Learning from interpretation transition using differentiable logic programming semantics
The combination of learning and reasoning is an essential and challenging topic in neuro-symbolic research. Differentiable inductive logic programming is a technique for learning a symbolic knowledge representation from either complete, mislabeled, or incomplete observed facts using neural networks....
Uloženo v:
| Vydáno v: | Machine learning Ročník 111; číslo 1; s. 123 - 145 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.01.2022
Springer Nature B.V |
| Témata: | |
| ISSN: | 0885-6125, 1573-0565 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The combination of learning and reasoning is an essential and challenging topic in neuro-symbolic research. Differentiable inductive logic programming is a technique for learning a symbolic knowledge representation from either complete, mislabeled, or incomplete observed facts using neural networks. In this paper, we propose a novel differentiable inductive logic programming system called differentiable learning from interpretation transition (D-LFIT) for learning logic programs through the proposed embeddings of logic programs, neural networks, optimization algorithms, and an adapted algebraic method to compute the logic program semantics. The proposed model has several characteristics, including a small number of parameters, the ability to generate logic programs in a curriculum-learning setting, and linear time complexity for the extraction of trained neural networks. The well-known bottom clause positionalization algorithm is incorporated when the proposed system learns from relational datasets. We compare our model with NN-LFIT, which extracts propositional logic rules from retuned connected networks, the highly accurate rule learner RIPPER, the purely symbolic LFIT system LF1T, and CILP++, which integrates neural networks and the propositionalization method to handle first-order logic knowledge. From the experimental results, we conclude that D-LFIT yields comparable accuracy with respect to the baselines when given complete, incomplete, and mislabeled data. Our experimental results indicate that D-LFIT not only learns symbolic logic programs quickly and precisely but also performs robustly when processing mislabeled and incomplete datasets. |
|---|---|
| AbstractList | The combination of learning and reasoning is an essential and challenging topic in neuro-symbolic research. Differentiable inductive logic programming is a technique for learning a symbolic knowledge representation from either complete, mislabeled, or incomplete observed facts using neural networks. In this paper, we propose a novel differentiable inductive logic programming system called differentiable learning from interpretation transition (D-LFIT) for learning logic programs through the proposed embeddings of logic programs, neural networks, optimization algorithms, and an adapted algebraic method to compute the logic program semantics. The proposed model has several characteristics, including a small number of parameters, the ability to generate logic programs in a curriculum-learning setting, and linear time complexity for the extraction of trained neural networks. The well-known bottom clause positionalization algorithm is incorporated when the proposed system learns from relational datasets. We compare our model with NN-LFIT, which extracts propositional logic rules from retuned connected networks, the highly accurate rule learner RIPPER, the purely symbolic LFIT system LF1T, and CILP++, which integrates neural networks and the propositionalization method to handle first-order logic knowledge. From the experimental results, we conclude that D-LFIT yields comparable accuracy with respect to the baselines when given complete, incomplete, and mislabeled data. Our experimental results indicate that D-LFIT not only learns symbolic logic programs quickly and precisely but also performs robustly when processing mislabeled and incomplete datasets. |
| Author | Inoue, Katsumi Cao, Yongzhi Gao, Kun Wang, Hanpin |
| Author_xml | – sequence: 1 givenname: Kun surname: Gao fullname: Gao, Kun organization: Peking University – sequence: 2 givenname: Hanpin surname: Wang fullname: Wang, Hanpin email: whpxhy@pku.edu.cn organization: Peking University, Guangzhou University – sequence: 3 givenname: Yongzhi surname: Cao fullname: Cao, Yongzhi organization: Peking University – sequence: 4 givenname: Katsumi surname: Inoue fullname: Inoue, Katsumi organization: National Institute of Informatics |
