Learning and Tracking the 3D Body Shape of Freely Moving Infants from RGB-D sequences

Statistical models of the human body surface are generally learned from thousands of high-quality 3D scans in predefined poses to cover the wide variety of human body shapes and articulations. Acquisition of such data requires expensive equipment, calibration procedures, and is limited to cooperativ...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on pattern analysis and machine intelligence Ročník 42; číslo 10; s. 2540 - 2551
Hlavní autoři: Hesse, Nikolas, Pujades, Sergi, Black, Michael J., Arens, Michael, Hofmann, Ulrich G., Schroeder, A. Sebastian
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States IEEE 01.10.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Institute of Electrical and Electronics Engineers
Témata:
ISSN:0162-8828, 1939-3539, 2160-9292, 1939-3539
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Statistical models of the human body surface are generally learned from thousands of high-quality 3D scans in predefined poses to cover the wide variety of human body shapes and articulations. Acquisition of such data requires expensive equipment, calibration procedures, and is limited to cooperative subjects who can understand and follow instructions, such as adults. We present a method for learning a statistical 3D Skinned Multi-Infant Linear body model (SMIL) from incomplete, low-quality RGB-D sequences of freely moving infants. Quantitative experiments show that SMIL faithfully represents the RGB-D data and properly factorizes the shape and pose of the infants. To demonstrate the applicability of SMIL, we fit the model to RGB-D sequences of freely moving infants and show, with a case study, that our method captures enough motion detail for General Movements Assessment (GMA), a method used in clinical practice for early detection of neurodevelopmental disorders in infants. SMIL provides a new tool for analyzing infant shape and movement and is a step towards an automated system for GMA.
AbstractList Statistical models of the human body surface are generally learned from thousands of high-quality 3D scans in predefined poses to cover the wide variety of human body shapes and articulations. Acquisition of such data requires expensive equipment, calibration procedures, and is limited to cooperative subjects who can understand and follow instructions, such as adults. We present a method for learning a statistical 3D Skinned Multi-Infant Linear body model (SMIL) from incomplete, low-quality RGB-D sequences of freely moving infants. Quantitative experiments show that SMIL faithfully represents the RGB-D data and properly factorizes the shape and pose of the infants. To demonstrate the applicability of SMIL, we fit the model to RGB-D sequences of freely moving infants and show, with a case study, that our method captures enough motion detail for General Movements Assessment (GMA), a method used in clinical practice for early detection of neurodevelopmental disorders in infants. SMIL provides a new tool for analyzing infant shape and movement and is a step towards an automated system for GMA.
Statistical models of the human body surface are generally learned from thousands of high-quality 3D scans in predefined poses to cover the wide variety of human body shapes and articulations. Acquisition of such data requires expensive equipment, calibration procedures, and is limited to cooperative subjects who can understand and follow instructions, such as adults. We present a method for learning a statistical 3D Skinned Multi-Infant Linear body model (SMIL) from incomplete, low-quality RGB-D sequences of freely moving infants. Quantitative experiments show that SMIL faithfully represents the RGB-D data and properly factorizes the shape and pose of the infants. To demonstrate the applicability of SMIL, we fit the model to RGB-D sequences of freely moving infants and show, with a case study, that our method captures enough motion detail for General Movements Assessment (GMA), a method used in clinical practice for early detection of neurodevelopmental disorders in infants. SMIL provides a new tool for analyzing infant shape and movement and is a step towards an automated system for GMA.Statistical models of the human body surface are generally learned from thousands of high-quality 3D scans in predefined poses to cover the wide variety of human body shapes and articulations. Acquisition of such data requires expensive equipment, calibration procedures, and is limited to cooperative subjects who can understand and follow instructions, such as adults. We present a method for learning a statistical 3D Skinned Multi-Infant Linear body model (SMIL) from incomplete, low-quality RGB-D sequences of freely moving infants. Quantitative experiments show that SMIL faithfully represents the RGB-D data and properly factorizes the shape and pose of the infants. To demonstrate the applicability of SMIL, we fit the model to RGB-D sequences of freely moving infants and show, with a case study, that our method captures enough motion detail for General Movements Assessment (GMA), a method used in clinical practice for early detection of neurodevelopmental disorders in infants. SMIL provides a new tool for analyzing infant shape and movement and is a step towards an automated system for GMA.
Author Arens, Michael
Schroeder, A. Sebastian
Hofmann, Ulrich G.
Hesse, Nikolas
Black, Michael J.
Pujades, Sergi
Author_xml – sequence: 1
  givenname: Nikolas
  orcidid: 0000-0003-1141-0614
  surname: Hesse
  fullname: Hesse, Nikolas
  email: nikolas.hesse@iosb.fraunhofer.de
  organization: Fraunhofer IOSB, Institute of Optronics, System Technologies and Image Exploitation, Ettlingen, Germany
– sequence: 2
  givenname: Sergi
  orcidid: 0000-0002-9604-7721
  surname: Pujades
  fullname: Pujades, Sergi
  email: sergi.pujades-rocamora@inria.fr
  organization: Inria, CNRS, GrenobleINP, LJK, Université Grenoble Alpes, Grenoble, France
– sequence: 3
  givenname: Michael J.
  orcidid: 0000-0001-6077-4540
  surname: Black
  fullname: Black, Michael J.
  email: black@tuebingen.mpg.de
  organization: Max Planck Institute for Intelligent Systems, Tübingen, Germany
– sequence: 4
  givenname: Michael
  orcidid: 0000-0002-7857-0332
  surname: Arens
  fullname: Arens, Michael
  email: michael.arens@iosb.fraunhofer.de
  organization: Fraunhofer IOSB, Institute of Optronics, System Technologies and Image Exploitation, Ettlingen, Germany
– sequence: 5
  givenname: Ulrich G.
  orcidid: 0000-0002-6264-3701
  surname: Hofmann
  fullname: Hofmann, Ulrich G.
  email: ulrich.hofmann@coregen.uni-freiburg.de
  organization: University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
– sequence: 6
  givenname: A. Sebastian
  orcidid: 0000-0001-6664-2012
  surname: Schroeder
  fullname: Schroeder, A. Sebastian
  email: sebastian.schroeder@med.uni-muenchen.de
  organization: Hauner Children's Hospital, Ludwig Maximilian University, Munich, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31180836$$D View this record in MEDLINE/PubMed
https://inria.hal.science/hal-02162171$$DView record in HAL
BookMark eNp9kU1vEzEQhi1URD_gD4CELHGBw4YZe7O2j2lL20ipQJCeLcc7S7Zs7GBvKuXfsyEhhx44jWb0vPP1nrOTEAMx9hZhhAjm8_zb5H46EoBmJAwqA_oFOxNYQWGEESfsDLAShdZCn7LznB8BsByDfMVOJaIGLasz9jAjl0IbfnIXaj5Pzv_aJf2SuLzml7He8h9LtyYeG36TiLotv49PO2QaGhf6zJsUV_z77WVxzTP93lDwlF-zl43rMr05xAv2cPNlfnVXzL7eTq8ms8KXwvSFV6AaNxY0xtIYRVg5WoAqvakcaO8k-lpo6VQt3GIhqrGXAqpKYl3WeqjIC_Zp33fpOrtO7cqlrY2utXeTmd3VYHiHQIVPOLAf9-w6xWHN3NtVmz11nQsUN9kKWQJIVSo5oB-eoY9xk8JwiRVliQAGUQ3U-wO1WayoPs7_99wBEHvAp5hzouaIINidg_avg3bnoD04OIj0M5Fve9e3MfTJtd3_pe_20paIjrO0kkKaSv4Bq5ukkQ
CODEN ITPIDJ
CitedBy_id crossref_primary_10_3390_electronics14040777
crossref_primary_10_3390_s20185321
crossref_primary_10_1109_ACCESS_2023_3331687
crossref_primary_10_1016_j_media_2024_103208
crossref_primary_10_1109_TVCG_2020_2988476
crossref_primary_10_3389_fped_2021_720502
crossref_primary_10_1109_JTEHM_2024_3435334
crossref_primary_10_1007_s11263_023_01781_2
crossref_primary_10_3390_s22030866
crossref_primary_10_1109_TIM_2022_3178693
crossref_primary_10_1111_dmcn_14800
crossref_primary_10_3390_app10217535
crossref_primary_10_2478_amns_2024_2409
crossref_primary_10_1007_s11227_021_04184_7
crossref_primary_10_1109_TNSRE_2023_3251440
crossref_primary_10_1186_s13677_024_00691_z
crossref_primary_10_1007_s11633_022_1411_7
crossref_primary_10_1109_JSEN_2020_3037121
crossref_primary_10_1109_ACCESS_2022_3160749
crossref_primary_10_1007_s41870_023_01497_z
crossref_primary_10_1007_s00103_020_03163_2
crossref_primary_10_1109_JSEN_2022_3183502
crossref_primary_10_3390_s20236725
crossref_primary_10_1109_TVCG_2024_3364814
crossref_primary_10_3389_fcomp_2023_1153160
crossref_primary_10_1016_j_displa_2022_102308
crossref_primary_10_1016_j_jbiomech_2021_110645
Cites_doi 10.1145/882262.882311
10.1007/978-3-642-33709-3_59
10.1016/j.patcog.2017.02.018
10.1109/ICCV.2015.265
10.1109/CVPR.2017.494
10.1145/3072959.3073685
10.1109/CVPR.2013.21
10.1145/280814.280823
10.1109/CVPR.2017.586
10.1109/TPAMI.2012.68
10.1109/CVPR.2017.143
10.1145/1073204.1073207
10.1007/978-3-030-00928-1_89
10.1109/CVPR.2017.582
10.1109/CVPR.2018.00761
10.1145/311535.311556
10.1007/978-3-319-10470-6_54
10.1145/2766993
10.1111/cgf.12838
10.1007/978-3-642-33783-3_18
10.1109/TIFS.2013.2291969
10.1145/3130800.3130883
10.1109/3DV.2018.00062
10.1145/2816795.2818013
10.1109/CVPR.2018.00055
10.1145/3072959.3073711
10.1109/CVPR.2014.301
10.3389/fneur.2014.00284
10.1007/978-3-030-11024-6_3
10.1007/978-3-642-33783-3_53
10.1109/CVPR.2016.511
10.1109/3DV.2013.44
10.1007/978-3-319-10584-0_11
10.1007/978-3-319-46720-7_57
10.1007/978-3-319-46454-1_34
10.1109/3DV.2018.00022
10.1109/CVPR.2014.92
10.1109/CVPR.2017.492
10.1145/358669.358692
10.1111/j.1467-8659.2009.01373.x
10.1016/j.gaitpost.2012.03.033
10.1016/0378-3782(90)90011-7
10.1109/ICCV.2011.6126465
10.1109/TVCG.2015.2478779
10.1145/641485.641487
10.1016/j.jpeds.2004.05.017
10.1109/CVPR.2017.591
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
1XC
VOOES
DOI 10.1109/TPAMI.2019.2917908
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

PubMed
Technology Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 2160-9292
1939-3539
EndPage 2551
ExternalDocumentID oai:HAL:hal-02162171v1
31180836
10_1109_TPAMI_2019_2917908
8732396
Genre orig-research
Journal Article
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
ESBDL
F5P
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
UHB
~02
AAYXX
CITATION
5VS
9M8
ABFSI
ADRHT
AETEA
AETIX
AGSQL
AI.
AIBXA
ALLEH
FA8
H~9
IBMZZ
ICLAB
IFJZH
NPM
RIG
RNI
RZB
VH1
XJT
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
1XC
VOOES
ID FETCH-LOGICAL-c429t-c707fa52e514997e16aeb074c96a08ca31cd283a7d2abb265c3206631d4d8abb3
IEDL.DBID RIE
ISICitedReferencesCount 39
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000567471300016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0162-8828
1939-3539
IngestDate Tue Oct 14 20:51:31 EDT 2025
Sun Sep 28 08:44:52 EDT 2025
Sun Nov 09 07:52:15 EST 2025
Mon Jul 21 06:01:43 EDT 2025
Sat Nov 29 05:15:59 EST 2025
Tue Nov 18 22:33:42 EST 2025
Wed Aug 27 02:31:42 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords RGB-D
Body models
infants
data-driven
motion analysis
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/OAPA.html
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c429t-c707fa52e514997e16aeb074c96a08ca31cd283a7d2abb265c3206631d4d8abb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9604-7721
0000-0002-7857-0332
0000-0003-1141-0614
0000-0002-6264-3701
0000-0001-6664-2012
0000-0001-6077-4540
OpenAccessLink https://ieeexplore.ieee.org/document/8732396
PMID 31180836
PQID 2441009117
PQPubID 85458
PageCount 12
ParticipantIDs ieee_primary_8732396
crossref_primary_10_1109_TPAMI_2019_2917908
proquest_journals_2441009117
pubmed_primary_31180836
proquest_miscellaneous_2340037473
crossref_citationtrail_10_1109_TPAMI_2019_2917908
hal_primary_oai_HAL_hal_02162171v1
PublicationCentury 2000
PublicationDate 2020-10-01
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationTitleAlternate IEEE Trans Pattern Anal Mach Intell
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Institute of Electrical and Electronics Engineers
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
– name: Institute of Electrical and Electronics Engineers
References ref13
ref12
ref15
ref14
ref11
ref10
geman (ref44) 1987; 52
loper (ref50) 0
ref17
ref16
ref19
ref18
ref51
ref46
ref45
ref48
ref47
ref42
ref41
ref43
ref8
ref7
ref9
ref4
ref3
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
nocedal (ref49) 2006
ref24
ref23
ref26
tung (ref6) 2017
ref25
ref20
ref22
ref21
ref28
ref27
ref29
References_xml – ident: ref20
  doi: 10.1145/882262.882311
– ident: ref38
  doi: 10.1007/978-3-642-33709-3_59
– ident: ref25
  doi: 10.1016/j.patcog.2017.02.018
– ident: ref4
  doi: 10.1109/ICCV.2015.265
– ident: ref33
  doi: 10.1109/CVPR.2017.494
– ident: ref27
  doi: 10.1145/3072959.3073685
– ident: ref24
  doi: 10.1109/CVPR.2013.21
– ident: ref19
  doi: 10.1145/280814.280823
– ident: ref30
  doi: 10.1109/CVPR.2017.586
– ident: ref28
  doi: 10.1109/TPAMI.2012.68
– ident: ref32
  doi: 10.1109/CVPR.2017.143
– ident: ref1
  doi: 10.1145/1073204.1073207
– ident: ref18
  doi: 10.1007/978-3-030-00928-1_89
– start-page: 5236
  year: 2017
  ident: ref6
  article-title: Self-supervised learning of motion capture
  publication-title: Proc Neural Inf Process Syst
– year: 0
  ident: ref50
  article-title: Chumpy.
– ident: ref46
  doi: 10.1109/CVPR.2017.582
– ident: ref41
  doi: 10.1109/CVPR.2018.00761
– ident: ref3
  doi: 10.1145/311535.311556
– ident: ref12
  doi: 10.1007/978-3-319-10470-6_54
– ident: ref26
  doi: 10.1145/2766993
– ident: ref29
  doi: 10.1111/cgf.12838
– ident: ref23
  doi: 10.1007/978-3-642-33783-3_18
– ident: ref10
  doi: 10.1109/TIFS.2013.2291969
– ident: ref48
  doi: 10.1145/3130800.3130883
– ident: ref7
  doi: 10.1109/3DV.2018.00062
– ident: ref2
  doi: 10.1145/2816795.2818013
– ident: ref8
  doi: 10.1109/CVPR.2018.00055
– ident: ref43
  doi: 10.1145/3072959.3073711
– ident: ref40
  doi: 10.1109/CVPR.2014.301
– ident: ref16
  doi: 10.3389/fneur.2014.00284
– ident: ref17
  doi: 10.1007/978-3-030-11024-6_3
– ident: ref39
  doi: 10.1007/978-3-642-33783-3_53
– ident: ref31
  doi: 10.1109/CVPR.2016.511
– ident: ref35
  doi: 10.1109/3DV.2013.44
– ident: ref45
  doi: 10.1007/978-3-319-10584-0_11
– ident: ref11
  doi: 10.1007/978-3-319-46720-7_57
– ident: ref47
  doi: 10.1007/978-3-319-46454-1_34
– ident: ref9
  doi: 10.1109/3DV.2018.00022
– ident: ref36
  doi: 10.1109/CVPR.2014.92
– volume: 52
  start-page: 5
  year: 1987
  ident: ref44
  article-title: Statistical methods for tomographic image reconstruction
  publication-title: Proc 46th Sess Int Stat Inst Bullet ISI
– year: 2006
  ident: ref49
  publication-title: Numerical Optimization
– ident: ref51
  doi: 10.1109/CVPR.2017.492
– ident: ref42
  doi: 10.1145/358669.358692
– ident: ref22
  doi: 10.1111/j.1467-8659.2009.01373.x
– ident: ref13
  doi: 10.1016/j.gaitpost.2012.03.033
– ident: ref14
  doi: 10.1016/0378-3782(90)90011-7
– ident: ref34
  doi: 10.1109/ICCV.2011.6126465
– ident: ref37
  doi: 10.1109/TVCG.2015.2478779
– ident: ref21
  doi: 10.1145/641485.641487
– ident: ref15
  doi: 10.1016/j.jpeds.2004.05.017
– ident: ref5
  doi: 10.1109/CVPR.2017.591
SSID ssj0014503
Score 2.5422275
Snippet Statistical models of the human body surface are generally learned from thousands of high-quality 3D scans in predefined poses to cover the wide variety of...
SourceID hal
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2540
SubjectTerms Animals
Avatars
Biological system modeling
Body models
Computer Science
Computer Vision and Pattern Recognition
Data models
data-driven
Face
Human body
Infants
Learning
motion analysis
RGB-D
Shape
Statistical models
Three dimensional bodies
Three dimensional models
Three-dimensional displays
Title Learning and Tracking the 3D Body Shape of Freely Moving Infants from RGB-D sequences
URI https://ieeexplore.ieee.org/document/8732396
https://www.ncbi.nlm.nih.gov/pubmed/31180836
https://www.proquest.com/docview/2441009117
https://www.proquest.com/docview/2340037473
https://inria.hal.science/hal-02162171
Volume 42
WOSCitedRecordID wos000567471300016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library
  customDbUrl:
  eissn: 2160-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014503
  issn: 0162-8828
  databaseCode: RIE
  dateStart: 19790101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1RT9wwDLY4tAf2AAy2UWAom3jbCk3TNsnjMXYDCRDaQLq3KkndgYRadNwh8e9xcr2KSdukvVWpm1a1rXxO7M8A-9Jm0uocY1FjEmeW17FBsuVaodJZYrmqAmX-mby4UOOxvlyCL30tDCKG5DM88JfhLL9q3cxvlR0qKVKhiwEMpJTzWq3-xCDLQxdkQjDk4RRGLApkEn14dTk8P_VZXPog1Z6RSv22CA1ufApk6K3yd5gZlpvR2v996DqsdrCSDed28AaWsNmAtUXLBtZ58Aa8fsE_uAnXHbvqL2aaitGy5fzGOSNMyMQxO2qrJ_bzxtwja2s2miDePbHzsAPBTpvaJ9AwX53Cfnw_io9Zn5T9Fq5H366-nsRdn4XY0Wo0jZ1MZG3yFAk8aS2RFwYtQQunC5MoZwR3FaEQI6vUWJsWuROeBF7wKqsUjYh3sNy0DW4B086gyVFhktQZzaYs4U-KwaySEkWWR8AXP750HQm574VxV4ZgJNFlUFbplVV2yorgc__M_ZyC45_Sn0ifvaBnzz4ZnpV-jOBMQREYf-QRbHql9VKdviLYXai_7Fz5oST8wwmIci4j-NjfJif0JyumwXZGMiILRD5SRPB-bjb93MKT7ClRbP_5nTuwkvoQPuQH7sLydDLDD_DKPU5vHyZ7ZOljtRcs_RmoQfV5
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Rb9MwED5tAwl4YLDBCAwwiDeWLY6d2H7sGKUVbTVBJ-0tcpwLmzSlU9dO2r_n7KYRSIDEW-RcnCh3J39n330H8EGVUpUmw1jUmMSy5HVskWy51qiNTEquq0CZP1KTiT4_N6cbcNDVwiBiSD7DQ38ZzvKrmVv6rbIjrUQqTL4J9zIpU76q1urODGQW-iAThiEfp0BiXSKTmKPpaW889Hlc5jA1npNK_7YMbV74JMjQXeXvQDMsOP3t__vUJ_C4BZast7KEp7CBzQ5sr5s2sNaHd-DRLwyEu3DW8qv-YLapGC1czm-dM0KFTJyw41l1x75f2Gtks5r154hXd2wc9iDYsKl9Cg3z9Sns25fj-IR1adnP4Kz_efppELedFmJH69EidipRtc1SJPhkjEKeWywJXDiT20Q7K7irCIdYVaW2LNM8c8LTwAteyUrTiHgOW82swRfAjLNoM9SYJLWk2XRJCJSisFIrhUJmEfD1jy9cS0Puu2FcFSEcSUwRlFV4ZRWtsiL42D1zvSLh-Kf0e9JnJ-j5swe9UeHHCNDkFIPxWx7BrldaJ9XqK4L9tfqL1plvCkJAnKAo5yqCd91tckN_tmIbnC1JRshA5aNEBHsrs-nmFp5mT4v85Z_f-RYeDKbjUTEaTr6-goepD-hDtuA-bC3mS3wN993t4vJm_ibY-0_KUffY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+and+Tracking+the+3D+Body+Shape+of+Freely+Moving+Infants+from+RGB-D+sequences&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Hesse%2C+Nikolas&rft.au=Pujades%2C+Sergi&rft.au=Black%2C+Michael+J&rft.au=Arens%2C+Michael&rft.date=2020-10-01&rft.issn=1939-3539&rft.eissn=1939-3539&rft.volume=42&rft.issue=10&rft.spage=2540&rft_id=info:doi/10.1109%2FTPAMI.2019.2917908&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon