Learning and Tracking the 3D Body Shape of Freely Moving Infants from RGB-D sequences
Statistical models of the human body surface are generally learned from thousands of high-quality 3D scans in predefined poses to cover the wide variety of human body shapes and articulations. Acquisition of such data requires expensive equipment, calibration procedures, and is limited to cooperativ...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence Jg. 42; H. 10; S. 2540 - 2551 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
IEEE
01.10.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Institute of Electrical and Electronics Engineers |
| Schlagworte: | |
| ISSN: | 0162-8828, 1939-3539, 2160-9292, 1939-3539 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Statistical models of the human body surface are generally learned from thousands of high-quality 3D scans in predefined poses to cover the wide variety of human body shapes and articulations. Acquisition of such data requires expensive equipment, calibration procedures, and is limited to cooperative subjects who can understand and follow instructions, such as adults. We present a method for learning a statistical 3D Skinned Multi-Infant Linear body model (SMIL) from incomplete, low-quality RGB-D sequences of freely moving infants. Quantitative experiments show that SMIL faithfully represents the RGB-D data and properly factorizes the shape and pose of the infants. To demonstrate the applicability of SMIL, we fit the model to RGB-D sequences of freely moving infants and show, with a case study, that our method captures enough motion detail for General Movements Assessment (GMA), a method used in clinical practice for early detection of neurodevelopmental disorders in infants. SMIL provides a new tool for analyzing infant shape and movement and is a step towards an automated system for GMA. |
|---|---|
| AbstractList | Statistical models of the human body surface are generally learned from thousands of high-quality 3D scans in predefined poses to cover the wide variety of human body shapes and articulations. Acquisition of such data requires expensive equipment, calibration procedures, and is limited to cooperative subjects who can understand and follow instructions, such as adults. We present a method for learning a statistical 3D Skinned Multi-Infant Linear body model (SMIL) from incomplete, low-quality RGB-D sequences of freely moving infants. Quantitative experiments show that SMIL faithfully represents the RGB-D data and properly factorizes the shape and pose of the infants. To demonstrate the applicability of SMIL, we fit the model to RGB-D sequences of freely moving infants and show, with a case study, that our method captures enough motion detail for General Movements Assessment (GMA), a method used in clinical practice for early detection of neurodevelopmental disorders in infants. SMIL provides a new tool for analyzing infant shape and movement and is a step towards an automated system for GMA. Statistical models of the human body surface are generally learned from thousands of high-quality 3D scans in predefined poses to cover the wide variety of human body shapes and articulations. Acquisition of such data requires expensive equipment, calibration procedures, and is limited to cooperative subjects who can understand and follow instructions, such as adults. We present a method for learning a statistical 3D Skinned Multi-Infant Linear body model (SMIL) from incomplete, low-quality RGB-D sequences of freely moving infants. Quantitative experiments show that SMIL faithfully represents the RGB-D data and properly factorizes the shape and pose of the infants. To demonstrate the applicability of SMIL, we fit the model to RGB-D sequences