| BookMark | eNp9kE1rAyEQhqWk0DTtH-hpoedtR11dPZbQLwj00kJvYowuhl1NdXPov6_JFgo95KLCPI8z816iWYjBInSD4Q4DtPcZg5RNDQTXwIGJWpyhOWYtrYFxNkNzEILVHBN2gS5z3gIA4YLP0efK6hR86CqX4lD5MNq0S3bUo4-hGpMO2R-f-3yANt45m2wYvV73tupj5021S7FLehgOQLaDLlWTr9C5032217_3An08Pb4vX-rV2_Pr8mFVm4bIsZyGt41gYJzAxAjQ1gjdAl4zYwhxQA2nWoIAoCCckUZaxzfUYaobyTRdoNvp3zLF197mUW3jPoXSUhFOGCYNEVAoMVEmxZyTdcr4aceyou8VBnXIUU05qpKjOuaoRFHJP3WX_KDT92mJTlIucOhs-pvqhPUD35KJLQ |
| CitedBy_id | crossref_primary_10_1007_s10994_023_06346_5 crossref_primary_10_1016_j_fss_2024_109259 crossref_primary_10_1016_j_artint_2024_104108 crossref_primary_10_1007_s10994_024_06524_z crossref_primary_10_1016_j_iswa_2025_200541 |
| Cites_doi | 10.1007/BF03037232 10.1023/A:1008328630915 10.1007/978-3-319-59072-1_57 10.1007/s10994-013-5392-1 10.1007/978-3-030-03014-8_3 10.1007/s10994-009-5117-7 10.1609/aaai.v32i1.12111 10.1007/978-3-662-04599-2_11 10.1016/B978-0-934613-40-8.50006-3 10.1016/j.entcs.2006.04.028 10.1007/BF03037227 10.1016/B978-1-55860-377-6.50023-2 10.29007/9d61 10.1162/neco.1997.9.8.1735 10.1016/j.jal.2004.03.002 10.1073/pnas.0305937101 10.1093/oso/9780195079517.001.0001 10.1145/321978.321991 10.1613/jair.1.11203 10.1023/A:1008376514077 10.1007/s10994-013-5353-8 10.1613/jair.5714 10.1007/s10489-008-0142-y 10.14236/ewic/IWFM2000.2 10.1145/1553374.1553380 10.1016/0743-1066(94)90035-3 10.1371/journal.pone.0001672 10.1093/bioinformatics/btl210 10.18653/v1/W16-1309 10.1007/s00344-006-0068-8 10.1016/j.artint.2020.103438 10.1007/11564096_13 10.1007/BF03037089 10.1007/978-3-642-30743-0_23 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2021 The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2021. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2021 – notice: The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2021. |
| DBID | AAYXX CITATION 3V. 7SC 7XB 88I 8AL 8AO 8FD 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L7M L~C L~D M0N M2P P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U |
| DOI | 10.1007/s10994-021-06058-8 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Collection (ProQuest) ProQuest Computer Science Collection Computer Science Database (ProQuest) Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Science Database (ProQuest) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic |
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
| DatabaseTitleList | Computer Science Database |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1573-0565 |
| EndPage | 145 |
| ExternalDocumentID | 10_1007_s10994_021_06058_8 |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61972005 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: JSPS KAKENHI grantid: JP17H00763 – fundername: National Key R&D Program of China grantid: 2018YFB1003904; 2018YFC1314200 – fundername: National Natural Science Foundation of China grantid: 61932001 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: NII international internship program – fundername: National Natural Science Foundation of China grantid: 61772035; 61751210 funderid: http://dx.doi.org/10.13039/501100001809 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 6TJ 78A 88I 8AO 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAEWM AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABIVO ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IZIGR IZQ I~X I~Y I~Z J-C J0Z JBSCW JCJTX JZLTJ K6V K7- KDC KOV KOW LAK LLZTM M0N M2P M4Y MA- MVM N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF- PQQKQ PROAC PT4 Q2X QF4 QM1 QN7 QO4 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZC RZE S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TAE TEORI TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VXZ W23 W48 WH7 WIP WK8 XJT YLTOR Z45 Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z85 Z86 Z87 Z88 Z8M Z8N Z8O Z8P Z8Q Z8R Z8S Z8T Z8U Z8W Z8Z Z91 Z92 ZMTXR AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 7SC 7XB 8AL 8FD 8FK JQ2 L7M L~C L~D PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c429t-c4c674850cf812c80aec8a701b5cc22f03c63a90800308fc9c9ef6d3f13a495a3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 8 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000695754900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0885-6125 |
| IngestDate | Wed Nov 05 00:47:54 EST 2025 Sat Nov 29 01:43:28 EST 2025 Tue Nov 18 21:53:49 EST 2025 Fri Feb 21 02:44:43 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Neuro-symbolic method Differentiable inductive logic programming Explainability Learning from interpretation transition Machine learning |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c429t-c4c674850cf812c80aec8a701b5cc22f03c63a90800308fc9c9ef6d3f13a495a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | http://dx.doi.org/10.1007/s10994-021-06058-8 |
