Capsule Network (AIDC-CN) with the specific aim of accurately categorizing various motor imagination class labels. To enhance the classifier's performance, a dual feature extraction approach leveraging spectrogram and brain connectivity networks has been employed, diversifying the feature set in the classification task. The main highlights of the proposed AIDC-CN classifier includes the introduction of a dual convolution layer to handle the brain connectivity and spectrogram features, addition of a novel self-attention module (SAM) to accentuate the relevant parts of the convolved spectrogram features, introduction of a new cross-attention module (CAM) to refine the outputs obtained from the dual convolution layers and incorporation of a Gaussian Error Linear Unit (GELU) based dynamic routing algorithm to strengthen the coupling among the primary and secondary capsule layers. Performance analysis undertaken on four public data sets depict the superior performance of the proposed model with respect to the state-of-the-art techniques. The code for this model is available at https://github.com/RiteshSurChowdhury/AIDC-CN.
ArticleNumber 109260
Author Konar, Amit
Bose, Shirsha
Chowdhury, Ritesh Sur
Ghosh, Sayantani
Author_xml – sequence: 1
  givenname: Ritesh Sur
  orcidid: 0000-0002-4494-3655
  surname: Chowdhury
  fullname: Chowdhury, Ritesh Sur
  organization: Artificial Intelligence Laboratory, Department of Electronics and Telecommunication Engineering, Jadavpur University, Kolkata, 700032, West Bengal, India
– sequence: 2
  givenname: Shirsha
  orcidid: 0000-0003-4528-955X
  surname: Bose
  fullname: Bose, Shirsha
  organization: Department of Informatics, Technical University of Munich, Munich, Bavaria 85748, Germany
– sequence: 3
  givenname: Sayantani
  orcidid: 0000-0002-3156-9772
  surname: Ghosh
  fullname: Ghosh, Sayantani
  organization: Artificial Intelligence Laboratory, Department of Electronics and Telecommunication Engineering, Jadavpur University, Kolkata, 700032, West Bengal, India
– sequence: 4
  givenname: Amit
  orcidid: 0000-0002-9474-5956
  surname: Konar
  fullname: Konar, Amit
  email: konaramit@yahoo.co.in
  organization: Artificial Intelligence Laboratory, Department of Electronics and Telecommunication Engineering, Jadavpur University, Kolkata, 700032, West Bengal, India
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39426071$$D View this record in MEDLINE/PubMed
BookMark eNqNkktv1DAUhS1URB_wF5AlNmWRwa8kDouKIeUxUlUWwNpynJvKUyee2knR8OtxOi1IIyHNxpbs7x77nnNP0dHgB0AIU7KghBbv1gvj-01jfQ_tghEm0nHFCvIMnVBZVhnJuThCJ4RQkgnJ8mN0GuOaECIIJy_QMa9Eokt6gn4vxxGG0foBr4Z2MtDiy0k7XPvh3rtpvtAuq_UmTg7wNYy_fLjF58vVZZ3V12_f4yVuATbYgQ6DHW5wF3QPD1DnA-79mFbb6xsIW2ycjtF21uhZ9yV63mkX4dXjfoZ-fv70o_6aXX37sqqXV5kRrBozIznwjpWGlGVBDCtZy3OdS94YyUpJgVNaVBzyBjgRsmmrVpd52ciq0DJvBD9D5zvdTfB3E8RR9TYacE4P4KeoUr0UJS34jL7ZQ9d-CsmBmWLJyKKQRaJeP1JTkwJQm5AaDFv15GoCLnaACT7GAJ0ydnzoeQzaOkWJmmNUa_UvRjXHqHYxJgG5J_D0xgGlH3elkCy9txBUNBaGFKwNYEbVenuIyMWeiHF2SLm5W9hC_GsKVZEpor7PgzbPGROEcpHzJPDh_wKH_eEPEOPm1g
CitedBy_id crossref_primary_10_1109_ACCESS_2025_3605265
Cites_doi 10.1016/j.knosys.2023.110292
10.1109/TNSRE.2022.3230250
10.1088/1741-2552/ab405f
10.1109/LSP.2019.2906824
10.1016/j.future.2019.06.027
10.1142/S0129065716500325
10.1109/ACCESS.2020.3043048
10.1109/TBME.2014.2312397
10.1016/j.bspc.2021.102826
10.1109/CVPR.2018.00745
10.1088/1741-2552/ab3471
10.1186/s40359-019-0308-x
10.1109/JBHI.2020.2967128
10.1007/s00500-015-1937-5
10.1088/1741-2552/aab2f2
10.1093/gigascience/giz002
10.1016/j.compeleceng.2021.107033
10.1016/j.bspc.2022.104066
10.1109/LSP.2021.3049683
10.1016/j.compbiomed.2022.105288
10.1109/TBME.2009.2026181
10.1109/TNNLS.2019.2946869
10.1016/j.eswa.2020.114031
10.1109/TNSRE.2022.3208717
10.1109/TBME.2013.2253608
10.1016/j.compbiomed.2022.105242
10.1609/aaai.v32i1.11496
10.3390/math10152689
10.1109/TNNLS.2020.3048385
10.1016/j.neuroimage.2023.120209
10.1016/j.cmpb.2022.106692
10.1109/TNNLS.2020.3010780
10.1016/j.jfa.2013.05.001
10.3389/fnins.2012.00039
10.1109/CVPR42600.2020.01155
10.1039/C8RA04846K
10.1109/86.895946
10.1109/LSP.2009.2022557
10.3390/brainsci11020197
10.1155/2020/6648574
10.1016/j.artmed.2019.101747
10.1016/j.bspc.2020.102144
10.1109/TBME.2021.3137184
10.1088/1741-2552/aace8c
10.1093/cercor/bhad511
10.1109/JAS.2020.1003336
10.1088/1741-2552/abed81
10.1109/TII.2022.3197419
10.1109/ACCESS.2018.2809453
10.1088/1741-2560/14/1/016003
10.1109/JIOT.2023.3281911
10.3390/bioengineering9070323
10.1016/j.neunet.2023.11.037
10.1016/j.compbiomed.2023.107254
10.1002/hbm.23730
10.3389/fneur.2021.700103
10.1109/TETCI.2017.2750761
10.1016/j.compbiomed.2024.108727
10.3390/s22041477
10.1007/s11517-017-1622-1
10.1007/978-3-030-01234-2_1
10.7717/peerj-cs.375
10.1016/j.robot.2014.12.010
10.1016/j.eswa.2018.08.031
10.1109/TAI.2021.3097307
10.1016/j.patcog.2017.10.003
10.1093/gigascience/gix034
10.1109/JAS.2017.7510616
10.3389/fpsyg.2020.00394
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Elsevier Ltd
Copyright © 2024 Elsevier Ltd. All rights reserved.
2024. Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
– notice: Elsevier Ltd
– notice: Copyright © 2024 Elsevier Ltd. All rights reserved.
– notice: 2024. Elsevier Ltd
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
JQ2
K9.
M7Z
NAPCQ
P64
7X8
DOI 10.1016/j.compbiomed.2024.109260
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Biochemistry Abstracts 1
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Nursing & Allied Health Premium
Technology Research Database
ProQuest Computer Science Collection
Biochemistry Abstracts 1
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
Nursing & Allied Health Premium

MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1879-0534
EndPage 109260
ExternalDocumentID 39426071
10_1016_j_compbiomed_2024_109260
S0010482524013453
1_s2_0_S0010482524013453
Genre Journal Article
GroupedDBID ---
--K
--M
--Z
-~X
.1-
.55
.DC
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5VS
7-5
71M
77I
7RV
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8G5
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMZM
ABOCM
ABUWG
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACLOT
ACNNM
ACPRK
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFKRA
AFPUW
AFRAH
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHMBA
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ARAPS
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKEYQ
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBS
EFJIC
EFKBS
EFLBG
EJD
EMOBN
EO8
EO9
EP2
EP3
EX3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GBOLZ
GNUQQ
GUQSH
HCIFZ
HLZ
HMCUK
HMK
HMO
HVGLF
HZ~
IHE
J1W
K6V
K7-
KOM
LK8
LX9
M1P
M29
M2O
M41
M7P
MO0
N9A
NAPCQ
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
P62
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
Q38
R2-
ROL
RPZ
RXW
SAE
SBC
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
SV3
T5K
TAE
UAP
UKHRP
WOW
WUQ
X7M
XPP
Z5R
ZGI
~G-
~HD
AFCTW
AGCQF
AGRNS
ALIPV
RIG
3V.
AACTN
AFKWA
AJOXV
AMFUW
M0N
9DU
AAYXX
AFFHD
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
JQ2
K9.