of freely moving infants and show, with a case study, that our method captures enough motion detail for General Movements Assessment (GMA), a method used in clinical practice for early detection of neurodevelopmental disorders in infants. SMIL provides a new tool for analyzing infant shape and movement and is a step towards an automated system for GMA.Statistical models of the human body surface are generally learned from thousands of high-quality 3D scans in predefined poses to cover the wide variety of human body shapes and articulations. Acquisition of such data requires expensive equipment, calibration procedures, and is limited to cooperative subjects who can understand and follow instructions, such as adults. We present a method for learning a statistical 3D Skinned Multi-Infant Linear body model (SMIL) from incomplete, low-quality RGB-D sequences of freely moving infants. Quantitative experiments show that SMIL faithfully represents the RGB-D data and properly factorizes the shape and pose of the infants. To demonstrate the applicability of SMIL, we fit the model to RGB-D sequences of freely moving infants and show, with a case study, that our method captures enough motion detail for General Movements Assessment (GMA), a method used in clinical practice for early detection of neurodevelopmental disorders in infants. SMIL provides a new tool for analyzing infant shape and movement and is a step towards an automated system for GMA. |
| Author | Arens, Michael Schroeder, A. Sebastian Hofmann, Ulrich G. Hesse, Nikolas Black, Michael J. Pujades, Sergi |
| Author_xml | – sequence: 1 givenname: Nikolas orcidid: 0000-0003-1141-0614 surname: Hesse fullname: Hesse, Nikolas email: nikolas.hesse@iosb.fraunhofer.de organization: Fraunhofer IOSB, Institute of Optronics, System Technologies and Image Exploitation, Ettlingen, Germany – sequence: 2 givenname: Sergi orcidid: 0000-0002-9604-7721 surname: Pujades fullname: Pujades, Sergi email: sergi.pujades-rocamora@inria.fr organization: Inria, CNRS, GrenobleINP, LJK, Université Grenoble Alpes, Grenoble, France – sequence: 3 givenname: Michael J. orcidid: 0000-0001-6077-4540 surname: Black fullname: Black, Michael J. email: black@tuebingen.mpg.de organization: Max Planck Institute for Intelligent Systems, Tübingen, Germany – sequence: 4 givenname: Michael orcidid: 0000-0002-7857-0332 surname: Arens fullname: Arens, Michael email: michael.arens@iosb.fraunhofer.de organization: Fraunhofer IOSB, Institute of Optronics, System Technologies and Image Exploitation, Ettlingen, Germany – sequence: 5 givenname: Ulrich G. orcidid: 0000-0002-6264-3701 surname: Hofmann fullname: Hofmann, Ulrich G. email: ulrich.hofmann@coregen.uni-freiburg.de organization: University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany – sequence: 6 givenname: A. Sebastian orcidid: 0000-0001-6664-2012 surname: Schroeder fullname: Schroeder, A. Sebastian email: sebastian.schroeder@med.uni-muenchen.de organization: Hauner Children's Hospital, Ludwig Maximilian University, Munich, Germany |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31180836$$D View this record in MEDLINE/PubMed https://inria.hal.science/hal-02162171$$DView record in HAL |
| BookMark | eNp9kU1vEzEQhi1URD_gD4CELHGBw4YZe7O2j2lL20ipQJCeLcc7S7Zs7GBvKuXfsyEhhx44jWb0vPP1nrOTEAMx9hZhhAjm8_zb5H46EoBmJAwqA_oFOxNYQWGEESfsDLAShdZCn7LznB8BsByDfMVOJaIGLasz9jAjl0IbfnIXaj5Pzv_aJf2SuLzml7He8h9LtyYeG36TiLotv49PO2QaGhf6zJsUV_z77WVxzTP93lDwlF-zl43rMr05xAv2cPNlfnVXzL7eTq8ms8KXwvSFV6AaNxY0xtIYRVg5WoAqvakcaO8k-lpo6VQt3GIhqrGXAqpKYl3WeqjIC_Zp33fpOrtO7cqlrY2utXeTmd3VYHiHQIVPOLAf9-w6xWHN3NtVmz11nQsUN9kKWQJIVSo5oB-eoY9xk8JwiRVliQAGUQ3U-wO1WayoPs7_99wBEHvAp5hzouaIINidg_avg3bnoD04OIj0M5Fve9e3MfTJtd3_pe_20paIjrO0kkKaSv4Bq5ukkQ |