| PQID | 2625124280 |
| PQPubID | 54194 |
| PageCount | 23 |
| ParticipantIDs | proquest_journals_2625124280 crossref_citationtrail_10_1007_s10994_021_06058_8 crossref_primary_10_1007_s10994_021_06058_8 springer_journals_10_1007_s10994_021_06058_8 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-01-01 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Dordrecht |
| PublicationTitle | Machine learning |
| PublicationTitleAbbrev | Mach Learn |
| PublicationYear | 2022 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | SedaAKOn the integration of connectionist and logic-based systemsElectronic Notes in Theoretical Computer Science2006161110913010.1016/j.entcs.2006.04.028 ChaosAAldanaMEspinosa-SotoCPonce de LeónBArroyoAGAlvarez-BuyllaERFrom genes to flower patterns and evolution: Dynamic models of gene regulatory networksJournal of Plant Growth Regulation200625427828910.1007/s00344-006-0068-8 Rocktäschel, T., & Riedel, S. (2016). Learning knowledge base inference with neural theorem provers. In Proceedings of the 5th workshop on automated knowledge base construction (pp. 45–50). Quinlan, J. R. (1993). C4.5: programs for machine learning. San Francisco: Morgan Kaufmann. HölldoblerSKalinkeYStörrHPApproximating the semantics of logic programs by recurrent neural networksApplied Intelligence1999111455810.1023/A:1008376514077 Sakama, C., Nguyen, H. D., Sato, T., & Inoue, K. (2018). Partial evaluation of logic programs in vector spaces. In 11th workshop on answer set programming and other computing paradigms. Oxford, UK. Kazemi, S. M., & Poole, D. (2018). RelNN: a deep neural model for relational learning. In Proceedings of AAAI (pp. 6367–6375). AAAI press. PhuaYJRibeiroTInoueKLearning representation of relational dynamics with delays and refining with prior knowledgeIf CoLoG Journal of Logics and their Applications2019646957083970618 Hitzler, P., & Seda, A. K. (2000). A note on the relationships between logic programs and neural networks. In Proceedings of the 4th irish workshop on formal methods (pp. 1–9). Hölldobler, S. (1993). Automated inferencing and connectionist models. Fakultät Informatik. Technische Hochschule Darmstadt. (Doctoral dissertation, Habilitationsschrift). Wang, W. Y., & Cohen, W. W. (2016). Learning first-order logic embeddings via matrix factorization. In Proceedings of IJCAI (pp. 2132–2138). Apt, K. R., Blair, H. A., & Walker, A. (1988). Towards a theory of declarative knowledge. In Foundations of deductive databases and logic programming (pp. 89–148). San Mateo: Morgan Kaufmann. Nguyen, H. D., Sakama, C., Sato, T., & Inoue, K. (2018). Computing logic programming semantics in linear algebra. International conference on multi-disciplinary trends in artificial intelligence (pp. 32–48). Cham: Springer. LehmannJBaderSHitzlerPExtracting reduced logic programs from artificial neural networksApplied Intelligence201032324926610.1007/s10489-008-0142-y MuggletonSInverse entailment and ProgolNew Generation Computing1995133–424528610.1007/BF03037227 ŠourekGAschenbrennerVŽeleznýFSchockaertSKuželkaOLifted relational neural networks: Efficient learning of latent relational structuresJournal of Artificial Intelligence Research20186269100381750110.1613/jair.1.11203 LiFLongTLuYOuyangQTangCThe yeast cell-cycle network is robustly designedProceedings of the National Academy of Sciences of the United States of America2004101144781478610.1073/pnas.0305937101 AvilaASBrodaKGabbayDMSymbolic knowledge extraction from trained neural networks: A sound approachArtificial Intelligence20011251–215520718056450969.68124 Avila GarcezASZaveruchaGThe connectionist inductive learning and logic programming systemApplied Intelligence1999111597710.1023/A:1008328630915 FrançaMVMZaveruchaGD’Avila GarcezASFast relational learning using bottom clause propositionalization with artificial neural networksMachine Learning201494181104314440810.1007/s10994-013-5392-1 EvansRHernández-OralloJWelblJKohliPSergotMMaking sense of sensory inputArtificial Intelligence2019293103438419928710.1016/j.artint.2020.103438 Serafini, L., & Garcez, A. D. A. (2016). Logic tensor networks: deep learning and logical reasoning from data and knowledge. In CEUR workshop proceedings (Vol. 1768). Bengio, Y., Louradour, J., Collobert, R., & Weston, J. (2009). Curriculum learning. In Proceedings of ICML (Vol, 382, pp. 41–48). New York: ACM Press. Witten, I. H., Frank, E., Hall, M. A., & Pal, C. J. (2017). Data mining: practical machine learning tools and techniques (Fourth ed.). Morgan Kaufmann, ian imorint of Elsevier. Cohen, W. W. (1995). Fast effective rule induction. In Proceedings of ICML (pp. 115–123). Elsevier. InoueKRibeiroTSakamaCLearning from interpretation transitionMachine Learning20149415179314440710.1007/s10994-013-5353-8 PhuaYJInoueKLearning logic programs from noisy state transition dataILP2019ChamSpringer7280 Davis, J., Burnside, E. S., Dutra, I. C., Page, D., & Costa, V. S. (2005). An integrated approach to learning Bayesian networks of rules. In LNAI: Vol. 3720. Proc. ECML (pp. 84–95). Berlin: Springer. HochreiterSSchmidhuberJLong short-term memoryNeural Computation1997981735178010.1162/neco.1997.9.8.1735 Tourret, S., Gentet, E., & Inoue, K. (2017). Learning human-understandable description oaf dynamical systems from feed-forward neural networks. International symposium on neural networks (pp. 483–492). Cham: Springer. MuggletonSDe RaedtLInductive logic programming: Theory and methodsThe Journal of Logic Programming1994191629679127993610.1016/0743-1066(94)90035-3 EvansRGrefenstetteELearning explanatory rules from noisy dataJournal of Artificial Intelligence Research201861164376619810.1613/jair.5714 KauffmanSAThe origins of order: Self-organization and selection in evolution1993OxfordOxford University Press Inoue, K. (2011). Logic programming for Boolean networks. In Proceedings of IJCAI (pp. 924–930). Menlo Park: AAAI Press. Seda, A. K., & Lane, M. (2004). On approximation in the integration of connectionist and logic-based systems. In Proceedings of the third international conference on information (pp. 297–300). França, M. V. M., D’Avila Garcez, A. S., & Zaverucha, G. (2015). Relational knowledge extraction from neural networks. In CEUR workshop proceedings (Vol. 1583, pp. 11–12). Kramer, S., Lavrač, N., & Flach, P. (2001). Propositionalization approaches to relational data mining. Relational Data Mining, 262–291. DavidichMIBornholdtSBoolean network model predicts cell cycle sequence of fission yeastPLoS ONE200832e167210.1371/journal.pone.0001672 Inoue, K., & Sakama, C. (2012). Oscillating behavior of logic programs. Correct reasoning-essays on logic-based AI in honour of Vladimir LifschitzIn E. Erdem, J. Lee, Y. Lierler, & D. Pearce (Eds.), LNAI (Vol. 7265, pp. 345–362). Berlin: Springer. Srinivasan, A., Muggleton, S., King, R. D., & Sternberg, M. J. E. (1994). Mutagenesis: ILP experiments in a non-determinate biological domain. In LNAI: Vol. 237. Proc. ILP (pp. 217–232). Berlin: Springer. Bader, S., Hitzler, P., & Witzel, A. (2005). Integrating first-order logic programs and connectionist systems—a constructive approach. In Proceedings of the IJCAI workshop on neural-symbolic learning and reasoning (Vol. 5). HitzlerPHölldoblerSSedaAKLogic programs and connectionist networksJournal of Applied Logic200423273300208478110.1016/j.jal.2004.03.002 Van EmdenMHKowalskiRAThe semantics of predicate logic as a programming languageJournal of the ACM197623473374245550910.1145/321978.321991 Yang, F., Yang, Z., & Cohen, W. W. (2017). Differentiable learning of logical rules for knowledge base reasoning. In Proceedings of NIPS (pp. 2320–2329). FauréANaldiAChaouiyaCThieffryDDynamical analysis of a generic Boolean model for the control of the mammalian cell cycleBioinformatics20062214e124e13110.1093/bioinformatics/btl210 Gentet, E., Tourret, S., & Inoue, K. (2017). Learning from interpretation transition using feed-forward neural networks. In CEUR workshop proceedings (pp. 27–33). MuggletonSInductive logic programmingNew Generation Computing19918429531810.1007/BF03037089 Hölldobler, S., Kalinke, Y., Hoelldobler, S., & Kalinke, Y. (1991). Towards a new massively parallel computational model for logic programming. In ECAI’94 workshop on combining symbolic and connectioninst processing (pp. 68–77). Bader, S., Hitzler, P., & Hölldobler, S. (2004). The integration of connectionism and first-order knowledge representation and reasoning as a challenge for artificial intelligence. In Proceedings of the third international conference on information (pp. 22–33). KingRDSrinivasanASternbergMJERelating chemical activity to structure: An examination of ILP successesNew Generation Computing1995133–441143310.1007/BF03037232 Tamaddoni-NezhadAMuggletonSThe lattice structure and refinement operators for the hypothesis space bounded by a bottom clauseMachine Learning2009761377210.1007/s10994-009-5117-7 AK Seda (6058_CR42) 2006; 161 S Muggleton (6058_CR34) 1994; 19 6058_CR35 6058_CR39 6058_CR38 P Hitzler (6058_CR18) 2004; 2 A Tamaddoni-Nezhad (6058_CR46) 2009; 76 6058_CR5 6058_CR6 6058_CR8 6058_CR1 6058_CR4 AS Avila (6058_CR3) 2001; 125 