M7Z
P64
7X8
ID FETCH-LOGICAL-c429t-c83e3f27c07760c272d35a583bc82781e311693e5be3048bd9da757b896a85b43
ISSN 0010-4825
1879-0534
IngestDate Thu Oct 02 10:27:09 EDT 2025
Tue Oct 07 06:18:25 EDT 2025
Wed Feb 19 02:04:14 EST 2025
Tue Nov 18 22:10:16 EST 2025
Sat Nov 29 05:31:51 EST 2025
Sat Feb 08 15:52:37 EST 2025
Wed Jun 18 06:48:29 EDT 2025
Tue Oct 14 19:38:05 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Motor imagery
Electroencephalography (EEG)
Capsule network
Language English
License Copyright © 2024 Elsevier Ltd. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c429t-c83e3f27c07760c272d35a583bc82781e311693e5be3048bd9da757b896a85b43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4494-3655
0000-0002-3156-9772
0000-0003-4528-955X
0000-0002-9474-5956
PMID 39426071
PQID 3128256686
PQPubID 1226355
PageCount 1
ParticipantIDs proquest_miscellaneous_3118471634
proquest_journals_3128256686
pubmed_primary_39426071
crossref_citationtrail_10_1016_j_compbiomed_2024_109260
crossref_primary_10_1016_j_compbiomed_2024_109260
elsevier_sciencedirect_doi_10_1016_j_compbiomed_2024_109260
elsevier_clinicalkeyesjournals_1_s2_0_S0010482524013453
elsevier_clinicalkey_doi_10_1016_j_compbiomed_2024_109260
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Oxford
PublicationTitle Computers in biology and medicine
PublicationTitleAlternate Comput Biol Med
PublicationYear 2024
Publisher Elsevier Ltd
Elsevier Limited
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Limited
References Zhang, Yao, Chen, Monaghan (b65) 2019; 26
Lian, Li (b72) 2024
Hou, Jia, Lun, Hao, Shi, Li, Zeng, Lv (b74) 2022
Miao, Zhao, Zhang, Ming (b85) 2023
Xu, Xu, Sun, Li, Dong, Wang, Li, Wang, Zhang, Pang (b66) 2022; 218
Sadiq, Aziz, Almogren, Yousaf, Siuly, Rehman (b45) 2022
Moran, O’Shea (b11) 2020; 11
Saha, Konar, Nagar (b2) 2017; 1
Lee (b92) 2023
Bhattacharyya, Konar, Tibarewala (b10) 2017; 4
Mastyło (b89) 2013; 265
Kumar, Sharma, Sharma (b71) 2021; 7
Yu, Wang, Wang, Chen, Yao, Xu, Zhang, Wang, Zhang (b53) 2024; 34
Chen, Liu, Wang, Gao (b104) 2022; 30
Li, Zhu, Zhang, Sun, Wang (b62) 2017
Khasnobish, Datta, Sardar, Tibarewala, Konar (b5) 2015; 71
Defferrard, Bresson, Vandergheynst (b27) 2016; 29
Amin, Altaheri, Muhammad, Alsulaiman, Abdul (b54) 2021
de Wit, Vervoort, van Eerden, Van Den Berg, Visser-Meily, Beelen, Schröder (b8) 2019; 7
Raza, Cecotti, Li, Prasad (b40) 2016; 20
Zhao, Zheng, Ma, Li, Zheng (b80) 2020; 32
Zhang, Kim, Eskandarian (b69) 2021; 18
Coogan, He (b1) 2018; 6
Hendrycks, Gimpel (b28) 2016
Luo, Xie, Zhang, Li (b38) 2015
Kingma, Ba (b97) 2014
Thomas, Guan, Lau, Vinod, Ang (b33) 2009; 56
Altaheri, Muhammad, Alsulaiman (b88) 2023
Wang, Wang, Qi, Kong, Wang (b59) 2024; 170
Yuan, He (b4) 2014; 61
Sabour, Frosst, Hinton (b21) 2017; 30
Park, Woo, Lee, Kweon (b101) 2018
Zhao, Chen, Zhang, Zhang (b100) 2022
Zhang, Ding (b43) 2023; 263
Howard, Zhu, Chen, Kalenichenko, Wang, Weyand, Andreetto, Adam (b102) 2017
Patrick, Adekoya, Mighty, Edward (b22) 2022; 34
Lee, Xie, Gallagher, Zhang, Tu (b29) 2015
Hardiman, Al-Chalabi, Chio, Corr, Logroscino, Robberecht, Shaw, Simmons, Van Den Berg (b6) 2017; 3
Li, Zhao, Song, Liu, Qian, Chen (b25) 2022
Lawhern, Solon, Waytowich, Gordon, Hung, Lance (b55) 2018; 15
Miao, Wang, Liu (b37) 2017; 55
Zhang, Zong, Dou, Zhao (b68) 2019; 16
Amin, Alsulaiman, Muhammad, Mekhtiche, Hossain (b50) 2019; 101
Bublitz, Weck, Egger-Rainer, Lex, Paal, Lorenzl (b7) 2021; 12
Musallam, AlFassam, Muhammad, Amin, Alsulaiman, Abdul, Altaheri, Bencherif, Algabri (b52) 2021; 69
Bose, Ghosh, Konar, Nagar (b24) 2021
Cho, Ahn, Ahn (b94) 2017
Lee, Kwon, Kim, Kim, Lee, Williamson, Fazli, Lee (b95) 2019; 8
Roomi, Imran, Shah, Almogren, Ali, Zuair (b14) 2020; 8
Sanghyun Woo, Jongchan Park, Joon-Young Lee, In So Kweon, Cbam: Convolutional block attention module, in: Proceedings of the European Conference on Computer Vision, ECCV, 2018, pp. 3–19.
Kwon, Lee, Guan, Lee (b51) 2019; 31
Altuwaijri, Muhammad (b57) 2022; 9
Dose, Møller, Iversen, Puthusserypady (b47) 2018; 114
Li, Chen, Jia, Zhang, Yin (b48) 2023; 79
Bruna, Zaremba, Szlam, LeCun (b73) 2013
Zhang, Wang, Jin, Wang (b36) 2017; 27
Lu, Gao, Lu, Yang, Bai, Li (b67) 2019
Qilong Wang, Banggu Wu, Pengfei Zhu, Peihua Li, Wangmeng Zuo, Qinghua Hu, ECA-Net: Efficient channel attention for deep convolutional neural networks, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 11534–11542.
Schirrmeister, Springenberg, Fiederer, Glasstetter, Eggensperger, Tangermann, Hutter, Burgard, Ball (b46) 2017; 38
Kumar, Sharma, Tsunoda (b63) 2019; 9
Ukil, Yeap, Satpathi, Ukil, Yeap, Satpathi (b20) 2020
Dalin Zhang, Lina Yao, Xiang Zhang, Sen Wang, Weitong Chen, Robert Boots, Boualem Benatallah, Cascade and parallel convolutional recurrent neural networks on EEG-based intention recognition for brain computer interface, in: Proceedings of the Aaai Conference on Artificial Intelligence, Vol. 32, No. 1, 2018.
Ang, Chin, Zhang, Guan (b31) 2008
Wang, Zhang, Fu, Sun (b18) 2018; 8
Rakshit, Konar, Nagar (b9) 2020; 7
Lakshmi, Prasad, Prakash (b16) 2014; 4
Ramachandran, Zoph, Le (b90) 2017
Ang, Chin, Wang, Guan, Zhang (b32) 2012; 6
Autthasan, Chaisaen, Sudhawiyangkul, Rangpong, Kiatthaveephong, Dilokthanakul, Bhakdisongkhram, Phan, Guan, Wilaiprasitporn (b77) 2021; 69
Ibtehaz, Chowdhury, Khandakar, Kiranyaz, Rahman, Zughaier (b103) 2023; 35
Bibi, Sikandar, Ud Din, Almogren, Ali (b15) 2020; 2020
Tangermann, Müller, Aertsen, Birbaumer, Braun, Brunner, Leeb, Mehring, Miller, Mueller-Putz (b93) 2012
Khademi, Ebrahimi, Kordy (b70) 2022; 143
Bergstra, Bardenet, Bengio, Kégl (b96) 2011; 24
Sun, Zhang, Wu, Zhang, Li (b75) 2021; 28
Venkatachalam, Devipriya, Maniraj, Sivaram, Ambikapathy, Iraj (b82) 2020; 103
Yang, Sakhavi, Ang, Guan (b44) 2015
Samek, Meinecke, Müller (b35) 2013; 60
Hollander, Wolfe, Chicken (b105) 2013
Šverko, Vrankić, Vlahinić, Rogelj (b19) 2022; 22
Sadiq, Yu, Yuan (b13) 2021; 164
Zhang, Chen, Jian, Yao (b76) 2020; 24
Zheng, Zhu, Qin, Chen, Heng (b39) 2018; 76
Kang, Nam, Choi (b34) 2009; 16
Luo, Wang, Xia, Lu, Ren, Shi, Hei (b86) 2023; 164
Liu, Yang (b58) 2021; 11
Bashivan, Rish, Yeasin, Codella (b61) 2015
Saadatmorad, Talookolaei, Pashaei, Khatir, Wahab (b17) 2022; 10
Tabar, Halici (b49) 2016; 14
Song, Zheng, Liu, Gao (b84) 2022; 31
Datta, Sengupta, Das, Dasgupta, Ghosh, Konar (b60) 2023
Bang, Lee, Fazli, Guan, Lee (b81) 2021; 33
Mane, Chew, Chua, Ang, Robinson, Vinod, Lee, Guan (b83) 2021
Lotte, Bougrain, Cichocki, Clerc, Congedo, Rakotomamonjy, Yger (b3) 2018; 15
Yu, Aziz, Hou, Li, Lv, Jamil (b41) 2021
Altaheri, Muhammad, Alsulaiman (b87) 2022; 19
Kwon-Woo, Jin-Woo (b23) 2019; 19
Dai, Zhou, Huang, Wang (b56) 2020; 17
Zhang, Zong, Dou, Zhao, Tang, Li (b79) 2021; 63
Sadiq, Yu, Yuan, Aziz, Siuly, Ding (b42) 2021; 2
Ramoser, Muller-Gerking, Pfurtscheller (b30) 2000; 8
Tang, Wang, Du, Dai (b78) 2019; 101
Batula, Ayaz, Kim (b12) 2014
Toraman (b26) 2021; 91
Jie Hu, Li Shen, Gang Sun, Squeeze-and-excitation networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 7132–7141.
