Learning from interpretation transition using differentiable logic programming semantics

The combination of learning and reasoning is an essential and challenging topic in neuro-symbolic research. Differentiable inductive logic programming is a technique for learning a symbolic knowledge representation from either complete, mislabeled, or incomplete observed facts using neural networks....

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Machine learning Ročník 111; číslo 1; s. 123 - 145
Hlavní autoři: Gao, Kun, Wang, Hanpin, Cao, Yongzhi, Inoue, Katsumi
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.01.2022
Springer Nature B.V
Témata:
ISSN:0885-6125, 1573-0565
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The combination of learning and reasoning is an essential and challenging topic in neuro-symbolic research. Differentiable inductive logic programming is a technique for learning a symbolic knowledge representation from either complete, mislabeled, or incomplete observed facts using neural networks. In this paper, we propose a novel differentiable inductive logic programming system called differentiable learning from interpretation transition (D-LFIT) for learning logic programs through the proposed embeddings of logic programs, neural networks, optimization algorithms, and an adapted algebraic method to compute the logic program semantics. The proposed model has several characteristics, including a small number of parameters, the ability to generate logic programs in a curriculum-learning setting, and linear time complexity for the extraction of trained neural networks. The well-known bottom clause positionalization algorithm is incorporated when the proposed system learns from relational datasets. We compare our model with NN-LFIT, which extracts propositional logic rules from retuned connected networks, the highly accurate rule learner RIPPER, the purely symbolic LFIT system LF1T, and CILP++, which integrates neural networks and the propositionalization method to handle first-order logic knowledge. From the experimental results, we conclude that D-LFIT yields comparable accuracy with respect to the baselines when given complete, incomplete, and mislabeled data. Our experimental results indicate that D-LFIT not only learns symbolic logic programs quickly and precisely but also performs robustly when processing mislabeled and incomplete datasets.
AbstractList The combination of learning and reasoning is an essential and challenging topic in neuro-symbolic research. Differentiable inductive logic programming is a technique for learning a symbolic knowledge representation from either complete, mislabeled, or incomplete observed facts using neural networks. In this paper, we propose a novel differentiable inductive logic programming system called differentiable learning from interpretation transition (D-LFIT) for learning logic programs through the proposed embeddings of logic programs, neural networks, optimization algorithms, and an adapted algebraic method to compute the logic program semantics. The proposed model has several characteristics, including a small number of parameters, the ability to generate logic programs in a curriculum-learning setting, and linear time complexity for the extraction of trained neural networks. The well-known bottom clause positionalization algorithm is incorporated when the proposed system learns from relational datasets. We compare our model with NN-LFIT, which extracts propositional logic rules from retuned connected networks, the highly accurate rule learner RIPPER, the purely symbolic LFIT system LF1T, and CILP++, which integrates neural networks and the propositionalization method to handle first-order logic knowledge. From the experimental results, we conclude that D-LFIT yields comparable accuracy with respect to the baselines when given complete, incomplete, and mislabeled data. Our experimental results indicate that D-LFIT not only learns symbolic logic programs quickly and precisely but also performs robustly when processing mislabeled and incomplete datasets.
Author Inoue, Katsumi
Cao, Yongzhi
Gao, Kun
Wang, Hanpin
Author_xml – sequence: 1
  givenname: Kun
  surname: Gao
  fullname: Gao, Kun
  organization: Peking University
– sequence: 2
  givenname: Hanpin
  surname: Wang
  fullname: Wang, Hanpin
  email: whpxhy@pku.edu.cn
  organization: Peking University, Guangzhou University
– sequence: 3
  givenname: Yongzhi
  surname: Cao
  fullname: Cao, Yongzhi
  organization: Peking University
– sequence: 4
  givenname: Katsumi
  surname: Inoue
  fullname: Inoue, Katsumi
  organization: National Institute of Informatics
BookMark eNp9kE1rAyEQhqWk0DTtH-hpoedtR11dPZbQLwj00kJvYowuhl1NdXPov6_JFgo95KLCPI8z816iWYjBInSD4Q4DtPcZg5RNDQTXwIGJWpyhOWYtrYFxNkNzEILVHBN2gS5z3gIA4YLP0efK6hR86CqX4lD5MNq0S3bUo4-hGpMO2R-f-3yANt45m2wYvV73tupj5021S7FLehgOQLaDLlWTr9C5032217_3An08Pb4vX-rV2_Pr8mFVm4bIsZyGt41gYJzAxAjQ1gjdAl4zYwhxQA2nWoIAoCCckUZaxzfUYaobyTRdoNvp3zLF197mUW3jPoXSUhFOGCYNEVAoMVEmxZyTdcr4aceyou8VBnXIUU05qpKjOuaoRFHJP3WX_KDT92mJTlIucOhs-pvqhPUD35KJLQ
CitedBy_id crossref_primary_10_1007_s10994_023_06346_5
crossref_primary_10_1016_j_fss_2024_109259
crossref_primary_10_1016_j_artint_2024_104108
crossref_primary_10_1007_s10994_024_06524_z
crossref_primary_10_1016_j_iswa_2025_200541
Cites_doi 10.1007/BF03037232
10.1023/A:1008328630915
10.1007/978-3-319-59072-1_57
10.1007/s10994-013-5392-1
10.1007/978-3-030-03014-8_3
10.1007/s10994-009-5117-7
10.1609/aaai.v32i1.12111
10.1007/978-3-662-04599-2_11
10.1016/B978-0-934613-40-8.50006-3
10.1016/j.entcs.2006.04.028
10.1007/BF03037227
10.1016/B978-1-55860-377-6.50023-2
10.29007/9d61
10.1162/neco.1997.9.8.1735
10.1016/j.jal.2004.03.002
10.1073/pnas.0305937101
10.1093/oso/9780195079517.001.0001
10.1145/321978.321991
10.1613/jair.1.11203
10.1023/A:1008376514077
10.1007/s10994-013-5353-8
10.1613/jair.5714
10.1007/s10489-008-0142-y
10.14236/ewic/IWFM2000.2
10.1145/1553374.1553380
10.1016/0743-1066(94)90035-3
10.1371/journal.pone.0001672
10.1093/bioinformatics/btl210
10.18653/v1/W16-1309
10.1007/s00344-006-0068-8
10.1016/j.artint.2020.103438
10.1007/11564096_13
10.1007/BF03037089
10.1007/978-3-642-30743-0_23
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2021
The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2021.