6058_CR29 G Šourek (6058_CR44) 2018; 62 6058_CR24 MI Davidich (6058_CR9) 2008; 3 6058_CR23 6058_CR21 6058_CR27 S Muggleton (6058_CR32) 1991; 8 MH Van Emden (6058_CR48) 1976; 23 R Evans (6058_CR12) 2019; 293 YJ Phua (6058_CR37) 2019; 6 MVM França (6058_CR15) 2014; 94 6058_CR20 R Evans (6058_CR11) 2018; 61 S Hochreiter (6058_CR19) 1997; 9 J Lehmann (6058_CR30) 2010; 32 6058_CR10 6058_CR17 6058_CR16 6058_CR14 A Fauré (6058_CR13) 2006; 22 6058_CR51 6058_CR50 YJ Phua (6058_CR36) 2019 S Hölldobler (6058_CR22) 1999; 11 AS Avila Garcez (6058_CR2) 1999; 11 F Li (6058_CR31) 2004; 101 6058_CR45 6058_CR43 6058_CR49 6058_CR47 S Muggleton (6058_CR33) 1995; 13 6058_CR41 A Chaos (6058_CR7) 2006; 25 6058_CR40 SA Kauffman (6058_CR26) 1993 RD King (6058_CR28) 1995; 13 K Inoue (6058_CR25) 2014; 94 |
| References_xml | – reference: HölldoblerSKalinkeYStörrHPApproximating the semantics of logic programs by recurrent neural networksApplied Intelligence1999111455810.1023/A:1008376514077 – reference: HitzlerPHölldoblerSSedaAKLogic programs and connectionist networksJournal of Applied Logic200423273300208478110.1016/j.jal.2004.03.002 – reference: Tourret, S., Gentet, E., & Inoue, K. (2017). Learning human-understandable description oaf dynamical systems from feed-forward neural networks. International symposium on neural networks (pp. 483–492). Cham: Springer. – reference: Bengio, Y., Louradour, J., Collobert, R., & Weston, J. (2009). Curriculum learning. In Proceedings of ICML (Vol, 382, pp. 41–48). New York: ACM Press. – reference: FauréANaldiAChaouiyaCThieffryDDynamical analysis of a generic Boolean model for the control of the mammalian cell cycleBioinformatics20062214e124e13110.1093/bioinformatics/btl210 – reference: Yang, F., Yang, Z., & Cohen, W. W. (2017). Differentiable learning of logical rules for knowledge base reasoning. In Proceedings of NIPS (pp. 2320–2329). – reference: AvilaASBrodaKGabbayDMSymbolic knowledge extraction from trained neural networks: A sound approachArtificial Intelligence20011251–215520718056450969.68124 – reference: Serafini, L., & Garcez, A. D. A. (2016). Logic tensor networks: deep learning and logical reasoning from data and knowledge. In CEUR workshop proceedings (Vol. 1768). – reference: HochreiterSSchmidhuberJLong short-term memoryNeural Computation1997981735178010.1162/neco.1997.9.8.1735 – reference: Apt, K. R., Blair, H. A., & Walker, A. (1988). Towards a theory of declarative knowledge. In Foundations of deductive databases and logic programming (pp. 89–148). San Mateo: Morgan Kaufmann. – reference: Davis, J., Burnside, E. S., Dutra, I. C., Page, D., & Costa, V. S. (2005). An integrated approach to learning Bayesian networks of rules. In LNAI: Vol. 3720. Proc. ECML (pp. 84–95). Berlin: Springer. – reference: EvansRHernández-OralloJWelblJKohliPSergotMMaking sense of sensory inputArtificial Intelligence2019293103438419928710.1016/j.artint.2020.103438 – reference: Hölldobler, S. (1993). Automated inferencing and connectionist models. Fakultät Informatik. Technische Hochschule Darmstadt. (Doctoral dissertation, Habilitationsschrift). – reference: ChaosAAldanaMEspinosa-SotoCPonce de LeónBArroyoAGAlvarez-BuyllaERFrom genes to flower patterns and evolution: Dynamic models of gene regulatory networksJournal of Plant Growth Regulation200625427828910.1007/s00344-006-0068-8 – reference: Cohen, W. W. (1995). Fast effective rule induction. In Proceedings of ICML (pp. 115–123). Elsevier. – reference: KingRDSrinivasanASternbergMJERelating chemical activity to structure: An examination of ILP successesNew Generation Computing1995133–441143310.1007/BF03037232 – reference: Sakama, C., Nguyen, H. D., Sato, T., & Inoue, K. (2018). Partial evaluation of logic programs in vector spaces. In 11th workshop on answer set programming and other computing paradigms. Oxford, UK. – reference: KauffmanSAThe origins of order: Self-organization and selection in evolution1993OxfordOxford University Press – reference: Quinlan, J. R. (1993). C4.5: programs for machine learning. San Francisco: Morgan Kaufmann. – reference: Avila GarcezASZaveruchaGThe connectionist inductive learning and logic programming systemApplied Intelligence1999111597710.1023/A:1008328630915 – reference: Bader, S., Hitzler, P., & Hölldobler, S. (2004). The integration of connectionism and first-order knowledge representation and reasoning as a challenge for artificial intelligence. In Proceedings of the third international conference on information (pp. 22–33). – reference: Kazemi, S. M., & Poole, D. (2018). RelNN: a deep neural model for relational learning. In Proceedings of AAAI (pp. 6367–6375). AAAI press. – reference: LehmannJBaderSHitzlerPExtracting reduced logic programs from artificial neural networksApplied Intelligence201032324926610.1007/s10489-008-0142-y – reference: Hölldobler, S., Kalinke, Y., Hoelldobler, S., & Kalinke, Y. (1991). Towards a new massively parallel computational model for logic programming. In ECAI’94 workshop on combining symbolic and connectioninst processing (pp. 68–77). – reference: Srinivasan, A., Muggleton, S., King, R. D., & Sternberg, M. J. E. (1994). Mutagenesis: ILP experiments in a non-determinate biological domain. In LNAI: Vol. 237. Proc. ILP (pp. 217–232). Berlin: Springer. – reference: LiFLongTLuYOuyangQTangCThe yeast cell-cycle network is robustly designedProceedings of the National Academy of Sciences of the United States of America2004101144781478610.1073/pnas.0305937101 – reference: InoueKRibeiroTSakamaCLearning from interpretation transitionMachine Learning20149415179314440710.1007/s10994-013-5353-8 – reference: Wang, W. Y., & Cohen, W. W. (2016). Learning first-order logic embeddings via matrix factorization. In Proceedings of IJCAI (pp. 2132–2138). – reference: SedaAKOn the integration of connectionist and logic-based systemsElectronic Notes in Theoretical Computer Science2006161110913010.1016/j.entcs.2006.04.028 – reference: Gentet, E., Tourret, S., & Inoue, K. (2017). Learning from interpretation transition using feed-forward neural networks. In CEUR workshop proceedings (pp. 27–33). – reference: Bader, S., Hitzler, P., & Witzel, A. (2005). Integrating first-order logic programs and connectionist systems—a constructive approach. In Proceedings of the IJCAI workshop on neural-symbolic learning and reasoning (Vol. 5). – reference: Inoue, K., & Sakama, C. (2012). Oscillating behavior of logic programs. Correct reasoning-essays on logic-based AI in honour of Vladimir LifschitzIn E. Erdem, J. Lee, Y. Lierler, & D. Pearce (Eds.), LNAI (Vol. 7265, pp. 345–362). Berlin: Springer. – reference: DavidichMIBornholdtSBoolean network model predicts cell cycle sequence of fission yeastPLoS ONE200832e167210.1371/journal.pone.0001672 – reference: MuggletonSInverse entailment and ProgolNew Generation Computing1995133–424528610.1007/BF03037227 – reference: MuggletonSDe RaedtLInductive logic programming: Theory and methodsThe Journal of Logic Programming1994191629679127993610.1016/0743-1066(94)90035-3 – reference: FrançaMVMZaveruchaGD’Avila GarcezASFast relational learning using bottom clause propositionalization with artificial neural networksMachine Learning201494181104314440810.1007/s10994-013-5392-1 – reference: Seda, A. K., & Lane, M. (2004). On approximation in the integration of connectionist and logic-based systems. In Proceedings of the third international conference on information (pp. 297–300). – reference: Hitzler, P., & Seda, A. K. (2000). A note on the relationships between logic programs and neural networks. In Proceedings of the 4th irish workshop on formal methods (pp. 1–9). – reference: Kramer, S., Lavrač, N., & Flach, P. (2001). Propositionalization approaches to relational data mining. Relational Data Mining, 262–291. – reference: EvansRGrefenstetteELearning explanatory rules from noisy dataJournal of Artificial Intelligence Research201861164376619810.1613/jair.5714 – reference: PhuaYJRibeiroTInoueKLearning representation of relational dynamics with delays and refining with prior knowledgeIf CoLoG Journal of Logics and their Applications2019646957083970618 – reference: Rocktäschel, T., & Riedel, S. (2016). Learning knowledge base inference with neural theorem provers. In Proceedings of the 5th workshop on automated knowledge base construction (pp. 45–50). – reference: PhuaYJInoueKLearning logic programs from noisy state transition dataILP2019ChamSpringer7280 – reference: França, M. V. M., D’Avila Garcez, A. S., & Zaverucha, G. (2015). Relational knowledge extraction from neural networks. In CEUR workshop proceedings (Vol. 1583, pp. 11–12). – reference: Tamaddoni-NezhadAMuggletonSThe lattice structure and refinement operators for the hypothesis space bounded by a bottom clauseMachine Learning2009761377210.1007/s10994-009-5117-7 – reference: Witten, I. H., Frank, E., Hall, M. A., & Pal, C. J. (2017). Data mining: practical machine learning tools and techniques (Fourth ed.). Morgan Kaufmann, ian imorint of Elsevier. – reference: Van EmdenMHKowalskiRAThe semantics of predicate logic as a programming languageJournal of the ACM197623473374245550910.1145/321978.321991 – reference: MuggletonSInductive logic programmingNew Generation Computing19918429531810.1007/BF03037089 – reference: Inoue, K. (2011). Logic programming for Boolean networks. In Proceedings of IJCAI (pp. 924–930). Menlo Park: AAAI Press. – reference: Nguyen, H. D., Sakama, C., Sato, T., & Inoue, K. (2018). Computing logic programming semantics in linear algebra. International conference on multi-disciplinary trends in artificial intelligence (pp. 32–48). Cham: Springer. – reference: ŠourekGAschenbrennerVŽeleznýFSchockaertSKuželkaOLifted relational neural networks: Efficient learning of latent relational structuresJournal of Artificial Intelligence Research20186269100381750110.1613/jair.1.11203 – ident: 6058_CR23 – volume: 13 start-page: 411 issue: 3–4 year: 1995 ident: 6058_CR28 publication-title: New Generation Computing doi: 10.1007/BF03037232 – volume: 11 start-page: 59 issue: 1 year: 1999 ident: 6058_CR2 publication-title: Applied Intelligence doi: 10.1023/A:1008328630915 – ident: 6058_CR47 doi: 10.1007/978-3-319-59072-1_57 – volume: 94 start-page: 81 issue: 1 year: 2014 ident: 6058_CR15 publication-title: Machine Learning doi: 10.1007/s10994-013-5392-1 – ident: 6058_CR35 doi: 10.1007/978-3-030-03014-8_3 – ident: 6058_CR4 – ident: 6058_CR14 – volume: 76 start-page: 37 issue: 1 year: 2009 ident: 6058_CR46 publication-title: Machine Learning doi: 10.1007/s10994-009-5117-7 – ident: 6058_CR43 – ident: 6058_CR49 – ident: 6058_CR27 doi: 10.1609/aaai.v32i1.12111 – ident: 6058_CR45 – ident: 6058_CR29 doi: 10.1007/978-3-662-04599-2_11 – start-page: 72 volume-title: ILP year: 2019 ident: 6058_CR36 – ident: 6058_CR51 – ident: 6058_CR1 doi: 10.1016/B978-0-934613-40-8.50006-3 – ident: 6058_CR20 – ident: 6058_CR16 – volume: 161 start-page: 109 issue: 1 year: 2006 ident: 6058_CR42 publication-title: Electronic Notes in Theoretical Computer Science doi: 10.1016/j.entcs.2006.04.028 – volume: 13 start-page: 245 issue: 3–4 year: 1995 ident: 6058_CR33 publication-title: New Generation Computing doi: 10.1007/BF03037227 – volume: 6 start-page: 695 issue: 4 year: 2019 ident: 6058_CR37 publication-title: If CoLoG Journal of Logics and their Applications – ident: 6058_CR8 doi: 10.1016/B978-1-55860-377-6.50023-2 – ident: 6058_CR40 doi: 10.29007/9d61 – volume: 9 start-page: 1735 issue: 8 year: 1997 ident: 6058_CR19 publication-title: Neural Computation doi: 10.1162/neco.1997.9.8.1735 – volume: 2 start-page: 273 issue: 3 year: 2004 ident: 6058_CR18 publication-title: Journal of Applied Logic doi: 10.1016/j.jal.2004.03.002 – volume: 101 start-page: 4781 issue: 14 year: 2004 ident: 6058_CR31 publication-title: Proceedings of the National Academy of Sciences of the United States of America doi: 10.1073/pnas.0305937101 – volume-title: The origins of order: Self-organization and selection in evolution year: 1993 ident: 6058_CR26 doi: 10.1093/oso/9780195079517.001.0001 – ident: 6058_CR50 – volume: 23 start-page: 733 issue: 4 year: 1976 ident: 6058_CR48 publication-title: Journal of the ACM doi: 10.1145/321978.321991 – ident: 6058_CR21 – ident: 6058_CR38 – volume: 62 start-page: 69 year: 2018 ident: 6058_CR44 publication-title: Journal of Artificial Intelligence Research doi: 10.1613/jair.1.11203 – volume: 125 start-page: 155 issue: 1–2 year: 2001 ident: 6058_CR3 publication-title: Artificial Intelligence – volume: 11 start-page: 45 issue: 1 year: 1999 ident: 6058_CR22 publication-title: Applied Intelligence doi: 10.1023/A:1008376514077 – volume: 94 start-page: 51 issue: 1 year: 2014 ident: 6058_CR25 publication-title: Machine Learning doi: 10.1007/s10994-013-5353-8 – ident: 6058_CR41 – volume: 61 start-page: 1 year: 2018 ident: 6058_CR11 publication-title: Journal of Artificial Intelligence Research doi: 10.1613/jair.5714 – volume: 32 start-page: 249 issue: 3 year: 2010 ident: 6058_CR30 publication-title: Applied Intelligence doi: 10.1007/s10489-008-0142-y – ident: 6058_CR17 doi: 10.14236/ewic/IWFM2000.2 – ident: 6058_CR6 doi: 10.1145/1553374.1553380 – volume: 19 start-page: 629 issue: 1 year: 1994 ident: 6058_CR34 publication-title: The Journal of Logic Programming doi: 10.1016/0743-1066(94)90035-3 – volume: 3 start-page: e1672 issue: 2 year: 2008 ident: 6058_CR9 publication-title: PLoS ONE doi: 10.1371/journal.pone.0001672 – volume: 22 start-page: e124 issue: 14 year: 2006 ident: 6058_CR13 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btl210 – ident: 6058_CR39 doi: 10.18653/v1/W16-1309 – volume: 25 start-page: 278 issue: 4 year: 2006 ident: 6058_CR7 publication-title: Journal of Plant Growth Regulation doi: 10.1007/s00344-006-0068-8 – ident: 6058_CR5 – volume: 293 start-page: 103438 year: 2019 ident: 6058_CR12 publication-title: Artificial Intelligence doi: 10.1016/j.artint.2020.103438 – ident: 6058_CR10 doi: 10.1007/11564096_13 – volume: 8 start-page: 295 issue: 4 year: 1991 ident: 6058_CR32 publication-title: New Generation Computing doi: 10.1007/BF03037089 – ident: 6058_CR24 doi: 10.1007/978-3-642-30743-0_23 |