Tabar (10.1016/j.compbiomed.2024.109260_b49) 2016; 14
Bang (10.1016/j.compbiomed.2024.109260_b81) 2021; 33
Li (10.1016/j.compbiomed.2024.109260_b48) 2023; 79
Musallam (10.1016/j.compbiomed.2024.109260_b52) 2021; 69
Miao (10.1016/j.compbiomed.2024.109260_b37) 2017; 55
Datta (10.1016/j.compbiomed.2024.109260_b60) 2023
Altaheri (10.1016/j.compbiomed.2024.109260_b88) 2023
Šverko (10.1016/j.compbiomed.2024.109260_b19) 2022; 22
Sadiq (10.1016/j.compbiomed.2024.109260_b13) 2021; 164
Toraman (10.1016/j.compbiomed.2024.109260_b26) 2021; 91
Defferrard (10.1016/j.compbiomed.2024.109260_b27) 2016; 29
Rakshit (10.1016/j.compbiomed.2024.109260_b9) 2020; 7
Mastyło (10.1016/j.compbiomed.2024.109260_b89) 2013; 265
Amin (10.1016/j.compbiomed.2024.109260_b50) 2019; 101
Liu (10.1016/j.compbiomed.2024.109260_b58) 2021; 11
Thomas (10.1016/j.compbiomed.2024.109260_b33) 2009; 56
Kwon-Woo (10.1016/j.compbiomed.2024.109260_b23) 2019; 19
Wang (10.1016/j.compbiomed.2024.109260_b18) 2018; 8
Cho (10.1016/j.compbiomed.2024.109260_b94) 2017
Khademi (10.1016/j.compbiomed.2024.109260_b70) 2022; 143
Bublitz (10.1016/j.compbiomed.2024.109260_b7) 2021; 12
Lotte (10.1016/j.compbiomed.2024.109260_b3) 2018; 15
Zhang (10.1016/j.compbiomed.2024.109260_b69) 2021; 18
Zhang (10.1016/j.compbiomed.2024.109260_b68) 2019; 16
Lu (10.1016/j.compbiomed.2024.109260_b67) 2019
Zhang (10.1016/j.compbiomed.2024.109260_b79) 2021; 63
Ramachandran (10.1016/j.compbiomed.2024.109260_b90) 2017
Bhattacharyya (10.1016/j.compbiomed.2024.109260_b10) 2017; 4
Ukil (10.1016/j.compbiomed.2024.109260_b20) 2020
Lee (10.1016/j.compbiomed.2024.109260_b29) 2015
Kwon (10.1016/j.compbiomed.2024.109260_b51) 2019; 31
Schirrmeister (10.1016/j.compbiomed.2024.109260_b46) 2017; 38
Zhang (10.1016/j.compbiomed.2024.109260_b76) 2020; 24
Moran (10.1016/j.compbiomed.2024.109260_b11) 2020; 11
Bose (10.1016/j.compbiomed.2024.109260_b24) 2021
Wang (10.1016/j.compbiomed.2024.109260_b59) 2024; 170
Sadiq (10.1016/j.compbiomed.2024.109260_b45) 2022
Samek (10.1016/j.compbiomed.2024.109260_b35) 2013; 60
Altaheri (10.1016/j.compbiomed.2024.109260_b87) 2022; 19
Yu (10.1016/j.compbiomed.2024.109260_b53) 2024; 34
Li (10.1016/j.compbiomed.2024.109260_b62) 2017
Autthasan (10.1016/j.compbiomed.2024.109260_b77) 2021; 69
Zhang (10.1016/j.compbiomed.2024.109260_b43) 2023; 263
Zhang (10.1016/j.compbiomed.2024.109260_b65) 2019; 26
Coogan (10.1016/j.compbiomed.2024.109260_b1) 2018; 6
Hendrycks (10.1016/j.compbiomed.2024.109260_b28) 2016
Yu (10.1016/j.compbiomed.2024.109260_b41) 2021
Howard (10.1016/j.compbiomed.2024.109260_b102) 2017
Ang (10.1016/j.compbiomed.2024.109260_b32) 2012; 6
Sabour (10.1016/j.compbiomed.2024.109260_b21) 2017; 30
Park (10.1016/j.compbiomed.2024.109260_b101) 2018
Sadiq (10.1016/j.compbiomed.2024.109260_b42) 2021; 2
Khasnobish (10.1016/j.compbiomed.2024.109260_b5) 2015; 71
Ramoser (10.1016/j.compbiomed.2024.109260_b30) 2000; 8
Luo (10.1016/j.compbiomed.2024.109260_b86) 2023; 164
Xu (10.1016/j.compbiomed.2024.109260_b66) 2022; 218
Tangermann (10.1016/j.compbiomed.2024.109260_b93) 2012
Roomi (10.1016/j.compbiomed.2024.109260_b14) 2020; 8
Mane (10.1016/j.compbiomed.2024.109260_b83) 2021
Yuan (10.1016/j.compbiomed.2024.109260_b4) 2014; 61
Zhao (10.1016/j.compbiomed.2024.109260_b80) 2020; 32
Yang (10.1016/j.compbiomed.2024.109260_b44) 2015
Venkatachalam (10.1016/j.compbiomed.2024.109260_b82) 2020; 103
Sun (10.1016/j.compbiomed.2024.109260_b75) 2021; 28
Saha (10.1016/j.compbiomed.2024.109260_b2) 2017; 1
Kang (10.1016/j.compbiomed.2024.109260_b34) 2009; 16
Hou (10.1016/j.compbiomed.2024.109260_b74) 2022
Ang (10.1016/j.compbiomed.2024.109260_b31) 2008
Zhao (10.1016/j.compbiomed.2024.109260_b100) 2022
Ibtehaz (10.1016/j.compbiomed.2024.109260_b103) 2023; 35
Lee (10.1016/j.compbiomed.2024.109260_b95) 2019; 8
Saadatmorad (10.1016/j.compbiomed.2024.109260_b17) 2022; 10
Kumar (10.1016/j.compbiomed.2024.109260_b71) 2021; 7
Lakshmi (10.1016/j.compbiomed.2024.109260_b16) 2014; 4
Chen (10.1016/j.compbiomed.2024.109260_b104) 2022; 30
10.1016/j.compbiomed.2024.109260_b98
Bashivan (10.1016/j.compbiomed.2024.109260_b61) 2015
Bergstra (10.1016/j.compbiomed.2024.109260_b96) 2011; 24
10.1016/j.compbiomed.2024.109260_b91
Altuwaijri (10.1016/j.compbiomed.2024.109260_b57) 2022; 9
Patrick (10.1016/j.compbiomed.2024.109260_b22) 2022; 34
Raza (10.1016/j.compbiomed.2024.109260_b40) 2016; 20
Kumar (10.1016/j.compbiomed.2024.109260_b63) 2019; 9
10.1016/j.compbiomed.2024.109260_b99
Zhang (10.1016/j.compbiomed.2024.109260_b36) 2017; 27
Zheng (10.1016/j.compbiomed.2024.109260_b39) 2018; 76
Kingma (10.1016/j.compbiomed.2024.109260_b97) 2014
Dai (10.1016/j.compbiomed.2024.109260_b56) 2020; 17
10.1016/j.compbiomed.2024.109260_b64
Hollander (10.1016/j.compbiomed.2024.109260_b105) 2013
Hardiman (10.1016/j.compbiomed.2024.109260_b6) 2017; 3
Miao (10.1016/j.compbiomed.2024.109260_b85) 2023
Lian (10.1016/j.compbiomed.2024.109260_b72) 2024
Amin (10.1016/j.compbiomed.2024.109260_b54) 2021
Dose (10.1016/j.compbiomed.2024.109260_b47) 2018; 114
Li (10.1016/j.compbiomed.2024.109260_b25) 2022
Song (10.1016/j.compbiomed.2024.109260_b84) 2022; 31
Lawhern (10.1016/j.compbiomed.2024.109260_b55) 2018; 15
Bruna (10.1016/j.compbiomed.2024.109260_b73) 2013
Tang (10.1016/j.compbiomed.2024.109260_b78) 2019; 101
Batula (10.1016/j.compbiomed.2024.109260_b12) 2014
de Wit (10.1016/j.compbiomed.2024.109260_b8) 2019; 7
Bibi (10.1016/j.compbiomed.2024.109260_b15) 2020; 2020
Lee (10.1016/j.compbiomed.2024.109260_b92) 2023
Luo (10.1016/j.compbiomed.2024.109260_b38) 2015
References_xml – volume: 60
  start-page: 2289
  year: 2013
  end-page: 2298
  ident: b35
  article-title: Transferring subspaces between subjects in brain–computer interfacing
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 16
  year: 2019
  ident: b68
  article-title: A novel hybrid deep learning scheme for four-class motor imagery classification
  publication-title: J. Neural Eng.
– volume: 3
  start-page: 1
  year: 2017
  end-page: 19
  ident: b6
  article-title: Amyotrophic lateral sclerosis
  publication-title: Nature Rev. Disease Prim.
– start-page: 55
  year: 2012
  ident: b93
  article-title: Review of the BCI competition IV
  publication-title: Front. Neurosci.
– year: 2022
  ident: b45
  article-title: Exploiting pretrained CNN models for the development of an EEG-based robust BCI framework
  publication-title: Comput. Biol. Med.
– volume: 265
  start-page: 185
  year: 2013
  end-page: 207
  ident: b89
  article-title: Bilinear interpolation theorems and applications
  publication-title: J. Funct. Anal.
– volume: 4
  start-page: 639
  year: 2017
  end-page: 650
  ident: b10
  article-title: Motor imagery and error related potential induced position control of a robotic arm
  publication-title: IEEE/CAA J. Autom. Sin.
– volume: 38
  start-page: 5391
  year: 2017
  end-page: 5420
  ident: b46
  article-title: Deep learning with convolutional neural networks for EEG decoding and visualization
  publication-title: Human Brain Map.
– year: 2013
  ident: b73
  article-title: Spectral networks and locally connected networks on graphs
– volume: 2020
  year: 2020
  ident: b15
  article-title: IoMT-based automated detection and classification of leukemia using deep learning
  publication-title: J. Healthc. Eng.
– start-page: 475
  year: 2021
  end-page: 480
  ident: b41
  article-title: An extended computer aided diagnosis system for robust BCI applications
  publication-title: 2021 IEEE 9th International Conference on Information, Communication and Networks
– volume: 9
  start-page: 1
  year: 2019
  end-page: 13
  ident: b63
  article-title: Brain wave classification using long short-term memory network based OPTICAL predictor
  publication-title: Sci. Rep.
– year: 2023
  ident: b88
  article-title: Dynamic convolution with multilevel attention for EEG-based motor imagery decoding
  publication-title: IEEE Internet Things J.
– volume: 35
  start-page: 18719
  year: 2023
  end-page: 18735
  ident: b103
  article-title: RamanNet: a generalized neural network architecture for Raman spectrum analysis
  publication-title: Neural Comput. Appl.
– volume: 9
  start-page: 323
  year: 2022
  ident: b57
  article-title: Electroencephalogram-based motor imagery signals classification using a multi-branch convolutional neural network model with attention blocks
  publication-title: Bioengineering
– volume: 20
  start-page: 3085
  year: 2016
  end-page: 3096
  ident: b40
  article-title: Adaptive learning with covariate shift-detection for motor imagery-based brain–computer interface
  publication-title: Soft Comput.
– volume: 10
  start-page: 2689
  year: 2022
  ident: b17
  article-title: Pearson correlation and discrete wavelet transform for crack identification in steel beams
  publication-title: Mathematics
– volume: 6
  start-page: 39
  year: 2012
  ident: b32
  article-title: Filter bank common spatial pattern algorithm on BCI competition iv datasets 2a and 2b
  publication-title: Front. Neurosci.
– year: 2017
  ident: b90
  article-title: Searching for activation functions
– volume: 8
  start-page: giz002
  year: 2019
  ident: b95
  article-title: EEG dataset and openbmi toolbox for three BCI paradigms: An investigation into BCI illiteracy
  publication-title: GigaScience
– year: 2016
  ident: b28
  article-title: Gaussian error linear units (gelus)
– year: 2023
  ident: b92
  article-title: GELU activation function in deep learning: A comprehensive mathematical analysis and performance
– volume: 55
  start-page: 1589
  year: 2017
  end-page: 1603
  ident: b37
  article-title: A spatial-frequency-temporal optimized feature sparse representation-based classification method for motor imagery EEG pattern recognition
  publication-title: Med. Biol. Eng. Comput.
– volume: 31
  start-page: 3839
  year: 2019
  end-page: 3852
  ident: b51
  article-title: Subject-independent brain–computer interfaces based on deep convolutional neural networks
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– reference: Qilong Wang, Banggu Wu, Pengfei Zhu, Peihua Li, Wangmeng Zuo, Qinghua Hu, ECA-Net: Efficient channel attention for deep convolutional neural networks, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 11534–11542.
– volume: 28
  start-page: 219
  year: 2021
  end-page: 223
  ident: b75
  article-title: Adaptive spatiotemporal graph convolutional networks for motor imagery classification
  publication-title: IEEE Signal Process. Lett.
– year: 2021
  ident: b83
  article-title: FBCNet: A multi-view convolutional neural network for brain-computer interface
– start-page: 2390
  year: 2008
  end-page: 2397
  ident: b31
  article-title: Filter bank common spatial pattern (FBCSP) in brain-computer interface
  publication-title: 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence)
– volume: 16
  start-page: 683
  year: 2009
  end-page: 686
  ident: b34
  article-title: Composite common spatial pattern for subject-to-subject transfer
  publication-title: IEEE Signal Process. Lett.
– start-page: 2620
  year: 2015
  end-page: 2623
  ident: b44
  article-title: On the use of convolutional neural networks and augmented CSP features for multi-class motor imagery of EEG signals classification
  publication-title: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
– volume: 114
  start-page: 532
  year: 2018
  end-page: 542
  ident: b47
  article-title: An end-to-end deep learning approach to MI-EEG signal classification for BCIs
  publication-title: Expert Syst. Appl.
– volume: 15
  year: 2018
  ident: b3
  article-title: A review of classification algorithms for EEG-based brain–computer interfaces: a 10 year update
  publication-title: J. Neural Eng.
– year: 2015
  ident: b61
  article-title: Learning representations from EEG with deep recurrent-convolutional neural networks
– start-page: 1
  year: 2021
  end-page: 6
  ident: b54
  article-title: Attention based inception model for robust EEG motor imagery classification
  publication-title: 2021 IEEE International Instrumentation and Measurement Technology Conference
– volume: 1
  start-page: 437
  year: 2017
  end-page: 453
  ident: b2
  article-title: EEG analysis for cognitive failure detection in driving using type-2 fuzzy classifiers
  publication-title: IEEE Trans. Emerg. Top. Comput. Intell.
– volume: 71
  start-page: 166
  year: 2015
  end-page: 179
  ident: b5
  article-title: Interfacing robotic tactile sensation with human vibrotactile perception for digit recognition
  publication-title: Robot. Auton. Syst.
– volume: 14
  year: 2016
  ident: b49
  article-title: A novel deep learning approach for classification of EEG motor imagery signals
  publication-title: J. Neural Eng.
– volume: 7
  start-page: 1344
  year: 2020
  end-page: 1360
  ident: b9
  article-title: A hybrid brain-computer interface for closed-loop position control of a robot arm
  publication-title: IEEE/CAA J. Autom. Sin.
– volume: 24
  start-page: 2570
  year: 2020
  end-page: 2579
  ident: b76
  article-title: Motor imagery classification via temporal attention cues of graph embedded EEG signals
  publication-title: IEEE J. Biomed. Health Inform.
– year: 2024
  ident: b72
  article-title: An end-to-end multi-task motor imagery EEG classification neural network based on dynamic fusion of spectral-temporal features
  publication-title: Comput. Biol. Med.
– year: 2014
  ident: b97
  article-title: Adam: A method for stochastic optimization
– volume: 33
  start-page: 3038
  year: 2021
  end-page: 3049
  ident: b81
  article-title: Spatio-spectral feature representation for motor imagery classification using convolutional neural networks
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 26
  start-page: 715
  year: 2019
  end-page: 719
  ident: b65
  article-title: A convolutional recurrent attention model for subject-independent EEG signal analysis
  publication-title: IEEE Signal Process. Lett.
– volume: 31
  start-page: 710
  year: 2022
  end-page: 719
  ident: b84
  article-title: EEG conformer: Convolutional transformer for EEG decoding and visualization
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 103
  year: 2020
  ident: b82
  article-title: A novel method of motor imagery classification using EEG signal
  publication-title: Artif. Intell. Med.
– volume: 143
  year: 2022
  ident: b70
  article-title: A transfer learning-based CNN and LSTM hybrid deep learning model to classify motor imagery EEG signals
  publication-title: Comput. Biol. Med.
– volume: 8
  start-page: 29745
  year: 2018
  end-page: 29755
  ident: b18
  article-title: EEG characteristic analysis of coach bus drivers based on brain connectivity as revealed via a graph theoretical network
  publication-title: RSC Adv.
– year: 2022
  ident: b25
  article-title: Patient-specific seizure prediction from electroencephalogram signal via multi-channel feedback capsule network
  publication-title: IEEE Trans. Cogn. Dev. Syst.
– reference: Sanghyun Woo, Jongchan Park, Joon-Young Lee, In So Kweon, Cbam: Convolutional block attention module, in: Proceedings of the European Conference on Computer Vision, ECCV, 2018, pp. 3–19.
– volume: 34
  start-page: 1295
  year: 2022
  end-page: 1310
  ident: b22
  article-title: Capsule networks–a survey
  publication-title: J. King Saud Univ. Comput. Inf. Sci.
– start-page: 562
  year: 2015
  end-page: 570
  ident: b29
  article-title: Deeply-supervised nets
  publication-title: Artificial Intelligence and Statistics
– volume: 30
  start-page: 2764
  year: 2022
  end-page: 2772
  ident: b104
  article-title: A spectrally-dense encoding method for designing a high-speed SSVEP-BCI with 120 stimuli
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 101
  year: 2019
  ident: b78
  article-title: Motor imagery EEG recognition with KNN-based smooth auto-encoder
  publication-title: Artif. Intell. Med.
– start-page: 2000
  year: 2014
  end-page: 2003
  ident: b12
  article-title: Evaluating a four-class motor-imagery-based optical brain-computer interface
  publication-title: 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
– volume: 61
  start-page: 1425
  year: 2014
  end-page: 1435
  ident: b4
  article-title: Brain–computer interfaces using sensorimotor rhythms: current state and future perspectives
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 218
  year: 2022
  ident: b66
  article-title: A framework for motor imagery with LSTM neural network
  publication-title: Comput. Methods Programs Biomed.
– volume: 69
  year: 2021
  ident: b52
  article-title: Electroencephalography-based motor imagery classification using temporal convolutional network fusion
  publication-title: Biomed. Signal Process. Control
– volume: 79
  year: 2023
  ident: b48
  article-title: A parallel multi-scale time-frequency block convolutional neural network based on channel attention module for motor imagery classification
  publication-title: Biomed. Signal Process. Control
– volume: 8
  start-page: 219656
  year: 2020
  end-page: 219671
  ident: b14
  article-title: A novel de-ghosting image fusion technique for multi-exposure, multi-focus images using guided image filtering
  publication-title: IEEE Access
– volume: 263
  year: 2023
  ident: b43
  article-title: Motor imagery classification via stacking-based Takagi–Sugeno–Kang fuzzy classifier ensemble
  publication-title: Knowl.-Based Syst.
– volume: 22
  start-page: 1477
  year: 2022
  ident: b19
  article-title: Complex Pearson correlation coefficient for EEG connectivity analysis
  publication-title: Sensors
– volume: 27
  year: 2017
  ident: b36
  article-title: Sparse Bayesian learning for obtaining sparsity of EEG frequency bands based feature vectors in motor imagery classification
  publication-title: Int. J. Neural Syst.
– volume: 101
  start-page: 542
  year: 2019
  end-page: 554
  ident: b50
  article-title: Deep learning for EEG motor imagery classification based on multi-layer CNNs feature fusion
  publication-title: Future Gener. Comput. Syst.
– volume: 164
  year: 2023
  ident: b86
  article-title: A shallow mirror transformer for subject-independent motor imagery BCI
  publication-title: Comput. Biol. Med.
– start-page: 195
  year: 2020
  end-page: 221
  ident: b20
  article-title: Frequency-domain based fault detection: Application of short-time fourier transform
  publication-title: Fault Analysis and Protection System Design for DC Grids
– start-page: 584
  year: 2017
  end-page: 589
  ident: b62
  article-title: The novel recognition method with optimal wavelet packet and LSTM based recurrent neural network
  publication-title: 2017 IEEE International Conference on Mechatronics and Automation
– volume: 17
  year: 2020
  ident: b56
  article-title: HS-CNN: a CNN with hybrid convolution scale for EEG motor imagery classification
  publication-title: J. Neural Eng.
– volume: 32
  start-page: 535
  year: 2020
  end-page: 545
  ident: b80
  article-title: Deep representation-based domain adaptation for nonstationary EEG classification
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– reference: Jie Hu, Li Shen, Gang Sun, Squeeze-and-excitation networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 7132–7141.
– volume: 18
  year: 2021
  ident: b69
  article-title: EEG-inception: an accurate and robust end-to-end neural network for EEG-based motor imagery classification
  publication-title: J. Neural Eng.
– volume: 29
  year: 2016
  ident: b27
  article-title: Convolutional neural networks on graphs with fast localized spectral filtering
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 69
  start-page: 2105
  year: 2021
  end-page: 2118
  ident: b77
  article-title: Min2net: End-to-end multi-task learning for subject-independent motor imagery eeg classification
  publication-title: IEEE Trans. Biomed. Eng.
– start-page: 1
  year: 2021
  end-page: 8
  ident: b24
  article-title: Decoding the confidence level of subjects in answering multiple choice questions using EEG induced capsule network
  publication-title: 2021 IEEE Symposium Series on Computational Intelligence
– volume: 4
  year: 2014
  ident: b16
  article-title: Survey on EEG signal processing methods
  publication-title: Int. J. Adv. Res. Comput. Sci. Softw. Eng.
– year: 2023
  ident: b85
  article-title: LMDA-Net: A lightweight multi-dimensional attention network for general EEG-based brain-computer interfaces and interpretability
  publication-title: NeuroImage
– start-page: 297
  year: 2022
  end-page: 312
  ident: b100
  article-title: BA-net: Bridge attention for deep convolutional neural networks
  publication-title: European Conference on Computer Vision
– year: 2013
  ident: b105
  publication-title: Nonparametric Statistical Methods
– year: 2017
  ident: b94
  article-title: Supporting data for “EEG datasets for motor imagery brain computer interface.”
  publication-title: GigaSci. Database
– volume: 2
  start-page: 314
  year: 2021
  end-page: 328
  ident: b42
  article-title: Toward the development of versatile brain–computer interfaces
  publication-title: IEEE Trans. Artif. Intell.
– volume: 19
  start-page: 2249
  year: 2022
  end-page: 2258
  ident: b87
  article-title: Physics-informed attention temporal convolutional network for EEG-based motor imagery classification
  publication-title: IEEE Trans. Ind. Inform.
– volume: 30
  year: 2017
  ident: b21
  article-title: Dynamic routing between capsules
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 34
  start-page: bhad511
  year: 2024
  ident: b53
  article-title: Multiclass classification of motor imagery tasks based on multi-branch convolutional neural network and temporal convolutional network model
  publication-title: Cerebral Cortex
– volume: 56
  start-page: 2730
  year: 2009
  end-page: 2733
  ident: b33
  article-title: A new discriminative common spatial pattern method for motor imagery brain–computer interfaces
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 8
  start-page: 441
  year: 2000
  end-page: 446
  ident: b30
  article-title: Optimal spatial filtering of single trial EEG during imagined hand movement
  publication-title: IEEE Trans. Rehabilit. Eng.
– volume: 11
  start-page: 197
  year: 2021
  ident: b58
  article-title: A Densely connected multi-Branch 3D convolutional neural network for motor imagery EEG decoding
  publication-title: Brain Sci.
– start-page: 1
  year: 2019
  end-page: 6
  ident: b67
  article-title: Combined CNN and LSTM for motor imagery classification
  publication-title: 2019 12th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics
– volume: 7
  year: 2021
  ident: b71
  article-title: OPTICAL+: a frequency-based deep learning scheme for recognizing brain wave signals
  publication-title: Peerj Comput. Sci.
– volume: 170
  start-page: 312
  year: 2024
  end-page: 324
  ident: b59
  article-title: BrainGridNet: A two-branch depthwise CNN for decoding EEG-based multi-class motor imagery
  publication-title: Neural Netw.
– volume: 91
  year: 2021
  ident: b26
  article-title: Automatic recognition of preictal and interictal EEG signals using 1D-capsule networks
  publication-title: Comput. Electr. Eng.
– start-page: 938
  year: 2015
  end-page: 947
  ident: b38
  article-title: Support matrix machines
  publication-title: International Conference on Machine Learning
– volume: 19
  year: 2019
  ident: b23
  article-title: Motor imagery EEG classification using capsule networks
  publication-title: Sensors
– reference: Dalin Zhang, Lina Yao, Xiang Zhang, Sen Wang, Weitong Chen, Robert Boots, Boualem Benatallah, Cascade and parallel convolutional recurrent neural networks on EEG-based intention recognition for brain computer interface, in: Proceedings of the Aaai Conference on Artificial Intelligence, Vol. 32, No. 1, 2018.
– volume: 24
  year: 2011
  ident: b96
  article-title: Algorithms for hyper-parameter optimization
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 7
  start-page: 1
  year: 2019
  end-page: 13
  ident: b8
  article-title: User perspectives on a psychosocial blended support program for partners of patients with amyotrophic lateral sclerosis and progressive muscular atrophy: a qualitative study
  publication-title: BMC Psychol.
– volume: 164
  year: 2021
  ident: b13
  article-title: Exploiting dimensionality reduction and neural network techniques for the development of expert brain–computer interfaces
  publication-title: Expert Syst. Appl.
– volume: 76
  start-page: 715
  year: 2018
  end-page: 726
  ident: b39
  article-title: Sparse support matrix machine
  publication-title: Pattern Recognit.
– volume: 12
  year: 2021
  ident: b7
  article-title: Palliative care challenges of patients with progressive bulbar palsy: a retrospective case series of 14 patients
  publication-title: Front. Neurol.
– volume: 15
  year: 2018
  ident: b55
  article-title: Eegnet: a compact convolutional neural network for EEG-based brain–computer interfaces
  publication-title: J. Neural Eng.
– volume: 63
  year: 2021
  ident: b79
  article-title: Hybrid deep neural network using transfer learning for EEG motor imagery decoding
  publication-title: Biomed. Signal Process. Control
– volume: 6
  start-page: 10840
  year: 2018
  end-page: 10849
  ident: b1
  article-title: Brain-computer interface control in a virtual reality environment and applications for the internet of things
  publication-title: IEEE Access
– volume: 11
  start-page: 394
  year: 2020
  ident: b11
  article-title: Motor imagery practice and cognitive processes
  publication-title: Front. Psychol.
– start-page: 1
  year: 2023
  end-page: 2
  ident: b60
  article-title: A deep learning approach for position control of a mobile robot
  publication-title: 2023 8th International Conference on Computers and Devices for Communication
– year: 2018
  ident: b101
  article-title: Bam: Bottleneck attention module
– year: 2022
  ident: b74
  article-title: GCNs-net: a graph convolutional neural network approach for decoding time-resolved eeg motor imagery signals
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– year: 2017
  ident: b102
  article-title: Mobilenets: Efficient convolutional neural networks for mobile vision applications
– volume: 263
  year: 2023
  ident: 10.1016/j.compbiomed.2024.109260_b43
  article-title: Motor imagery classification via stacking-based Takagi–Sugeno–Kang fuzzy classifier ensemble
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2023.110292
– volume: 31
  start-page: 710
  year: 2022
  ident: 10.1016/j.compbiomed.2024.109260_b84
  article-title: EEG conformer: Convolutional transformer for EEG decoding and visualization
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2022.3230250
– volume: 17
  issue: 1
  year: 2020
  ident: 10.1016/j.compbiomed.2024.109260_b56
  article-title: HS-CNN: a CNN with hybrid convolution scale for EEG motor imagery classification
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/ab405f
– start-page: 1
  year: 2023
  ident: 10.1016/j.compbiomed.2024.109260_b60
  article-title: A deep learning approach for position control of a mobile robot
– start-page: 475
  year: 2021
  ident: 10.1016/j.compbiomed.2024.109260_b41
  article-title: An extended computer aided diagnosis system for robust BCI applications
– volume: 26
  start-page: 715
  issue: 5
  year: 2019
  ident: 10.1016/j.compbiomed.2024.109260_b65
  article-title: A convolutional recurrent attention model for subject-independent EEG signal analysis
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2019.2906824
– start-page: 1
  year: 2021
  ident: 10.1016/j.compbiomed.2024.109260_b54
  article-title: Attention based inception model for robust EEG motor imagery classification
– volume: 101
  start-page: 542
  year: 2019
  ident: 10.1016/j.compbiomed.2024.109260_b50
  article-title: Deep learning for EEG motor imagery classification based on multi-layer CNNs feature fusion
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2019.06.027
– year: 2013
  ident: 10.1016/j.compbiomed.2024.109260_b105
– volume: 27
  issue: 02
  year: 2017
  ident: 10.1016/j.compbiomed.2024.109260_b36
  article-title: Sparse Bayesian learning for obtaining sparsity of EEG frequency bands based feature vectors in motor imagery classification
  publication-title: Int. J. Neural Syst.
  doi: 10.1142/S0129065716500325
– volume: 8
  start-page: 219656
  year: 2020
  ident: 10.1016/j.compbiomed.2024.109260_b14
  article-title: A novel de-ghosting image fusion technique for multi-exposure, multi-focus images using guided image filtering
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3043048
– volume: 61
  start-page: 1425
  issue: 5
  year: 2014
  ident: 10.1016/j.compbiomed.2024.109260_b4
  article-title: Brain–computer interfaces using sensorimotor rhythms: current state and future perspectives
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2014.2312397
– volume: 69
  year: 2021
  ident: 10.1016/j.compbiomed.2024.109260_b52
  article-title: Electroencephalography-based motor imagery classification using temporal convolutional network fusion
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2021.102826
– ident: 10.1016/j.compbiomed.2024.109260_b98
  doi: 10.1109/CVPR.2018.00745
– volume: 29
  year: 2016
  ident: 10.1016/j.compbiomed.2024.109260_b27
  article-title: Convolutional neural networks on graphs with fast localized spectral filtering
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 16
  issue: 6
  year: 2019
  ident: 10.1016/j.compbiomed.2024.109260_b68
  article-title: A novel hybrid deep learning scheme for four-class motor imagery classification
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/ab3471
– volume: 4
  issue: 1
  year: 2014
  ident: 10.1016/j.compbiomed.2024.109260_b16
  article-title: Survey on EEG signal processing methods
  publication-title: Int. J. Adv. Res. Comput. Sci. Softw. Eng.
– volume: 9
  start-page: 1
  issue: 1
  year: 2019
  ident: 10.1016/j.compbiomed.2024.109260_b63
  article-title: Brain wave classification using long short-term memory network based OPTICAL predictor
  publication-title: Sci. Rep.
– volume: 7
  start-page: 1
  issue: 1
  year: 2019
  ident: 10.1016/j.compbiomed.2024.109260_b8
  article-title: User perspectives on a psychosocial blended support program for partners of patients with amyotrophic lateral sclerosis and progressive muscular atrophy: a qualitative study
  publication-title: BMC Psychol.
  doi: 10.1186/s40359-019-0308-x
– volume: 24
  start-page: 2570
  issue: 9
  year: 2020
  ident: 10.1016/j.compbiomed.2024.109260_b76
  article-title: Motor imagery classification via temporal attention cues of graph embedded EEG signals
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2020.2967128
– volume: 20
  start-page: 3085
  issue: 8
  year: 2016
  ident: 10.1016/j.compbiomed.2024.109260_b40
  article-title: Adaptive learning with covariate shift-detection for motor imagery-based brain–computer interface
  publication-title: Soft Comput.
  doi: 10.1007/s00500-015-1937-5
– volume: 15
  issue: 3
  year: 2018
  ident: 10.1016/j.compbiomed.2024.109260_b3
  article-title: A review of classification algorithms for EEG-based brain–computer interfaces: a 10 year update
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/aab2f2
– volume: 8
  start-page: giz002
  issue: 5
  year: 2019
  ident: 10.1016/j.compbiomed.2024.109260_b95
  article-title: EEG dataset and openbmi toolbox for three BCI paradigms: An investigation into BCI illiteracy
  publication-title: GigaScience
  doi: 10.1093/gigascience/giz002
– volume: 91
  year: 2021
  ident: 10.1016/j.compbiomed.2024.109260_b26
  article-title: Automatic recognition of preictal and interictal EEG signals using 1D-capsule networks
  publication-title: Comput. Electr. Eng.
  doi: 10.1016/j.compeleceng.2021.107033
– start-page: 562
  year: 2015
  ident: 10.1016/j.compbiomed.2024.109260_b29
  article-title: Deeply-supervised nets
– year: 2017
  ident: 10.1016/j.compbiomed.2024.109260_b102
– volume: 79
  year: 2023
  ident: 10.1016/j.compbiomed.2024.109260_b48
  article-title: A parallel multi-scale time-frequency block convolutional neural network based on channel attention module for motor imagery classification
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2022.104066
– start-page: 1
  year: 2021
  ident: 10.1016/j.compbiomed.2024.109260_b24
  article-title: Decoding the confidence level of subjects in answering multiple choice questions using EEG induced capsule network
– year: 2014
  ident: 10.1016/j.compbiomed.2024.109260_b97
– year: 2022
  ident: 10.1016/j.compbiomed.2024.109260_b74
  article-title: GCNs-net: a graph convolutional neural network approach for decoding time-resolved eeg motor imagery signals
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 28
  start-page: 219
  year: 2021
  ident: 10.1016/j.compbiomed.2024.109260_b75
  article-title: Adaptive spatiotemporal graph convolutional networks for motor imagery classification
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2021.3049683
– volume: 103
  year: 2020
  ident: 10.1016/j.compbiomed.2024.109260_b82
  article-title: A novel method of motor imagery classification using EEG signal
  publication-title: Artif. Intell. Med.
– volume: 143
  year: 2022
  ident: 10.1016/j.compbiomed.2024.109260_b70
  article-title: A transfer learning-based CNN and LSTM hybrid deep learning model to classify motor imagery EEG signals
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2022.105288
– volume: 56
  start-page: 2730
  issue: 11
  year: 2009
  ident: 10.1016/j.compbiomed.2024.109260_b33
  article-title: A new discriminative common spatial pattern method for motor imagery brain–computer interfaces
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2009.2026181
– volume: 31
  start-page: 3839
  issue: 10
  year: 2019
  ident: 10.1016/j.compbiomed.2024.109260_b51
  article-title: Subject-independent brain–computer interfaces based on deep convolutional neural networks
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2019.2946869
– volume: 164
  year: 2021
  ident: 10.1016/j.compbiomed.2024.109260_b13
  article-title: Exploiting dimensionality reduction and neural network techniques for the development of expert brain–computer interfaces
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.114031
– volume: 30
  start-page: 2764
  year: 2022
  ident: 10.1016/j.compbiomed.2024.109260_b104
  article-title: A spectrally-dense encoding method for designing a high-speed SSVEP-BCI with 120 stimuli
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2022.3208717
– year: 2021
  ident: 10.1016/j.compbiomed.2024.109260_b83
– volume: 60
  start-page: 2289
  issue: 8
  year: 2013
  ident: 10.1016/j.compbiomed.2024.109260_b35
  article-title: Transferring subspaces between subjects in brain–computer interfacing
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2013.2253608
– start-page: 1
  year: 2019
  ident: 10.1016/j.compbiomed.2024.109260_b67
  article-title: Combined CNN and LSTM for motor imagery classification
– start-page: 2620
  year: 2015
  ident: 10.1016/j.compbiomed.2024.109260_b44
  article-title: On the use of convolutional neural networks and augmented CSP features for multi-class motor imagery of EEG signals classification
– volume: 3
  start-page: 1
  issue: 1
  year: 2017
  ident: 10.1016/j.compbiomed.2024.109260_b6
  article-title: Amyotrophic lateral sclerosis
  publication-title: Nature Rev. Disease Prim.
– year: 2022
  ident: 10.1016/j.compbiomed.2024.109260_b45
  article-title: Exploiting pretrained CNN models for the development of an EEG-based robust BCI framework
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2022.105242
– year: 2017
  ident: 10.1016/j.compbiomed.2024.109260_b90
– ident: 10.1016/j.compbiomed.2024.109260_b64
  doi: 10.1609/aaai.v32i1.11496
– volume: 10
  start-page: 2689
  issue: 15
  year: 2022
  ident: 10.1016/j.compbiomed.2024.109260_b17
  article-title: Pearson correlation and discrete wavelet transform for crack identification in steel beams
  publication-title: Mathematics
  doi: 10.3390/math10152689
– volume: 33
  start-page: 3038
  issue: 7
  year: 2021
  ident: 10.1016/j.compbiomed.2024.109260_b81
  article-title: Spatio-spectral feature representation for motor imagery classification using convolutional neural networks
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2020.3048385
– year: 2023
  ident: 10.1016/j.compbiomed.2024.109260_b85
  article-title: LMDA-Net: A lightweight multi-dimensional attention network for general EEG-based brain-computer interfaces and interpretability
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2023.120209
– start-page: 2000
  year: 2014
  ident: 10.1016/j.compbiomed.2024.109260_b12
  article-title: Evaluating a four-class motor-imagery-based optical brain-computer interface
– volume: 218
  year: 2022
  ident: 10.1016/j.compbiomed.2024.109260_b66
  article-title: A framework for motor imagery with LSTM neural network
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2022.106692
– volume: 32
  start-page: 535
  issue: 2
  year: 2020
  ident: 10.1016/j.compbiomed.2024.109260_b80
  article-title: Deep representation-based domain adaptation for nonstationary EEG classification
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2020.3010780
– volume: 265
  start-page: 185
  issue: 2
  year: 2013
  ident: 10.1016/j.compbiomed.2024.109260_b89
  article-title: Bilinear interpolation theorems and applications
  publication-title: J. Funct. Anal.
  doi: 10.1016/j.jfa.2013.05.001
– volume: 6
  start-page: 39
  year: 2012
  ident: 10.1016/j.compbiomed.2024.109260_b32
  article-title: Filter bank common spatial pattern algorithm on BCI competition iv datasets 2a and 2b
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2012.00039
– ident: 10.1016/j.compbiomed.2024.109260_b99
  doi: 10.1109/CVPR42600.2020.01155
– year: 2022
  ident: 10.1016/j.compbiomed.2024.109260_b25
  article-title: Patient-specific seizure prediction from electroencephalogram signal via multi-channel feedback capsule network
  publication-title: IEEE Trans. Cogn. Dev. Syst.
– volume: 8
  start-page: 29745
  issue: 52
  year: 2018
  ident: 10.1016/j.compbiomed.2024.109260_b18
  article-title: EEG characteristic analysis of coach bus drivers based on brain connectivity as revealed via a graph theoretical network
  publication-title: RSC Adv.
  doi: 10.1039/C8RA04846K
– volume: 8
  start-page: 441
  issue: 4
  year: 2000
  ident: 10.1016/j.compbiomed.2024.109260_b30
  article-title: Optimal spatial filtering of single trial EEG during imagined hand movement
  publication-title: IEEE Trans. Rehabilit. Eng.
  doi: 10.1109/86.895946
– start-page: 55
  year: 2012
  ident: 10.1016/j.compbiomed.2024.109260_b93
  article-title: Review of the BCI competition IV
  publication-title: Front. Neurosci.
– volume: 16
  start-page: 683
  issue: 8
  year: 2009
  ident: 10.1016/j.compbiomed.2024.109260_b34
  article-title: Composite common spatial pattern for subject-to-subject transfer
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2009.2022557
– volume: 11
  start-page: 197
  issue: 2
  year: 2021
  ident: 10.1016/j.compbiomed.2024.109260_b58
  article-title: A Densely connected multi-Branch 3D convolutional neural network for motor imagery EEG decoding
  publication-title: Brain Sci.
  doi: 10.3390/brainsci11020197
– volume: 2020
  year: 2020
  ident: 10.1016/j.compbiomed.2024.109260_b15
  article-title: IoMT-based automated detection and classification of leukemia using deep learning
  publication-title: J. Healthc. Eng.
  doi: 10.1155/2020/6648574
– volume: 101
  year: 2019
  ident: 10.1016/j.compbiomed.2024.109260_b78
  article-title: Motor imagery EEG recognition with KNN-based smooth auto-encoder
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2019.101747
– volume: 19
  issue: 13
  year: 2019
  ident: 10.1016/j.compbiomed.2024.109260_b23
  article-title: Motor imagery EEG classification using capsule networks
  publication-title: Sensors
– volume: 63
  year: 2021
  ident: 10.1016/j.compbiomed.2024.109260_b79
  article-title: Hybrid deep neural network using transfer learning for EEG motor imagery decoding
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2020.102144
– volume: 69
  start-page: 2105
  issue: 6
  year: 2021
  ident: 10.1016/j.compbiomed.2024.109260_b77
  article-title: Min2net: End-to-end multi-task learning for subject-independent motor imagery eeg classification
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2021.3137184
– volume: 15
  issue: 5
  year: 2018
  ident: 10.1016/j.compbiomed.2024.109260_b55
  article-title: Eegnet: a compact convolutional neural network for EEG-based brain–computer interfaces
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/aace8c
– volume: 30
  year: 2017
  ident: 10.1016/j.compbiomed.2024.109260_b21
  article-title: Dynamic routing between capsules
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 2390
  year: 2008
  ident: 10.1016/j.compbiomed.2024.109260_b31
  article-title: Filter bank common spatial pattern (FBCSP) in brain-computer interface
– volume: 34
  start-page: bhad511
  issue: 2
  year: 2024
  ident: 10.1016/j.compbiomed.2024.109260_b53
  article-title: Multiclass classification of motor imagery tasks based on multi-branch convolutional neural network and temporal convolutional network model
  publication-title: Cerebral Cortex
  doi: 10.1093/cercor/bhad511
– volume: 7
  start-page: 1344
  issue: 5
  year: 2020
  ident: 10.1016/j.compbiomed.2024.109260_b9
  article-title: A hybrid brain-computer interface for closed-loop position control of a robot arm
  publication-title: IEEE/CAA J. Autom. Sin.
  doi: 10.1109/JAS.2020.1003336
– volume: 18
  issue: 4
  year: 2021
  ident: 10.1016/j.compbiomed.2024.109260_b69
  article-title: EEG-inception: an accurate and robust end-to-end neural network for EEG-based motor imagery classification
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/abed81
– volume: 19
  start-page: 2249
  issue: 2
  year: 2022
  ident: 10.1016/j.compbiomed.2024.109260_b87
  article-title: Physics-informed attention temporal convolutional network for EEG-based motor imagery classification
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2022.3197419
– volume: 35
  start-page: 18719
  issue: 25
  year: 2023
  ident: 10.1016/j.compbiomed.2024.109260_b103
  article-title: RamanNet: a generalized neural network architecture for Raman spectrum analysis
  publication-title: Neural Comput. Appl.
– volume: 6
  start-page: 10840
  year: 2018
  ident: 10.1016/j.compbiomed.2024.109260_b1
  article-title: Brain-computer interface control in a virtual reality environment and applications for the internet of things
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2809453
– volume: 14
  issue: 1
  year: 2016
  ident: 10.1016/j.compbiomed.2024.109260_b49
  article-title: A novel deep learning approach for classification of EEG motor imagery signals
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/14/1/016003
– year: 2023
  ident: 10.1016/j.compbiomed.2024.109260_b88
  article-title: Dynamic convolution with multilevel attention for EEG-based motor imagery decoding
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2023.3281911
– volume: 9
  start-page: 323
  issue: 7
  year: 2022
  ident: 10.1016/j.compbiomed.2024.109260_b57
  article-title: Electroencephalogram-based motor imagery signals classification using a multi-branch convolutional neural network model with attention blocks
  publication-title: Bioengineering
  doi: 10.3390/bioengineering9070323
– volume: 170
  start-page: 312
  year: 2024
  ident: 10.1016/j.compbiomed.2024.109260_b59
  article-title: BrainGridNet: A two-branch depthwise CNN for decoding EEG-based multi-class motor imagery
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2023.11.037
– year: 2013
  ident: 10.1016/j.compbiomed.2024.109260_b73
– volume: 164
  year: 2023
  ident: 10.1016/j.compbiomed.2024.109260_b86
  article-title: A shallow mirror transformer for subject-independent motor imagery BCI
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2023.107254
– volume: 34
  start-page: 1295
  issue: 1
  year: 2022
  ident: 10.1016/j.compbiomed.2024.109260_b22
  article-title: Capsule networks–a survey
  publication-title: J. King Saud Univ. Comput. Inf. Sci.
– volume: 38
  start-page: 5391
  issue: 11
  year: 2017
  ident: 10.1016/j.compbiomed.2024.109260_b46
  article-title: Deep learning with convolutional neural networks for EEG decoding and visualization
  publication-title: Human Brain Map.
  doi: 10.1002/hbm.23730
– volume: 12
  year: 2021
  ident: 10.1016/j.compbiomed.2024.109260_b7
  article-title: Palliative care challenges of patients with progressive bulbar palsy: a retrospective case series of 14 patients
  publication-title: Front. Neurol.
  doi: 10.3389/fneur.2021.700103
– volume: 1
  start-page: 437
  issue: 6
  year: 2017
  ident: 10.1016/j.compbiomed.2024.109260_b2
  article-title: EEG analysis for cognitive failure detection in driving using type-2 fuzzy classifiers
  publication-title: IEEE Trans. Emerg. Top. Comput. Intell.
  doi: 10.1109/TETCI.2017.2750761
– year: 2024
  ident: 10.1016/j.compbiomed.2024.109260_b72
  article-title: An end-to-end multi-task motor imagery EEG classification neural network based on dynamic fusion of spectral-temporal features
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2024.108727
– volume: 22
  start-page: 1477
  issue: 4
  year: 2022
  ident: 10.1016/j.compbiomed.2024.109260_b19
  article-title: Complex Pearson correlation coefficient for EEG connectivity analysis
  publication-title: Sensors
  doi: 10.3390/s22041477
– start-page: 195
  year: 2020
  ident: 10.1016/j.compbiomed.2024.109260_b20
  article-title: Frequency-domain based fault detection: Application of short-time fourier transform
– volume: 55
  start-page: 1589
  issue: 9
  year: 2017
  ident: 10.1016/j.compbiomed.2024.109260_b37
  article-title: A spatial-frequency-temporal optimized feature sparse representation-based classification method for motor imagery EEG pattern recognition
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/s11517-017-1622-1
– ident: 10.1016/j.compbiomed.2024.109260_b91
  doi: 10.1007/978-3-030-01234-2_1
– volume: 7
  year: 2021
  ident: 10.1016/j.compbiomed.2024.109260_b71
  article-title: OPTICAL+: a frequency-based deep learning scheme for recognizing brain wave signals
  publication-title: Peerj Comput. Sci.
  doi: 10.7717/peerj-cs.375
– volume: 71
  start-page: 166
  year: 2015
  ident: 10.1016/j.compbiomed.2024.109260_b5
  article-title: Interfacing robotic tactile sensation with human vibrotactile perception for digit recognition
  publication-title: Robot. Auton. Syst.
  doi: 10.1016/j.robot.2014.12.010
– year: 2015
  ident: 10.1016/j.compbiomed.2024.109260_b61
– year: 2018
  ident: 10.1016/j.compbiomed.2024.109260_b101
– year: 2016
  ident: 10.1016/j.compbiomed.2024.109260_b28
– start-page: 297
  year: 2022
  ident: 10.1016/j.compbiomed.2024.109260_b100
  article-title: BA-net: Bridge attention for deep convolutional neural networks
– volume: 114
  start-page: 532
  year: 2018
  ident: 10.1016/j.compbiomed.2024.109260_b47
  article-title: An end-to-end deep learning approach to MI-EEG signal classification for BCIs
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2018.08.031
– volume: 2
  start-page: 314
  issue: 4
  year: 2021
  ident: 10.1016/j.compbiomed.2024.109260_b42
  article-title: Toward the development of versatile brain–computer interfaces
  publication-title: IEEE Trans. Artif. Intell.
  doi: 10.1109/TAI.2021.3097307
– volume: 76
  start-page: 715
  year: 2018
  ident: 10.1016/j.compbiomed.2024.109260_b39
  article-title: Sparse support matrix machine
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2017.10.003
– year: 2023
  ident: 10.1016/j.compbiomed.2024.109260_b92
– start-page: 938
  year: 2015
  ident: 10.1016/j.compbiomed.2024.109260_b38
  article-title: Support matrix machines
– start-page: 584
  year: 2017
  ident: 10.1016/j.compbiomed.2024.109260_b62
  article-title: The novel recognition method with optimal wavelet packet and LSTM based recurrent neural network
– year: 2017
  ident: 10.1016/j.compbiomed.2024.109260_b94
  article-title: Supporting data for “EEG datasets for motor imagery brain computer interface.”
  publication-title: GigaSci. Database
  doi: 10.1093/gigascience/gix034
– volume: 4
  start-page: 639
  issue: 4
  year: 2017
  ident: 10.1016/j.compbiomed.2024.109260_b10
  article-title: Motor imagery and error related potential induced position control of a robotic arm
  publication-title: IEEE/CAA J. Autom. Sin.
  doi: 10.1109/JAS.2017.7510616
– volume: 24
  year: 2011
  ident: 10.1016/j.compbiomed.2024.109260_b96
  article-title: Algorithms for hyper-parameter optimization
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 11
  start-page: 394
  year: 2020
  ident: 10.1016/j.compbiomed.2024.109260_b11
  article-title: Motor imagery practice and cognitive processes
  publication-title: Front. Psychol.
  doi: 10.3389/fpsyg.2020.00394
SSID ssj0004030
Score 2.3966937
Snippet In recent times, Electroencephalography (EEG)-based motor imagery (MI) decoding has garnered significant attention due to its extensive applicability in...
AbstractIn recent times, Electroencephalography (EEG)-based motor imagery (MI) decoding has garnered significant attention due to its extensive applicability...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 109260
SubjectTerms Algorithms
Attention
Attention - physiology
Brain
Brain - physiology
Brain-Computer Interfaces
Capsule network
Classification
Convolution
Decoding
Deep Learning
EEG
Electroencephalography
Electroencephalography (EEG)
Electroencephalography - methods
Error analysis
Feature extraction
Humans
Imagery
Imagination - physiology
Internal Medicine
Machine learning
Mental task performance
Modules
Motor imagery
Motor skill learning
Motor task performance
Neural networks
Neural Networks, Computer
Other
Robotics
Signal Processing, Computer-Assisted
Signal to noise ratio
Title Attention Induced Dual Convolutional-Capsule Network (AIDC-CN): A deep learning framework for motor imagery classification
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0010482524013453
https://www.clinicalkey.es/playcontent/1-s2.0-S0010482524013453
https://dx.doi.org/10.1016/j.compbiomed.2024.109260
https://www.ncbi.nlm.nih.gov/pubmed/39426071
https://www.proquest.com/docview/3128256686
https://www.proquest.com/docview/3118471634
Volume 183
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa6DiFeEHcKYzISD6ApVWK3sQ1PpSswEBNiQ-pblItLOnVp1bRl45_ybzgndtKytVJBQqqiKo3jxN_Xc47tcyHkhQyVy3TkOiyOlNOKB54TJjwCYRhL7kVS8ygpik2I42PZ76svtdqvMhZmMRJZJi8u1OS_Qg3nAGwMnf0LuKubwgn4DqDDEWCH41bAd2Yz68KIZTlwe_9wXqwQZAvbbzhyuiHMjkfo3lh4gaOd2Tk67Dq4669MtHqi9aQsKvH9YFA6cRV-iYAv-rGfYwKMy4MYLXB0OVqiXOY-sDUjCqfb1XxPV7f0u-n4R5LaPf2vYAbnKci0ynH4ra3_eJIOp3laaZL36ThPzbr2JTAkzIaV_oC3NGW6z4ez1ZUN1lrxErHSGnRES5rA6KW05ivy1nMVM_UIrPZenrimG8wyxRlCOzG5DZrYa3P1HqvpuHvdT56Ts6brnBRZjOBBGM5GWya78ZU03V6Qs8ANrl26Q3aZaCtZJ7udo17_4zJo1-UmPsq-pHUzM86H659xk-20aW5U2Eind8htO7mhHUPKu6Sms3vk5meL9X3ys-ImtdykyE26lpvUcpO-tMx89Zp2KLKSlqykFSspsJIWrKSWlfRPVj4g3971TrsfHFv8w4nBRJo5ICo0HzARY74pN2aCJbwdtiWPYsmE9DT3MI-Qbkeaw4BHiUpC0RaRVH4o21GLPyT1bJzpxzCsOh6oQYhJcLHAOgt97otBCBMPhR_ZIKIc1iC2mfGxQMsoKF0gz4IlIAECEhhAGsSrWk5Mdpgt2qgSuaCMfgZ9HQBNt2gr1rXVuZU_ebCJhg3ypmppbWtjM2_Z715JsaDqinsY9-770m-Q59XPoJ1wyzHM9HiO13ho_vq81SCPDDWrgeIKq2MI78k_v9RTcmspN_ZIfTad62fkRryYDfPpPtkRfblv_3a_ATY7EwU
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Attention+Induced+Dual+Convolutional-Capsule+Network+%28AIDC-CN%29%3A+A+deep+learning+framework+for+motor+imagery+classification&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Chowdhury%2C+Ritesh+Sur&rft.au=Bose%2C+Shirsha&rft.au=Ghosh%2C+Sayantani&rft.au=Konar%2C+Amit&rft.date=2024-12-01&rft.issn=0010-4825&rft.volume=183&rft.spage=109260&rft.epage=109260&rft_id=info:doi/10.1016%2Fj.compbiomed.2024.109260&rft.externalDBID=ECK1-s2.0-S0010482524013453&rft.externalDocID=1_s2_0_S0010482524013453
thumbnail_m http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00104825%2FS0010482524X00153%2Fcov150h.gif