| CODEN | ITPIDJ |
| CitedBy_id | crossref_primary_10_3390_electronics14040777 crossref_primary_10_3390_s20185321 crossref_primary_10_1109_ACCESS_2023_3331687 crossref_primary_10_1016_j_media_2024_103208 crossref_primary_10_1109_TVCG_2020_2988476 crossref_primary_10_3389_fped_2021_720502 crossref_primary_10_1109_JTEHM_2024_3435334 crossref_primary_10_1007_s11263_023_01781_2 crossref_primary_10_3390_s22030866 crossref_primary_10_1109_TIM_2022_3178693 crossref_primary_10_1111_dmcn_14800 crossref_primary_10_3390_app10217535 crossref_primary_10_2478_amns_2024_2409 crossref_primary_10_1007_s11227_021_04184_7 crossref_primary_10_1109_TNSRE_2023_3251440 crossref_primary_10_1186_s13677_024_00691_z crossref_primary_10_1007_s11633_022_1411_7 crossref_primary_10_1109_JSEN_2020_3037121 crossref_primary_10_1109_ACCESS_2022_3160749 crossref_primary_10_1007_s41870_023_01497_z crossref_primary_10_1007_s00103_020_03163_2 crossref_primary_10_1109_JSEN_2022_3183502 crossref_primary_10_3390_s20236725 crossref_primary_10_1109_TVCG_2024_3364814 crossref_primary_10_3389_fcomp_2023_1153160 crossref_primary_10_1016_j_displa_2022_102308 crossref_primary_10_1016_j_jbiomech_2021_110645 |
| Cites_doi | 10.1145/882262.882311 10.1007/978-3-642-33709-3_59 10.1016/j.patcog.2017.02.018 10.1109/ICCV.2015.265 10.1109/CVPR.2017.494 10.1145/3072959.3073685 10.1109/CVPR.2013.21 10.1145/280814.280823 10.1109/CVPR.2017.586 10.1109/TPAMI.2012.68 10.1109/CVPR.2017.143 10.1145/1073204.1073207 10.1007/978-3-030-00928-1_89 10.1109/CVPR.2017.582 10.1109/CVPR.2018.00761 10.1145/311535.311556 10.1007/978-3-319-10470-6_54 10.1145/2766993 10.1111/cgf.12838 10.1007/978-3-642-33783-3_18 10.1109/TIFS.2013.2291969 10.1145/3130800.3130883 10.1109/3DV.2018.00062 10.1145/2816795.2818013 10.1109/CVPR.2018.00055 10.1145/3072959.3073711 10.1109/CVPR.2014.301 10.3389/fneur.2014.00284 10.1007/978-3-030-11024-6_3 10.1007/978-3-642-33783-3_53 10.1109/CVPR.2016.511 10.1109/3DV.2013.44 10.1007/978-3-319-10584-0_11 10.1007/978-3-319-46720-7_57 10.1007/978-3-319-46454-1_34 10.1109/3DV.2018.00022 10.1109/CVPR.2014.92 10.1109/CVPR.2017.492 10.1145/358669.358692 10.1111/j.1467-8659.2009.01373.x 10.1016/j.gaitpost.2012.03.033 10.1016/0378-3782(90)90011-7 10.1109/ICCV.2011.6126465 10.1109/TVCG.2015.2478779 10.1145/641485.641487 10.1016/j.jpeds.2004.05.017 10.1109/CVPR.2017.591 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 1XC VOOES |
| DOI | 10.1109/TPAMI.2019.2917908 |
| DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library (IEL) CrossRef PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
| DatabaseTitle | CrossRef PubMed Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed Technology Research Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 2160-9292 1939-3539 |
| EndPage | 2551 |
| ExternalDocumentID | oai:HAL:hal-02162171v1 31180836 10_1109_TPAMI_2019_2917908 8732396 |
| Genre | orig-research Journal Article |
| GroupedDBID | --- -DZ -~X .DC 0R~ 29I 4.4 53G 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD ESBDL F5P HZ~ IEDLZ IFIPE IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 UHB ~02 AAYXX CITATION 5VS 9M8 ABFSI ADRHT AETEA AETIX AGSQL AI. AIBXA ALLEH FA8 H~9 IBMZZ ICLAB IFJZH NPM RIG RNI RZB VH1 XJT 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 1XC VOOES |
| ID | FETCH-LOGICAL-c429t-c707fa52e514997e16aeb074c96a08ca31cd283a7d2abb265c3206631d4d8abb3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 39 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000567471300016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0162-8828 1939-3539 |