DBID AAYXX
CITATION
3V.
7SC
7XB
88I
8AL
8AO
8FD
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M0N
M2P
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.1007/s10994-021-06058-8
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Science Database (ProQuest)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList Computer Science Database

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-0565
EndPage 145
ExternalDocumentID 10_1007_s10994_021_06058_8
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61972005
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: JSPS KAKENHI
  grantid: JP17H00763
– fundername: National Key R&D Program of China
  grantid: 2018YFB1003904; 2018YFC1314200
– fundername: National Natural Science Foundation of China
  grantid: 61932001
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: NII international internship program
– fundername: National Natural Science Foundation of China
  grantid: 61772035; 61751210
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
88I
8AO
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAEWM
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIVO
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
KOW
LAK
LLZTM
M0N
M2P
M4Y
MA-
MVM
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF-
PQQKQ
PROAC
PT4
Q2X
QF4
QM1
QN7
QO4
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZC
RZE
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TAE
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VXZ
W23
W48
WH7
WIP
WK8
XJT
YLTOR
Z45
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z87
Z88
Z8M
Z8N
Z8O
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z8Z
Z91
Z92
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7XB
8AL
8FD
8FK
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c429t-c4c674850cf812c80aec8a701b5cc22f03c63a90800308fc9c9ef6d3f13a495a3
IEDL.DBID M2P
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000695754900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0885-6125
IngestDate Wed Nov 05 00:47:54 EST 2025
Sat Nov 29 01:43:28 EST 2025
Tue Nov 18 21:53:49 EST 2025
Fri Feb 21 02:44:43 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Neuro-symbolic method
Differentiable inductive logic programming
Explainability
Learning from interpretation transition
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c429t-c4c674850cf812c80aec8a701b5cc22f03c63a90800308fc9c9ef6d3f13a495a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink http://dx.doi.org/10.1007/s10994-021-06058-8
PQID 2625124280
PQPubID 54194
PageCount 23
ParticipantIDs proquest_journals_2625124280
crossref_citationtrail_10_1007_s10994_021_06058_8
crossref_primary_10_1007_s10994_021_06058_8
springer_journals_10_1007_s10994_021_06058_8
PublicationCentury 2000
PublicationDate 2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationTitle Machine learning
PublicationTitleAbbrev Mach Learn
PublicationYear 2022
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References SedaAKOn the integration of connectionist and logic-based systemsElectronic Notes in Theoretical Computer Science2006161110913010.1016/j.entcs.2006.04.028
ChaosAAldanaMEspinosa-SotoCPonce de LeónBArroyoAGAlvarez-BuyllaERFrom genes to flower patterns and evolution: Dynamic models of gene regulatory networksJournal of Plant Growth Regulation200625427828910.1007/s00344-006-0068-8
Rocktäschel, T., & Riedel, S. (2016). Learning knowledge base inference with neural theorem provers. In Proceedings of the 5th workshop on automated knowledge base construction (pp. 45–50).
Quinlan, J. R. (1993). C4.5: programs for machine learning. San Francisco: Morgan Kaufmann.
HölldoblerSKalinkeYStörrHPApproximating the semantics of logic programs by recurrent neural networksApplied Intelligence1999111455810.1023/A:1008376514077
Sakama, C., Nguyen, H. D., Sato, T., & Inoue, K. (2018). Partial evaluation of logic programs in vector spaces. In 11th workshop on answer set programming and other computing paradigms. Oxford, UK.
Kazemi, S. M., & Poole, D. (2018). RelNN: a deep neural model for relational learning. In Proceedings of AAAI (pp. 6367–6375). AAAI press.
PhuaYJRibeiroTInoueKLearning representation of relational dynamics with delays and refining with prior knowledgeIf CoLoG Journal of Logics and their Applications2019646957083970618
Hitzler, P., & Seda, A. K. (2000). A note on the relationships between logic programs and neural networks. In Proceedings of the 4th irish workshop on formal methods (pp. 1–9).
Hölldobler, S. (1993). Automated inferencing and connectionist models. Fakultät Informatik. Technische Hochschule Darmstadt. (Doctoral dissertation, Habilitationsschrift).
Wang, W. Y., & Cohen, W. W. (2016). Learning first-order logic embeddings via matrix factorization. In Proceedings of IJCAI (pp. 2132–2138).
Apt, K. R., Blair, H. A., & Walker, A. (1988). Towards a theory of declarative knowledge. In Foundations of deductive databases and logic programming (pp. 89–148). San Mateo: Morgan Kaufmann.
Nguyen, H. D., Sakama, C., Sato, T., & Inoue, K. (2018). Computing logic programming semantics in linear algebra. International conference on multi-disciplinary trends in artificial intelligence (pp. 32–48). Cham: Springer.
LehmannJBaderSHitzlerPExtracting reduced logic programs from artificial neural networksApplied Intelligence201032324926610.1007/s10489-008-0142-y
MuggletonSInverse entailment and ProgolNew Generation Computing1995133–424528610.1007/BF03037227
ŠourekGAschenbrennerVŽeleznýFSchockaertSKuželkaOLifted relational neural networks: Efficient learning of latent relational structuresJournal of Artificial Intelligence Research20186269100381750110.1613/jair.1.11203
LiFLongTLuYOuyangQTangCThe yeast cell-cycle network is robustly designedProceedings of the National Academy of Sciences of the United States of America2004101144781478610.1073/pnas.0305937101
AvilaASBrodaKGabbayDMSymbolic knowledge extraction from trained neural networks: A sound approachArtificial Intelligence20011251–215520718056450969.68124
Avila GarcezASZaveruchaGThe connectionist inductive learning and logic programming systemApplied Intelligence1999111597710.1023/A:1008328630915
FrançaMVMZaveruchaGD’Avila GarcezASFast relational learning using bottom clause propositionalization with artificial neural networksMachine Learning201494181104314440810.1007/s10994-013-5392-1
EvansRHernández-OralloJWelblJKohliPSergotMMaking sense of sensory inputArtificial Intelligence2019293103438419928710.1016/j.artint.2020.103438
Serafini, L., & Garcez, A. D. A. (2016). Logic tensor networks: deep learning and logical reasoning from data and knowledge. In CEUR workshop proceedings (Vol. 1768).
Bengio, Y., Louradour, J., Collobert, R., & Weston, J. (2009). Curriculum learning. In Proceedings of ICML (Vol, 382, pp. 41–48). New York: ACM Press.
Witten, I. H., Frank, E., Hall, M. A., & Pal, C. J. (2017). Data mining: practical machine learning tools and techniques (Fourth ed.). Morgan Kaufmann, ian imorint of Elsevier.
Cohen, W. W. (1995). Fast effective rule induction. In Proceedings of ICML (pp. 115–123). Elsevier.
InoueKRibeiroTSakamaCLearning from interpretation transitionMachine Learning20149415179314440710.1007/s10994-013-5353-8
PhuaYJInoueKLearning logic programs from noisy state transition dataILP2019ChamSpringer7280
Davis, J., Burnside, E. S., Dutra, I. C., Page, D., & Costa, V. S. (2005). An integrated approach to learning Bayesian networks of rules. In LNAI: Vol. 3720. Proc. ECML (pp. 84–95). Berlin: Springer.
HochreiterSSchmidhuberJLong short-term memoryNeural Computation1997981735178010.1162/neco.1997.9.8.1735
Tourret, S., Gentet, E., & Inoue, K. (2017). Learning human-understandable description oaf dynamical systems from feed-forward neural networks. International symposium on neural networks (pp. 483–492). Cham: Springer.
MuggletonSDe RaedtLInductive logic programming: Theory and methodsThe Journal of Logic Programming1994191629679127993610.1016/0743-1066(94)90035-3
EvansRGrefenstetteELearning explanatory rules from noisy dataJournal of Artificial Intelligence Research201861164376619810.1613/jair.5714
KauffmanSAThe origins of order: Self-organization and selection in evolution1993OxfordOxford University Press
Inoue, K. (2011). Logic programming for Boolean networks. In Proceedings of IJCAI (pp. 924–930). Menlo Park: AAAI Press.
Seda, A. K., & Lane, M. (2004). On approximation in the integration of connectionist and logic-based systems. In Proceedings of the third international conference on information (pp. 297–300).
França, M. V. M., D’Avila Garcez, A. S., & Zaverucha, G. (2015). Relational knowledge extraction from neural networks. In CEUR workshop proceedings (Vol. 1583, pp. 11–12).
Kramer, S., Lavrač, N., & Flach, P. (2001). Propositionalization approaches to relational data mining. Relational Data Mining, 262–291.
DavidichMIBornholdtSBoolean network model predicts cell cycle sequence of fission yeastPLoS ONE200832e167210.1371/journal.pone.0001672
Inoue, K., & Sakama, C. (2012). Oscillating behavior of logic programs. Correct reasoning-essays on logic-based AI in honour of Vladimir LifschitzIn E. Erdem, J. Lee, Y. Lierler, & D. Pearce (Eds.), LNAI (Vol. 7265, pp. 345–362). Berlin: Springer.
Srinivasan, A., Muggleton, S., King, R. D., & Sternberg, M. J. E. (1994). Mutagenesis: ILP experiments in a non-determinate biological domain. In LNAI: Vol. 237. Proc. ILP (pp. 217–232). Berlin: Springer.
Bader, S., Hitzler, P., & Witzel, A. (2005). Integrating first-order logic programs and connectionist systems—a constructive approach. In Proceedings of the IJCAI workshop on neural-symbolic learning and reasoning (Vol. 5).
HitzlerPHölldoblerSSedaAKLogic programs and connectionist networksJournal of Applied Logic200423273300208478110.1016/j.jal.2004.03.002
Van EmdenMHKowalskiRAThe semantics of predicate logic as a programming languageJournal of the ACM197623473374245550910.1145/321978.321991
Yang, F., Yang, Z., & Cohen, W. W. (2017). Differentiable learning of logical rules for knowledge base reasoning. In Proceedings of NIPS (pp. 2320–2329).
FauréANaldiAChaouiyaCThieffryDDynamical analysis of a generic Boolean model for the control of the mammalian cell cycleBioinformatics20062214e124e13110.1093/bioinformatics/btl210
Gentet, E., Tourret, S., & Inoue, K. (2017). Learning from interpretation transition using feed-forward neural networks. In CEUR workshop proceedings (pp. 27–33).
MuggletonSInductive logic programmingNew Generation Computing19918429531810.1007/BF03037089
Hölldobler, S., Kalinke, Y., Hoelldobler, S., & Kalinke, Y. (1991). Towards a new massively parallel computational model for logic programming. In ECAI’94 workshop on combining symbolic and connectioninst processing (pp. 68–77).
Bader, S., Hitzler, P., & Hölldobler, S. (2004). The integration of connectionism and first-order knowledge representation and reasoning as a challenge for artificial intelligence. In Proceedings of the third international conference on information (pp. 22–33).
KingRDSrinivasanASternbergMJERelating chemical activity to structure: An examination of ILP successesNew Generation Computing1995133–441143310.1007/BF03037232
Tamaddoni-NezhadAMuggletonSThe lattice structure and refinement operators for the hypothesis space bounded by a bottom clauseMachine Learning2009761377210.1007/s10994-009-5117-7
AK Seda (6058_CR42) 2006; 161
S Muggleton (6058_CR34) 1994; 19
6058_CR35
6058_CR39
6058_CR38
P Hitzler (6058_CR18) 2004; 2
A Tamaddoni-Nezhad (6058_CR46) 2009; 76
6058_CR5
6058_CR6
6058_CR8
6058_CR1
6058_CR4
AS Avila (6058_CR3) 2001; 125
6058_CR29
G Šourek (6058_CR44) 2018; 62
6058_CR24
MI Davidich (6058_CR9) 2008; 3
6058_CR23
6058_CR21
6058_CR27
S Muggleton (6058_CR32) 1991; 8
MH Van Emden (6058_CR48) 1976; 23
R Evans (6058_CR12) 2019; 293
YJ Phua (6058_CR37) 2019; 6
MVM França (6058_CR15) 2014; 94
6058_CR20
R Evans (6058_CR11) 2018; 61
S Hochreiter (6058_CR19) 1997; 9
J Lehmann (6058_CR30) 2010; 32
6058_CR10
6058_CR17
6058_CR16
6058_CR14
A Fauré (6058_CR13) 2006; 22
6058_CR51
6058_CR50
YJ Phua (6058_CR36) 2019
S Hölldobler (6058_CR22) 1999; 11
AS Avila Garcez (6058_CR2) 1999; 11
F Li (6058_CR31) 2004; 101
6058_CR45
6058_CR43
6058_CR49
6058_CR47
S Muggleton (6058_CR33) 1995; 13
6058_CR41
A Chaos (6058_CR7) 2006; 25
6058_CR40
SA Kauffman (6058_CR26) 1993
RD King (6058_CR28) 1995; 13
K Inoue (6058_CR25) 2014; 94
References_xml – reference: HölldoblerSKalinkeYStörrHPApproximating the semantics of logic programs by recurrent neural networksApplied Intelligence1999111455810.1023/A:1008376514077
– reference: HitzlerPHölldoblerSSedaAKLogic programs and connectionist networksJournal of Applied Logic200423273300208478110.1016/j.jal.2004.03.002
– reference: Tourret, S., Gentet, E., & Inoue, K. (2017). Learning human-understandable description oaf dynamical systems from feed-forward neural networks. International symposium on neural networks (pp. 483–492). Cham: Springer.
– reference: Bengio, Y., Louradour, J., Collobert, R., & Weston, J. (2009). Curriculum learning. In Proceedings of ICML (Vol, 382, pp. 41–48). New York: ACM Press.
– reference: FauréANaldiAChaouiyaCThieffryDDynamical analysis of a generic Boolean model for the control of the mammalian cell cycleBioinformatics20062214e124e13110.1093/bioinformatics/btl210
– reference: Yang, F., Yang, Z., & Cohen, W. W. (2017). Differentiable learning of logical rules for knowledge base reasoning. In Proceedings of NIPS (pp. 2320–2329).
– reference: AvilaASBrodaKGabbayDMSymbolic knowledge extraction from trained neural networks: A sound approachArtificial Intelligence20011251–215520718056450969.68124
– reference: Serafini, L., & Garcez, A. D. A. (2016). Logic tensor networks: deep learning and logical reasoning from data and knowledge. In CEUR workshop proceedings (Vol. 1768).