| SSID | ssj0002686 |
| Score | 2.433562 |
| Snippet | The combination of learning and reasoning is an essential and challenging topic in neuro-symbolic research. Differentiable inductive logic programming is a... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 123 |
| SubjectTerms | Algorithms Artificial Intelligence Computer Science Control Curricula Datasets Knowledge representation Learning Logic programming Logic programs Machine Learning Mechatronics Natural Language Processing (NLP) Neural networks Optimization Robotics Semantics Simulation and Modeling Special issue on Learning and Reasoning |
| SummonAdditionalLinks | – databaseName: Science Database (ProQuest) dbid: M2P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5BYWChPEWhIA9sYOG8kwkhRMUAVQeQukXOxakqlbY0gd-Pz3UaFYkuLFn8UJSz77vY390HcC2FyPNASZ5LJ-R-6Ds8c4qC5z5SfIp6FRnVkpeo34-Hw2RgD9xKS6usfaJx1PkM6Yz8zg0JiXWwLO7nn5xUo-h21UpobMOOjmwconS9uoOVJ3ZDo_SoN1LACclt0oxNnTNFcV3i_Ygg5vE6MDXR5q8LUoM7vfZ_3_gA9m3EyR6WS-QQttT0CNq1mgOzm_sYhrbU6ohRygkbr7ERWUWYZuhdjKjyI1Yrq2gPkU0UMy6UWbbXB3Uo1Ye22hjLE3jvPb09PnOru8BRo1Oln0gSJIHAQsM_xkIqjGUknCxAdN1CeBh6MqFY0xNxgQkmqghzr3A8qf-3pHcKrelsqs6ASQzzLNLtSiZ-oYIsIZVSGXkyiKRSfgec-qOnaIuSkzbGJG3KKZOhUm2o1BgqjTtwsxozX5bk2Ni7W1sntduzTBvTdOC2tm_T_Pds55tnu4A9l9IjzBFNF1rV4ktdwi5-V-NycWUW5w_H9OtT priority: 102 providerName: ProQuest |
| Title | Learning from interpretation transition using differentiable logic programming semantics |
| URI | https://link.springer.com/article/10.1007/s10994-021-06058-8 https://www.proquest.com/docview/2625124280 |
| Volume | 111 |
| WOSCitedRecordID | wos000695754900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-0565 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002686 issn: 0885-6125 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB609eDF-sRqLTl400D2kX0cVVoEtSz1QfGyZLNJKbRVuqu_3yTNtlZU0EsuebDMJPNNNjPzAZwyQvKcCoZz5gTYD3wHZ46UOPe59k-52kWGteQ27PWiwSBObFJYUUW7V0-SxlJ_SnYzZWxdHalDaISjdagruIs0YUP__mlhf93A8Duq40Oxxm-bKvP9GqtwtPQxvzyLGrTpNv73nduwZb1LdDHfDjuwJqa70KiYG5A9yHswsGVVh0inl6DRSuQhKjV-mVAupMPih6hiUVHWIBsLZMwlspFdEz2gEBOloREv9uGx23m4usaWYwFzhUSlarmmG6GESwX1PCJM8IiFxMko564riccDj8Xar_RIJHnMYyGD3JOOx9TdinkHUJu-TMUhIMaDPAtVv2CxLwXNYs1IykKP0ZAJ4TfBqUSdcluAXPNgjNNl6WQtulSJLjWiS6MmnC3mvM7Lb_w6ulVpMLVHsUjdQLtw6pZFmnBeaWzZ_fNqR38bfgybrk6NML9nWlArZ2_iBDb4ezkqZm2oX3Z6Sb8N6zchVu2dm6g2oc9ts3k_AJqi5eY |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LS8QwEB58gV58i-szBz1pME3fBxHxgeK6eFDYW02nqSzo-uiq-Kf8jWayqYuC3jx46SVpoM2XbybJzHwAG0qIogi14oXyIh5Egcdzryx5ESD5p2hQZFVLmnGrlbTb6cUQvNe5MBRWWXOiJeriHumMfEdGZImNsyz2Hh45qUbR7WotodGHxZl-ezVbtmr39NDM76aUx0eXByfcqQpwNNzbM08kgY1QYGmMGyZCaUxULLw8RJSyFD5GvkrJk_JFUmKKqS6jwi89X5ndhPLNuMMwGlBlMQoVlBefzC8jqyxpFm7IyXNwSTouVc8W4ZUUZyTChCdfDeHAu_12IWvt3PHUf_tD0zDpPGq2318CMzCku7MwVatVMEdec9B2pWRvGKXUsM6XaEvWI5ttw9cYpQLcsFo5xjBgfquZNRHMRbPdUYdK3xlUdrCah6s_-b4FGOned_UiMIVRkcemXas0KHWYp6TCqmJfhbHSOmiAV09yhq7oOml_3GaDctEEjMwAI7PAyJIGbH2-89AvOfJr75UaDZmjnyobQKEB2zWeBs0_j7b0-2jrMH5yed7Mmqets2WYkJQKYo-jVmCk9_SsV2EMX3qd6mnNLgwG13-Nsw-eNEfe |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NbxMxEB2VFKFeSIFWDYTiA5zAqvd794AQIo0aJYpyACnisvXO2lGkJG2zAcRf66-rx_EmChK99dDLXuy1tOvnmbH9Zh7AeylEWUZK8lJ6MQ_j0OOFpzUvQ6T4FA2KrGrJIBkO0_E4G-3BbZ0LQ7TK2iZaQ11eIZ2Rn_kxeWITLIsz7WgRo073y_UNJwUpummt5TTWEOmrv3_M9q363OuYuf7g-93z798uuFMY4Gjs8Mo8kcQ2IoHaODpMhVSYykR4RYTo-1oEGAcyo6gqEKnGDDOl4zLQXiDNzkIGZtwnsJ-YPSbRCUfRz40X8GOrMmkWccQpinAJOy5tzxbk9YlzJKKUp7tOcRvp_nM5a31et_mY_9YhPHeRNvu6XhovYE8tXkKzVrFgzqi9grErMTthlGrDpjssTLYiX25pbYxSBCasVpQxlrGYKWZdB3Mstzl1qNTcoHWK1RH8eJDvO4bG4mqhToBJjMsiMe1KZqFWUZGROqtMAhklUqmwBV494Tm6YuykCTLLt2WkCSS5AUluQZKnLfi4eed6XYrk3t7tGhm5M0tVvoVFCz7V2No2_3-01_eP9g6eGXjlg96w_wYOfMoQsadUbWislr_UW3iKv1fTanlq1wiDy4eG2R0i2VDK |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+from+interpretation+transition+using+differentiable+logic+programming+semantics&rft.jtitle=Machine+learning&rft.au=Gao%2C+Kun&rft.au=Wang%2C+Hanpin&rft.au=Cao%2C+Yongzhi&rft.au=Inoue%2C+Katsumi&rft.date=2022-01-01&rft.pub=Springer+US&rft.issn=0885-6125&rft.eissn=1573-0565&rft.volume=111&rft.issue=1&rft.spage=123&rft.epage=145&rft_id=info:doi/10.1007%2Fs10994-021-06058-8&rft.externalDocID=10_1007_s10994_021_06058_8 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-6125&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-6125&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-6125&client=summon |