| IngestDate | Tue Oct 14 20:51:31 EDT 2025 Sun Sep 28 08:44:52 EDT 2025 Sun Nov 09 07:52:15 EST 2025 Mon Jul 21 06:01:43 EDT 2025 Sat Nov 29 05:15:59 EST 2025 Tue Nov 18 22:33:42 EST 2025 Wed Aug 27 02:31:42 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Keywords | RGB-D Body models infants data-driven motion analysis |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/OAPA.html Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c429t-c707fa52e514997e16aeb074c96a08ca31cd283a7d2abb265c3206631d4d8abb3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-9604-7721 0000-0002-7857-0332 0000-0003-1141-0614 0000-0002-6264-3701 0000-0001-6664-2012 0000-0001-6077-4540 |
| OpenAccessLink | https://ieeexplore.ieee.org/document/8732396 |
| PMID | 31180836 |
| PQID | 2441009117 |
| PQPubID | 85458 |
| PageCount | 12 |
| ParticipantIDs | ieee_primary_8732396 crossref_primary_10_1109_TPAMI_2019_2917908 proquest_journals_2441009117 pubmed_primary_31180836 proquest_miscellaneous_2340037473 crossref_citationtrail_10_1109_TPAMI_2019_2917908 hal_primary_oai_HAL_hal_02162171v1 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-10-01 |
| PublicationDateYYYYMMDD | 2020-10-01 |
| PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: New York |
| PublicationTitle | IEEE transactions on pattern analysis and machine intelligence |
| PublicationTitleAbbrev | TPAMI |
| PublicationTitleAlternate | IEEE Trans Pattern Anal Mach Intell |
| PublicationYear | 2020 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Institute of Electrical and Electronics Engineers |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) – name: Institute of Electrical and Electronics Engineers |
| References | ref13 ref12 ref15 ref14 ref11 ref10 geman (ref44) 1987; 52 loper (ref50) 0 ref17 ref16 ref19 ref18 ref51 ref46 ref45 ref48 ref47 ref42 ref41 ref43 ref8 ref7 ref9 ref4 ref3 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 nocedal (ref49) 2006 ref24 ref23 ref26 tung (ref6) 2017 ref25 ref20 ref22 ref21 ref28 ref27 ref29 |
| References_xml | – ident: ref20 doi: 10.1145/882262.882311 – ident: ref38 doi: 10.1007/978-3-642-33709-3_59 – ident: ref25 doi: 10.1016/j.patcog.2017.02.018 – ident: ref4 doi: 10.1109/ICCV.2015.265 – ident: ref33 doi: 10.1109/CVPR.2017.494 – ident: ref27 doi: 10.1145/3072959.3073685 – ident: ref24 doi: 10.1109/CVPR.2013.21 – ident: ref19 doi: 10.1145/280814.280823 – ident: ref30 doi: 10.1109/CVPR.2017.586 – ident: ref28 doi: 10.1109/TPAMI.2012.68 – ident: ref32 doi: 10.1109/CVPR.2017.143 – ident: ref1 doi: 10.1145/1073204.1073207 – ident: ref18 doi: 10.1007/978-3-030-00928-1_89 – start-page: 5236 year: 2017 ident: ref6 article-title: Self-supervised learning of motion capture publication-title: Proc Neural Inf Process Syst – year: 0 ident: ref50 article-title: Chumpy. – ident: ref46 doi: 10.1109/CVPR.2017.582 – ident: ref41 doi: 10.1109/CVPR.2018.00761 – ident: ref3 doi: 10.1145/311535.311556 – ident: ref12 doi: 10.1007/978-3-319-10470-6_54 – ident: ref26 doi: 10.1145/2766993 – ident: ref29 doi: 10.1111/cgf.12838 – ident: ref23 doi: 10.1007/978-3-642-33783-3_18 – ident: ref10 doi: 10.1109/TIFS.2013.2291969 – ident: ref48 doi: 10.1145/3130800.3130883 – ident: ref7 doi: 10.1109/3DV.2018.00062 – ident: ref2 doi: 10.1145/2816795.2818013 – ident: ref8 doi: 10.1109/CVPR.2018.00055 – ident: ref43 doi: 10.1145/3072959.3073711 – ident: ref40 doi: 10.1109/CVPR.2014.301 – ident: ref16 doi: 10.3389/fneur.2014.00284 – ident: ref17 doi: 10.1007/978-3-030-11024-6_3 – ident: ref39 doi: 10.1007/978-3-642-33783-3_53 – ident: ref31 doi: 10.1109/CVPR.2016.511 – ident: ref35 doi: 10.1109/3DV.2013.44 – ident: ref45 doi: 10.1007/978-3-319-10584-0_11 – ident: ref11 doi: 10.1007/978-3-319-46720-7_57 – ident: ref47 doi: 10.1007/978-3-319-46454-1_34 – ident: ref9 doi: 10.1109/3DV.2018.00022 – ident: ref36 doi: 10.1109/CVPR.2014.92 – volume: 52 start-page: 5 year: 1987 ident: ref44 article-title: Statistical methods