– reference: HochreiterSSchmidhuberJLong short-term memoryNeural Computation1997981735178010.1162/neco.1997.9.8.1735
– reference: Apt, K. R., Blair, H. A., & Walker, A. (1988). Towards a theory of declarative knowledge. In Foundations of deductive databases and logic programming (pp. 89–148). San Mateo: Morgan Kaufmann.
– reference: Davis, J., Burnside, E. S., Dutra, I. C., Page, D., & Costa, V. S. (2005). An integrated approach to learning Bayesian networks of rules. In LNAI: Vol. 3720. Proc. ECML (pp. 84–95). Berlin: Springer.
– reference: EvansRHernández-OralloJWelblJKohliPSergotMMaking sense of sensory inputArtificial Intelligence2019293103438419928710.1016/j.artint.2020.103438
– reference: Hölldobler, S. (1993). Automated inferencing and connectionist models. Fakultät Informatik. Technische Hochschule Darmstadt. (Doctoral dissertation, Habilitationsschrift).
– reference: ChaosAAldanaMEspinosa-SotoCPonce de LeónBArroyoAGAlvarez-BuyllaERFrom genes to flower patterns and evolution: Dynamic models of gene regulatory networksJournal of Plant Growth Regulation200625427828910.1007/s00344-006-0068-8
– reference: Cohen, W. W. (1995). Fast effective rule induction. In Proceedings of ICML (pp. 115–123). Elsevier.
– reference: KingRDSrinivasanASternbergMJERelating chemical activity to structure: An examination of ILP successesNew Generation Computing1995133–441143310.1007/BF03037232
– reference: Sakama, C., Nguyen, H. D., Sato, T., & Inoue, K. (2018). Partial evaluation of logic programs in vector spaces. In 11th workshop on answer set programming and other computing paradigms. Oxford, UK.
– reference: KauffmanSAThe origins of order: Self-organization and selection in evolution1993OxfordOxford University Press
– reference: Quinlan, J. R. (1993). C4.5: programs for machine learning. San Francisco: Morgan Kaufmann.
– reference: Avila GarcezASZaveruchaGThe connectionist inductive learning and logic programming systemApplied Intelligence1999111597710.1023/A:1008328630915
– reference: Bader, S., Hitzler, P., & Hölldobler, S. (2004). The integration of connectionism and first-order knowledge representation and reasoning as a challenge for artificial intelligence. In Proceedings of the third international conference on information (pp. 22–33).
– reference: Kazemi, S. M., & Poole, D. (2018). RelNN: a deep neural model for relational learning. In Proceedings of AAAI (pp. 6367–6375). AAAI press.
– reference: LehmannJBaderSHitzlerPExtracting reduced logic programs from artificial neural networksApplied Intelligence201032324926610.1007/s10489-008-0142-y
– reference: Hölldobler, S., Kalinke, Y., Hoelldobler, S., & Kalinke, Y. (1991). Towards a new massively parallel computational model for logic programming. In ECAI’94 workshop on combining symbolic and connectioninst processing (pp. 68–77).
– reference: Srinivasan, A., Muggleton, S., King, R. D., & Sternberg, M. J. E. (1994). Mutagenesis: ILP experiments in a non-determinate biological domain. In LNAI: Vol. 237. Proc. ILP (pp. 217–232). Berlin: Springer.
– reference: LiFLongTLuYOuyangQTangCThe yeast cell-cycle network is robustly designedProceedings of the National Academy of Sciences of the United States of America2004101144781478610.1073/pnas.0305937101
– reference: InoueKRibeiroTSakamaCLearning from interpretation transitionMachine Learning20149415179314440710.1007/s10994-013-5353-8
– reference: Wang, W. Y., & Cohen, W. W. (2016). Learning first-order logic embeddings via matrix factorization. In Proceedings of IJCAI (pp. 2132–2138).
– reference: SedaAKOn the integration of connectionist and logic-based systemsElectronic Notes in Theoretical Computer Science2006161110913010.1016/j.entcs.2006.04.028
– reference: Gentet, E., Tourret, S., & Inoue, K. (2017). Learning from interpretation transition using feed-forward neural networks. In CEUR workshop proceedings (pp. 27–33).
– reference: Bader, S., Hitzler, P., & Witzel, A. (2005). Integrating first-order logic programs and connectionist systems—a constructive approach. In Proceedings of the IJCAI workshop on neural-symbolic learning and reasoning (Vol. 5).
– reference: Inoue, K., & Sakama, C. (2012). Oscillating behavior of logic programs. Correct reasoning-essays on logic-based AI in honour of Vladimir LifschitzIn E. Erdem, J. Lee, Y. Lierler, & D. Pearce (Eds.), LNAI (Vol. 7265, pp. 345–362). Berlin: Springer.
– reference: DavidichMIBornholdtSBoolean network model predicts cell cycle sequence of fission yeastPLoS ONE200832e167210.1371/journal.pone.0001672
– reference: MuggletonSInverse entailment and ProgolNew Generation Computing1995133–424528610.1007/BF03037227
– reference: MuggletonSDe RaedtLInductive logic programming: Theory and methodsThe Journal of Logic Programming1994191629679127993610.1016/0743-1066(94)90035-3
– reference: FrançaMVMZaveruchaGD’Avila GarcezASFast relational learning using bottom clause propositionalization with artificial neural networksMachine Learning201494181104314440810.1007/s10994-013-5392-1
– reference: Seda, A. K., & Lane, M. (2004). On approximation in the integration of connectionist and logic-based systems. In Proceedings of the third international conference on information (pp. 297–300).
– reference: Hitzler, P., & Seda, A. K. (2000). A note on the relationships between logic programs and neural networks. In Proceedings of the 4th irish workshop on formal methods (pp. 1–9).
– reference: Kramer, S., Lavrač, N., & Flach, P. (2001). Propositionalization approaches to relational data mining. Relational Data Mining, 262–291.
– reference: EvansRGrefenstetteELearning explanatory rules from noisy dataJournal of Artificial Intelligence Research201861164376619810.1613/jair.5714
– reference: PhuaYJRibeiroTInoueKLearning representation of relational dynamics with delays and refining with prior knowledgeIf CoLoG Journal of Logics and their Applications2019646957083970618
– reference: Rocktäschel, T., & Riedel, S. (2016). Learning knowledge base inference with neural theorem provers. In Proceedings of the 5th workshop on automated knowledge base construction (pp. 45–50).
– reference: PhuaYJInoueKLearning logic programs from noisy state transition dataILP2019ChamSpringer7280
– reference: França, M. V. M., D’Avila Garcez, A. S., & Zaverucha, G. (2015). Relational knowledge extraction from neural networks. In CEUR workshop proceedings (Vol. 1583, pp. 11–12).
– reference: Tamaddoni-NezhadAMuggletonSThe lattice structure and refinement operators for the hypothesis space bounded by a bottom clauseMachine Learning2009761377210.1007/s10994-009-5117-7
– reference: Witten, I. H., Frank, E., Hall, M. A., & Pal, C. J. (2017). Data mining: practical machine learning tools and techniques (Fourth ed.). Morgan Kaufmann, ian imorint of Elsevier.
– reference: Van EmdenMHKowalskiRAThe semantics of predicate logic as a programming languageJournal of the ACM197623473374245550910.1145/321978.321991
– reference: MuggletonSInductive logic programmingNew Generation Computing19918429531810.1007/BF03037089
– reference: Inoue, K. (2011). Logic programming for Boolean networks. In Proceedings of IJCAI (pp. 924–930). Menlo Park: AAAI Press.
– reference: Nguyen, H. D., Sakama, C., Sato, T., & Inoue, K. (2018). Computing logic programming semantics in linear algebra. International conference on multi-disciplinary trends in artificial intelligence (pp. 32–48). Cham: Springer.
– reference: ŠourekGAschenbrennerVŽeleznýFSchockaertSKuželkaOLifted relational neural networks: Efficient learning of latent relational structuresJournal of Artificial Intelligence Research20186269100381750110.1613/jair.1.11203
– ident: 6058_CR23
– volume: 13
  start-page: 411
  issue: 3–4
  year: 1995
  ident: 6058_CR28
  publication-title: New Generation Computing
  doi: 10.1007/BF03037232
– volume: 11
  start-page: 59
  issue: 1
  year: 1999
  ident: 6058_CR2
  publication-title: Applied Intelligence
  doi: 10.1023/A:1008328630915
– ident: 6058_CR47
  doi: 10.1007/978-3-319-59072-1_57
– volume: 94
  start-page: 81
  issue: 1
  year: 2014
  ident: 6058_CR15
  publication-title: Machine Learning
  doi: 10.1007/s10994-013-5392-1
– ident: 6058_CR35
  doi: 10.1007/978-3-030-03014-8_3
– ident: 6058_CR4
– ident: 6058_CR14
– volume: 76
  start-page: 37
  issue: 1
  year: 2009
  ident: 6058_CR46
  publication-title: Machine Learning
  doi: 10.1007/s10994-009-5117-7
– ident: 6058_CR43
– ident: 6058_CR49
– ident: 6058_CR27
  doi: 10.1609/aaai.v32i1.12111
– ident: 6058_CR45
– ident: 6058_CR29
  doi: 10.1007/978-3-662-04599-2_11
– start-page: 72
  volume-title: ILP
  year: 2019
  ident: 6058_CR36
– ident: 6058_CR51
– ident: 6058_CR1
  doi: 10.1016/B978-0-934613-40-8.50006-3
– ident: 6058_CR20
– ident: 6058_CR16
– volume: 161
  start-page: 109
  issue: 1
  year: 2006
  ident: 6058_CR42
  publication-title: Electronic Notes in Theoretical Computer Science
  doi: 10.1016/j.entcs.2006.04.028
– volume: 13
  start-page: 245
  issue: 3–4
  year: 1995
  ident: 6058_CR33
  publication-title: New Generation Computing
  doi: 10.1007/BF03037227
– volume: 6
  start-page: 695
  issue: 4
  year: 2019
  ident: 6058_CR37
  publication-title: If CoLoG Journal of Logics and their Applications
– ident: 6058_CR8
  doi: 10.1016/B978-1-55860-377-6.50023-2
– ident: 6058_CR40
  doi: 10.29007/9d61
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  ident: 6058_CR19
  publication-title: Neural Computation
  doi: 10.1162/neco.1997.9.8.1735
– volume: 2
  start-page: 273
  issue: 3
  year: 2004
  ident: 6058_CR18
  publication-title: Journal of Applied Logic
  doi: 10.1016/j.jal.2004.03.002
– volume: 101
  start-page: 4781
  issue: 14
  year: 2004
  ident: 6058_CR31
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
  doi: 10.1073/pnas.0305937101
– volume-title: The origins of order: Self-organization and selection in evolution
  year: 1993
  ident: 6058_CR26
  doi: 10.1093/oso/9780195079517.001.0001
– ident: 6058_CR50
– volume: 23
  start-page: 733
  issue: 4
  year: 1976
  ident: 6058_CR48
  publication-title: Journal of the ACM
  doi: 10.1145/321978.321991
– ident: 6058_CR21
– ident: 6058_CR38
– volume: 62
  start-page: 69
  year: 2018
  ident: 6058_CR44
  publication-title: Journal of Artificial Intelligence Research
  doi: 10.1613/jair.1.11203
– volume: 125
  start-page: 155
  issue: 1–2
  year: 2001
  ident: 6058_CR3
  publication-title: Artificial Intelligence
– volume: 11
  start-page: 45
  issue: 1
  year: 1999
  ident: 6058_CR22
  publication-title: Applied Intelligence
  doi: 10.1023/A:1008376514077
– volume: 94
  start-page: 51
  issue: 1
  year: 2014
  ident: 6058_CR25
  publication-title: Machine Learning
  doi: 10.1007/s10994-013-5353-8
– ident: 6058_CR41
– volume: 61
  start-page: 1
  year: 2018
  ident: 6058_CR11
  publication-title: Journal of Artificial Intelligence Research
  doi: 10.1613/jair.5714
– volume: 32
  start-page: 249
  issue: 3
  year: 2010
  ident: 6058_CR30
  publication-title: Applied Intelligence
  doi: 10.1007/s10489-008-0142-y
– ident: 6058_CR17
  doi: 10.14236/ewic/IWFM2000.2
– ident: 6058_CR6
  doi: 10.1145/1553374.1553380
– volume: 19
  start-page: 629
  issue: 1
  year: 1994
  ident: 6058_CR34
  publication-title: The Journal of Logic Programming
  doi: 10.1016/0743-1066(94)90035-3
– volume: 3
  start-page: e1672
  issue: 2
  year: 2008
  ident: 6058_CR9
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0001672
– volume: 22
  start-page: e124
  issue: 14
  year: 2006
  ident: 6058_CR13
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btl210
– ident: 6058_CR39
  doi: 10.18653/v1/W16-1309
– volume: 25
  start-page: 278
  issue: 4
  year: 2006
  ident: 6058_CR7
  publication-title: Journal of Plant Growth Regulation
  doi: 10.1007/s00344-006-0068-8
– ident: 6058_CR5
– volume: 293
  start-page: 103438
  year: 2019
  ident: 6058_CR12
  publication-title: Artificial Intelligence
  doi: 10.1016/j.artint.2020.103438
– ident: 6058_CR10
  doi: 10.1007/11564096_13
– volume: 8
  start-page: 295
  issue: 4
  year: 1991
  ident: 6058_CR32
  publication-title: New Generation Computing
  doi: 10.1007/BF03037089
– ident: 6058_CR24
  doi: 10.1007/978-3-642-30743-0_23
SSID ssj0002686
Score 2.433562
Snippet The combination of learning and reasoning is an essential and challenging topic in neuro-symbolic research. Differentiable inductive logic programming is a...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 123
SubjectTerms Algorithms
Artificial Intelligence
Computer Science
Control
Curricula
Datasets
Knowledge representation
Learning
Logic programming
Logic programs
Machine Learning
Mechatronics
Natural Language Processing (NLP)
Neural networks
Optimization
Robotics
Semantics
Simulation and Modeling
Special issue on Learning and Reasoning
SummonAdditionalLinks – databaseName: Springer LINK
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwED1BYWChfIpCQR7YwFJiE8ceEaJiQBXiS90i5-pUldqCmsDvx3adliJAgiVLbCs62_fO8d17AKeJRlFIw6iWRtALliZUcowpFyqRhY0o0tzzzN6m3a7s9dRdKAor62z3-krSe-pPxW6expa5TJ0okVSuwpqFO-kEG-4fnuf-lwmv72i3T0IdfodSme_HWIajRYz55VrUo02n-b_v3ILNEF2Sy9ly2IYVM9mBZq3cQMJG3oVeoFUdEFdeQoZLmYekcvjlU7mIS4sfkFpFxXqDfGSId5ckZHaNXYPSjO0MDbHcg6fO9ePVDQ0aCxQtElX2iU5uJImwsFCPMtIGpU6jOE8QGSsijoJr5eJKHskCFSpTiD4vYq7t2UrzfWhMXibmAIjifewLlWpHQWfjPJVLd0ka50pbr6BUC-La1BkGAnKngzHKFtTJznSZNV3mTZfJFpzN-7zO6Dd-bd2uZzALW7HMmHAhnD1lRS04r2ds8frn0Q7_1vwINpgrjfC_Z9rQqKZv5hjW8b0altMTv0Q_AP5131o
  priority: 102
  providerName: Springer Nature
Title Learning from interpretation transition using differentiable logic programming semantics
URI https://link.springer.com/article/10.1007/s10994-021-06058-8
https://www.proquest.com/docview/2625124280
Volume 111
WOSCitedRecordID wos000695754900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-0565
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002686
  issn: 0885-6125
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5BYWDhjSiPygMbWCQ2SewJAQIhAVXFSxVL5FydqhIUaAq_H59xqECChcVLbCvKZ999se_uA9hJDKalsoIbZVN-ILKEK4kxl6lOVOkYRVb4OrOXWbutul3dCQduVQirrG2iN9S9Z6Qz8n2Rkid2ZDk6fHnlpBpFt6tBQmMaZhyziSmk60p0viyxSL3So9tICSdPHpJmQuqcL4orKO4nShRX3x3ThG3-uCD1fuds4b9vvAjzgXGyo88lsgRTdrgMC7WaAwubewW6odRqn1HKCRt8i0ZkY_JpPryLUah8n9XKKs5CFI-WeRPKQrTXE3Wo7JNDbYDVKtydnd6enPOgu8DReaexa5EkSJIIS-f-UUXGojJZFBcJohBlJDGVRhPXlJEqUaO2ZdqTZSyN-98ycg0aw-ehXQemZQ97qc4MlaVz3E8Xii5O40IbZym0bkJcf_QcQ1Fy0sZ4zCfllAmo3AGVe6By1YTdrzEvnyU5_uy9VaOTh-1Z5RNomrBX4zt5_PtsG3_PtglzgtIj_BHNFjTGoze7DbP4Ph5UoxbMHJ-2O9ctmL7IeMsvVdd2kgfXXt_cfwBMMu2n
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Bb9MwFH4qAwkuFNgQZR34ACewlthLYh8mhAZVq5VqhyH1ljmvzlSp7cbSbdqf4jfi5zqtikRvPXDJJYmlxJ-_9xK_930AHxKDaams4EbZlB-JLOFKYsxlqhNVuowiK7zObD8bDNRwqM8a8LvuhaGyypoTPVGPrpD-kR-KlCKxS5ajL9e_OLlG0e5qbaGxgMWpfbh3n2zVce-bm9-PQnS-n590eXAV4Oi4d-6OSAYbSYSlC26oImNRmSyKiwRRiDKSmEqjKZOSkSpRo7ZlOpJlLI37mjDSjfsIHh-RshiVCoqzJfOL1DtLuoWbcMocQpNOaNXzIryC6oyiRHG1HghX2e1fG7I-znWa_9sbegHPQ0bNvi6WwEto2NkraNZuFSyQ1y4Mg5TsJaOWGjZeq7Zkc4rZvnyNUSvAJaudYxwDFhPLfIhgoZptShdUdupQOcZqD35u5flew87sambfANNyhKNUZ4Zk91xuqwtFG8NxoY1jQq1bENeTnGMQXSfvj0m-kosmYOQOGLkHRq5a8Gl5z_VCcmTj1e0aDXmgnypfQaEFn2s8rU7_e7S3m0d7D0-75z_6eb83ON2HZ4JaQfzvqDbszG9u7QE8wbv5uLp55xcGg4tt4-wPxKpFrA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NT9wwEB0BRYhLaaGIbWnrA5zAIrFJYh-qqipdFYFWewBpxSV1Zh20Eiwf2bbqX-PXMeN1WFGp3Dj0kktsS4mfZ8b2m3kAW5nDvDZeSWd8LvdVkUmjMZU6t5mpKaIoqlBn9rjo9cxgYPtzcNfmwjCtsrWJwVAPr5DPyPdUzp6YguVkr460iP5B9_P1jWQFKb5pbeU0phA58n9-0_at-XR4QHO9rVT328nX7zIqDEgkOzyhJ7LYRpZgTY4OTeI8GlckaZUhKlUnGnPtLEdVOjE1WrS-zoe6TrWjnYXTNO48vChoj8l0wn529uAFVB5UJmkRZ5KjiJiwE9P2QkFexZyjJDPSPHaKs0j3r8vZ4PO6K__z33oFL2OkLb5Ml8ZrmPPjVVhpVSxENGprMIglZs8Fp9qI0SMWppiwLw-0NsEpAueiVZQhy1hdeBFch4gst0tu0PhLQusImzdw-izftw4L46ux3wBh9RCHuS0cl-OjmNdWhi-M08o6spDWdiBtJ7zEWIydNUEuylkZaQZJSSApA0hK04Gdhz7X01IkT7bebJFRRrPUlDNYdGC3xdbs9b9He_v0aB9hieBVHh_2jt7BsuIMkXBKtQkLk9uf_j0s4q_JqLn9ENaIgB_PDbN7PblOmA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+from+interpretation+transition+using+differentiable+logic+programming+semantics&rft.jtitle=Machine+learning&rft.au=Gao%2C+Kun&rft.au=Wang%2C+Hanpin&rft.au=Cao%2C+Yongzhi&rft.au=Inoue%2C+Katsumi&rft.date=2022-01-01&rft.pub=Springer+Nature+B.V&rft.issn=0885-6125&rft.eissn=1573-0565&rft.volume=111&rft.issue=1&rft.spage=123&rft.epage=145&rft_id=info:doi/10.1007%2Fs10994-021-06058-8&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-6125&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-6125&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-6125&client=summon