for tomographic image reconstruction publication-title: Proc 46th Sess Int Stat Inst Bullet ISI – year: 2006 ident: ref49 publication-title: Numerical Optimization – ident: ref51 doi: 10.1109/CVPR.2017.492 – ident: ref42 doi: 10.1145/358669.358692 – ident: ref22 doi: 10.1111/j.1467-8659.2009.01373.x – ident: ref13 doi: 10.1016/j.gaitpost.2012.03.033 – ident: ref14 doi: 10.1016/0378-3782(90)90011-7 – ident: ref34 doi: 10.1109/ICCV.2011.6126465 – ident: ref37 doi: 10.1109/TVCG.2015.2478779 – ident: ref21 doi: 10.1145/641485.641487 – ident: ref15 doi: 10.1016/j.jpeds.2004.05.017 – ident: ref5 doi: 10.1109/CVPR.2017.591 |
| SSID | ssj0014503 |
| Score | 2.5422275 |
| Snippet | Statistical models of the human body surface are generally learned from thousands of high-quality 3D scans in predefined poses to cover the wide variety of... |
| SourceID | hal proquest pubmed crossref ieee |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 2540 |
| SubjectTerms | Animals Avatars Biological system modeling Body models Computer Science Computer Vision and Pattern Recognition Data models data-driven Face Human body Infants Learning motion analysis RGB-D Shape Statistical models Three dimensional bodies Three dimensional models Three-dimensional displays |
| Title | Learning and Tracking the 3D Body Shape of Freely Moving Infants from RGB-D sequences |
| URI | https://ieeexplore.ieee.org/document/8732396 https://www.ncbi.nlm.nih.gov/pubmed/31180836 https://www.proquest.com/docview/2441009117 https://www.proquest.com/docview/2340037473 https://inria.hal.science/hal-02162171 |
| Volume | 42 |
| WOSCitedRecordID | wos000567471300016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2160-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014503 issn: 0162-8828 databaseCode: RIE dateStart: 19790101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9RAEJ9wxAd9AAWFKpLV-KaFbrfX3X08wBMSIUQhubdmP6ZAQlpy3JHw3zu712swURPfmnb6OTPd3-zO_AbgEyFQZUmdqTKFTovC89R469LSFaWta8IIuo7NJuTZmZpM9PkKfOlrYRAxJp_hXtiMa_m-dfMwVbavpMiFLgcwkFIuarX6FYNiGLsgE4IhD6cwYlkgk-n9i_PR6UnI4tJ7uQ6MVOq3QWhwHVIgY2-Vv8PMONyM1__vQV_CWgcr2WhhB69gBZsNWF-2bGCdB2_Aiyf8g5tw2bGrXjHTeEbDlgsT54wwIRNH7KD1j-zntblD1tZsPEW8fWSncQaCnTR1SKBhoTqF_fh2kB6xPin7NVyOv14cHqddn4XU0Wg0S53MZG2GORJ40loiLw1aghZOlyZTzgjuPKEQI31urM3LoROBBF5wX3hFe8QbWG3aBreBaURL_xCUxmSF1dZQ7M1LwlxotFVcJMCXH75yHQl56IVxW8VgJNNVVFYVlFV1ykrgc3_O3YKC45_SH0mfvWBgzz4efa_CPoIzJUVg_IEnsBmU1kt1-kpgZ6n-qnPl-4rwDycgyrlM4EN_mJwwrKyYBts5yYgiEvlIesGthdn01xaBZE-J8u2f7_kOnuchhI_5gTuwOpvO8T08cw-zm_vpLln6RO1GS_8Fx1_1sQ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED5tAwl4YLDBCAwwiDeWLY7d2H7sGKUVbTVBJ-3Nsh2HTZqSqWsn7b_n7KYRSIDEW5Rcfp4v95199x3AB0Sg0qI6U2m4SjkvaWpK69LC8cJWFWIEVcVmE2I6lefn6nQDDrpaGO99TD7zh2EzruWXjVuGqbIjKVjOVLEJ93qc53RVrdWtGfBe7IOMGAZtHAOJdYlMpo5mp_3JKORxqcNcBU4q-Zsb2rwISZCxu8rfgWZ0OIPt_3vUJ_C4BZakvxoJT2HD1zuwvW7aQFob3oFHvzAQ7sJZy6_6g5i6JOi4XJg6J4gKCTshx015R75fmGtPmooM5t5f3ZFJnIMgo7oKKTQk1KeQb1-O0xPSpWU_g7PB59mnYdp2Wkgd-qNF6kQmKtPLPcInpYSnhfEWwYVThcmkM4y6EnGIEWVurM2LnmOBBp7RkpcS97DnsFU3tX8BRHlv8S_ihTEZt8oajL5pgajLG2UlZQnQ9YfXrqUhD90wrnQMRzKlo7J0UJZulZXAx-6c6xUJxz-l36M-O8HAnz3sj3XYh4CmwBiM3tIEdoPSOqlWXwnsr9WvW2O-0YiAKEJRSkUC77rDaIZhbcXUvlmiDOORykfgC-6thk13bRZo9iQrXv75nm_hwXA2GevxaPr1FTzMQ0AfswX3YWsxX_rXcN_dLi5v5m_ieP8J6qH4EA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+and+Tracking+the+3D+Body+Shape+of+Freely+Moving+Infants+from+RGB-D+sequences&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Hesse%2C+Nikolas&rft.au=Pujades%2C+Sergi&rft.au=Black%2C+Michael+J&rft.au=Arens%2C+Michael&rft.date=2020-10-01&rft.issn=1939-3539&rft.eissn=1939-3539&rft.volume=42&rft.issue=10&rft.spage=2540&rft_id=info:doi/10.1109%2FTPAMI.2019.2917908&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon |