A distributionally robust perspective on uncertainty quantification and chance constrained programming

The objective of uncertainty quantification is to certify that a given physical, engineering or economic system satisfies multiple safety conditions with high probability. A more ambitious goal is to actively influence the system so as to guarantee and maintain its safety, a scenario which can be mo...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Mathematical programming Ročník 151; číslo 1; s. 35 - 62
Hlavní autoři: Hanasusanto, Grani A., Roitch, Vladimir, Kuhn, Daniel, Wiesemann, Wolfram
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.06.2015
Springer Nature B.V
Témata:
ISSN:0025-5610, 1436-4646
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The objective of uncertainty quantification is to certify that a given physical, engineering or economic system satisfies multiple safety conditions with high probability. A more ambitious goal is to actively influence the system so as to guarantee and maintain its safety, a scenario which can be modeled through a chance constrained program. In this paper we assume that the parameters of the system are governed by an ambiguous distribution that is only known to belong to an ambiguity set characterized through generalized moment bounds and structural properties such as symmetry, unimodality or independence patterns. We delineate the watershed between tractability and intractability in ambiguity-averse uncertainty quantification and chance constrained programming. Using tools from distributionally robust optimization, we derive explicit conic reformulations for tractable problem classes and suggest efficiently computable conservative approximations for intractable ones.
AbstractList Issue Title: Special Issue: International Symposium on Mathematical Programming, Pittsburgh, July 2015 The objective of uncertainty quantification is to certify that a given physical, engineering or economic system satisfies multiple safety conditions with high probability. A more ambitious goal is to actively influence the system so as to guarantee and maintain its safety, a scenario which can be modeled through a chance constrained program. In this paper we assume that the parameters of the system are governed by an ambiguous distribution that is only known to belong to an ambiguity set characterized through generalized moment bounds and structural properties such as symmetry, unimodality or independence patterns. We delineate the watershed between tractability and intractability in ambiguity-averse uncertainty quantification and chance constrained programming. Using tools from distributionally robust optimization, we derive explicit conic reformulations for tractable problem classes and suggest efficiently computable conservative approximations for intractable ones.
The objective of uncertainty quantification is to certify that a given physical, engineering or economic system satisfies multiple safety conditions with high probability. A more ambitious goal is to actively influence the system so as to guarantee and maintain its safety, a scenario which can be modeled through a chance constrained program. In this paper we assume that the parameters of the system are governed by an ambiguous distribution that is only known to belong to an ambiguity set characterized through generalized moment bounds and structural properties such as symmetry, unimodality or independence patterns. We delineate the watershed between tractability and intractability in ambiguity-averse uncertainty quantification and chance constrained programming. Using tools from distributionally robust optimization, we derive explicit conic reformulations for tractable problem classes and suggest efficiently computable conservative approximations for intractable ones.
Author Wiesemann, Wolfram
Hanasusanto, Grani A.
Roitch, Vladimir
Kuhn, Daniel
Author_xml – sequence: 1
  givenname: Grani A.
  surname: Hanasusanto
  fullname: Hanasusanto, Grani A.
  organization: Department of Computing, Imperial College London
– sequence: 2
  givenname: Vladimir
  surname: Roitch
  fullname: Roitch, Vladimir
  organization: Department of Computing, Imperial College London
– sequence: 3
  givenname: Daniel
  surname: Kuhn
  fullname: Kuhn, Daniel
  email: daniel.kuhn@epfl.ch
  organization: Risk Analytics and Optimization Chair, École Polytechnique Fédérale de Lausanne
– sequence: 4
  givenname: Wolfram
  surname: Wiesemann
  fullname: Wiesemann, Wolfram
  organization: Imperial College Business School, Imperial College London
BookMark eNp9kEtPwzAQhC1UJNrCD-BmiXNgN0_nWFW8pEpc4Gw5jlNcpU5qO0jtr8chHBASnPYy38zOLMjMdEYRco1wiwDFnUNAKCLALAJW5tHpjMwxTfIozdN8RuYAcRZlOcIFWTi3AwBMGJuTZkVr7bzV1eB1Z0TbHqntqsF52ivreiW9_lC0M3QwUlkvtPFHehiE8brRUowQFaam8l0EAZWdCW5BpWra225rxX6vzfaSnDeiderq-y7J28P96_op2rw8Pq9Xm0imcekjiUKyqmjSUgols1xIZEldphLiBoo4FKulSCtVlbVKkKlGVCghSTOEhFWgkiW5mXxD9mFQzvNdN9hQy3HMGcYZK7I4qHBSSds5Z1XDe6v3wh45Ah_n5NOcPMzJxzn5KTDFL0Zq_1V_rNv-S8YT6UKK2Sr746c_oU-KW4-y
CODEN MHPGA4
CitedBy_id crossref_primary_10_1287_opre_2019_1866
crossref_primary_10_1109_TII_2020_2987823
crossref_primary_10_1007_s10898_023_01332_6
crossref_primary_10_1080_02331934_2024_2345356
crossref_primary_10_1137_16M1075910
crossref_primary_10_1137_21M1390517
crossref_primary_10_1002_aic_17909
crossref_primary_10_1007_s10878_021_00747_9
crossref_primary_10_1016_j_orl_2023_02_008
crossref_primary_10_1080_01605682_2025_2492820
crossref_primary_10_1109_TPWRS_2017_2725581
crossref_primary_10_1007_s00245_024_10167_w
crossref_primary_10_3390_geohazards5040062
crossref_primary_10_1007_s10107_019_01434_8
crossref_primary_10_1016_j_ejco_2022_100030
crossref_primary_10_1287_ijoo_2023_0091
crossref_primary_10_1007_s10107_020_01605_y
crossref_primary_10_1007_s10479_018_3003_z
crossref_primary_10_1287_ijoo_2022_0083
crossref_primary_10_1007_s00453_025_01298_9
crossref_primary_10_1287_ijoc_2020_1002
crossref_primary_10_1007_s10107_022_01788_6
crossref_primary_10_1016_j_compchemeng_2017_09_007
crossref_primary_10_1016_j_cie_2024_110282
crossref_primary_10_1109_ACCESS_2024_3416809
crossref_primary_10_1287_opre_2017_1688
crossref_primary_10_1137_15M1036592
crossref_primary_10_1137_16M1094725
crossref_primary_10_1287_ijoc_2022_0274
crossref_primary_10_1016_j_ejor_2019_05_033
crossref_primary_10_1016_j_ejor_2025_05_052
crossref_primary_10_1007_s10107_019_01445_5
crossref_primary_10_1007_s10288_019_00407_z
crossref_primary_10_1016_j_cor_2018_05_025
crossref_primary_10_1287_ijoo_2024_0047
crossref_primary_10_1287_moor_2017_0888
crossref_primary_10_1002_aic_17329
crossref_primary_10_1016_j_energy_2022_125434
crossref_primary_10_1007_s10287_019_00345_5
crossref_primary_10_1007_s10107_021_01627_0
crossref_primary_10_1007_s10107_024_02114_y
crossref_primary_10_1016_j_orl_2022_01_016
crossref_primary_10_1287_ijoc_2023_0299
crossref_primary_10_1007_s10107_019_01429_5
crossref_primary_10_1007_s10107_017_1224_6
crossref_primary_10_1007_s10898_017_0581_2
crossref_primary_10_1007_s10107_024_02150_8
crossref_primary_10_1007_s10287_025_00542_5
crossref_primary_10_1007_s10915_022_02063_8
crossref_primary_10_1109_ACCESS_2019_2899404
crossref_primary_10_1016_j_orl_2020_06_003
crossref_primary_10_1007_s11228_017_0458_z
crossref_primary_10_1287_opre_2019_1924
crossref_primary_10_1007_s10107_015_0896_z
crossref_primary_10_1109_TPWRS_2022_3195127
crossref_primary_10_3934_mfc_2023043
crossref_primary_10_1287_ijoc_2022_0113
crossref_primary_10_1287_mnsc_2020_3640
crossref_primary_10_1016_j_trb_2022_05_006
crossref_primary_10_1016_j_cor_2025_106974
crossref_primary_10_1016_j_segan_2023_101232
crossref_primary_10_1137_22M1528094
crossref_primary_10_1016_j_ress_2025_111534
crossref_primary_10_1109_TSG_2018_2792322
crossref_primary_10_1287_opre_2021_2225
crossref_primary_10_1016_j_cor_2025_107260
crossref_primary_10_1137_21M1390967
crossref_primary_10_1109_TPWRS_2016_2572104
crossref_primary_10_1016_j_jclepro_2021_129954
crossref_primary_10_1080_00207543_2019_1659520
crossref_primary_10_1007_s11590_024_02097_x
crossref_primary_10_1016_j_est_2024_115197
crossref_primary_10_1137_17M1115046
crossref_primary_10_1007_s10107_017_1151_6
crossref_primary_10_1111_mafi_12296
crossref_primary_10_1080_00207543_2024_2436127
crossref_primary_10_1016_j_compchemeng_2019_03_034
crossref_primary_10_1287_opre_2016_1583
crossref_primary_10_1109_TSTE_2023_3315960
crossref_primary_10_1109_TSTE_2022_3203669
crossref_primary_10_1016_j_apm_2016_07_029
crossref_primary_10_1287_moor_2021_1233
crossref_primary_10_1287_opre_2021_0709
crossref_primary_10_1016_j_ejco_2024_100094
crossref_primary_10_1007_s40305_025_00628_6
crossref_primary_10_1017_apr_2019_6
crossref_primary_10_1287_opre_2021_0268
crossref_primary_10_1145_3410152
crossref_primary_10_1287_mnsc_2018_3145
crossref_primary_10_1287_opre_2023_2470
crossref_primary_10_1007_s11228_020_00552_2
crossref_primary_10_1287_opre_2023_0218
crossref_primary_10_1007_s10589_021_00292_5
crossref_primary_10_1080_21680566_2022_2025952
crossref_primary_10_1109_TPWRS_2020_3046710
crossref_primary_10_1080_10556788_2023_2241149
crossref_primary_10_1016_j_jclepro_2023_137314
crossref_primary_10_1007_s00291_024_00807_6
crossref_primary_10_1007_s10107_019_01442_8
crossref_primary_10_1007_s10107_019_01446_4
Cites_doi 10.1287/opre.1090.0741
10.1007/978-1-4757-3403-4_7
10.1287/mnsc.1120.1641
10.1016/j.jbankfin.2011.07.018
10.1080/1055678021000034008
10.1287/opre.1120.1054
10.1137/050622328
10.1287/moor.1120.0566
10.1287/opre.51.4.543.16101
10.1007/PL00011380
10.1287/opre.1090.0712
10.1287/mnsc.1070.0769
10.1287/opre.2014.1314
10.1007/s00186-007-0161-1
10.1287/moor.1040.0137
10.1007/s10107-015-0878-1
10.1137/S0036144504440543
10.1287/mnsc.1120.1615
10.1137/140958736
10.1137/1.9780898718829
10.1287/opre.1110.1005
10.1287/ijoc.1120.0529
10.21136/CPM.1966.117583
10.1287/opre.1030.0065
10.1007/s10107-015-0896-z
10.1287/opre.1080.0566
10.1287/opre.1120.1132
10.1007/s10107-011-0494-7
10.1017/CBO9780511804441
10.1137/10080782X
10.1137/S1052623401399903
10.1007/s10107-005-0678-0
10.1515/9781400831050
10.1287/opre.1070.0441
10.1007/s10957-006-9084-x
10.1214/aoms/1177703732
ContentType Journal Article
Copyright Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society 2015
Copyright_xml – notice: Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society 2015
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
88I
8AL
8AO
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L.0
L6V
L7M
L~C
L~D
M0C
M0N
M2P
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1007/s10107-015-0896-z
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Collection (ProQuest)
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ABI/INFORM Professional Standard
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Science Database (ProQuest)
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ABI/INFORM Professional Standard
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ProQuest Business Collection (Alumni Edition)

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1436-4646
EndPage 62
ExternalDocumentID 3687280931
10_1007_s10107_015_0896_z
Genre Feature
GeographicLocations United States--US
GeographicLocations_xml – name: United States--US
GroupedDBID --K
--Z
-52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1B1
1N0
1OL
1SB
203
28-
29M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
7WY
88I
8AO
8FE
8FG
8FL
8TC
8UJ
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMOZ
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHQJS
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EBA
EBLON
EBR
EBS
EBU
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IAO
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAS
LLZTM
M0C
M0N
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQ-
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9R
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
QWB
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RPZ
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TH9
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
XPP
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZL0
ZMTXR
ZWQNP
~02
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADXHL
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L.0
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
PUEGO
Q9U
ID FETCH-LOGICAL-c429t-c1ac8b7f49caec56ac183d94c02f072896dca4beb9de318efab1c03451038b0e3
IEDL.DBID 7WY
ISICitedReferencesCount 117
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000354623300003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0025-5610
IngestDate Thu Sep 25 00:43:19 EDT 2025
Sat Nov 29 03:33:58 EST 2025
Tue Nov 18 21:15:24 EST 2025
Fri Feb 21 02:32:40 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords 90C15
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c429t-c1ac8b7f49caec56ac183d94c02f072896dca4beb9de318efab1c03451038b0e3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
OpenAccessLink http://infoscience.epfl.ch/record/206851
PQID 1681258752
PQPubID 25307
PageCount 28
ParticipantIDs proquest_journals_1681258752
crossref_primary_10_1007_s10107_015_0896_z
crossref_citationtrail_10_1007_s10107_015_0896_z
springer_journals_10_1007_s10107_015_0896_z
PublicationCentury 2000
PublicationDate 2015-06-01
PublicationDateYYYYMMDD 2015-06-01
PublicationDate_xml – month: 06
  year: 2015
  text: 2015-06-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle A Publication of the Mathematical Optimization Society
PublicationTitle Mathematical programming
PublicationTitleAbbrev Math. Program
PublicationYear 2015
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Bertsimas, D., Gupta, V., Kallus,N.: Data-driven robust optimization. Available on arXiv.org (2013)
Hanasusanto, G.A., Roitch, V., Kuhn, D., Wiesemann, W.: A distributionally robust perspective on uncertainty quantification and chance constrained programming. Technical Report, Imperial College London and École Polytechnique Fédérale de Lausanne (2015)
ErdoğanEIyengarGAmbiguous chance constrained problems and robust optimizationMath. Program. B20061071–2376110.1007/s10107-005-0678-01134.90028
WiesemannWKuhnDRustemBRobust Markov decision processesMath. Oper. Res.201338115318310.1287/moor.1120.05661291.902953029483
Van Parys, B.P.G., Kuhn, D., Goulart, P.J., Morari, M.: Distributionally robust control of constrained stochastic systems. Available on optimization online (2013)
YanıkoğluİDen HertogDSafe approximations of ambiguous chance constraints using historical dataINFORMS J. Comput.201325466668110.1287/ijoc.1120.05293120926
Hu Z., Hong,L. J.: Kullback-Leibler divergence constrained distributionally robust optimization. Available on optimization online (2012)
GaussCFTheoria combinationis observationum erroribus minimis obnoxiae, pars priorComment. Soc. Reg. Sci. Gott. Recent.182133321327
DeMiguelVNogalesFJPortfolio selection with robust estimationOper. Res.200957356057710.1287/opre.1080.05661233.912402554255
BertsimasDPopescuIOptimal inequalities in probability theory: a convex optimization approachSIAM J. Optim.200415378080410.1137/S10526234013999032142860
KorskiJPfeufferFKlamrothKBiconvex sets and optimization with biconvex functions: a survey and extensionsMath. Methods Oper. Res.200766337340710.1007/s00186-007-0161-12357657
ŽáčkováJOn minimax solutions of stochastic linear programming problemsČas. Pěst. Mat.19669144234300161.17102
Ben-TalANemirovskiALectures on Modern Convex Optimization: Analysis, Algorithms, and Engineering Applications2001PhiladelphiaSIAM10.1137/1.9780898718829
Hanasusanto, G. A., Roitch, V., Kuhn, D., Wiesemann,W.: Ambiguous joint chance constraints with conic dispersion measures. Working Paper, Imperial College London and École Polytechnique Fédérale de Lausanne 2015
DelageEYeYDistributionally robust optimization under moment uncertainty with application to data-driven problemsOper. Res.201058359661210.1287/opre.1090.07412680566
Jasour, A., Aybat, N. S., Lagoa, C.: Semidefinite programming for chance optimization over semialgebraic sets. Available on arXiv.org (2014)
Ben-TalANemirovskiARobust solutions of linear programming problems contaminated with uncertain dataMath. Program. A200088341142410.1007/PL000113800964.900251782149
ChenWSimMSunJTeoC-PFrom CVaR to uncertainty set: implications in joint chance-constrained optimizationOper. Res.201058247048510.1287/opre.1090.07121226.900512674810
DoanXVNatarajanKOn the complexity of nonoverlapping multivariate marginal bounds for probabilistic combinatorial optimization problemsOper. Res.201260113814910.1287/opre.1110.10051245.900992911663
Ben-TalADen HertogDDe WaegenaereAMelenbergBRennenGRobust solutions of optimization problems affected by uncertain probabilitiesManag. Sci.201359234135710.1287/mnsc.1120.1641
Mohajerin Esfahani, P., Kuhn, D.: Data-driven distributionally robust optimization using the Wasserstein metric: performance guarantees and tractable reformulations. Working Paper, École Polytechnique Fédérale de Lausanne (2015)
Doan, X.V., Li, X., Natarajan, K.: Robustness to dependency in portfolio optimization using overlapping marginals. Available on optimization online (2013)
Sun, H., Xu, H.: Asymptotic convergence analysis for distributional robust optimization and equilibrium problems. Available on optimization online (2013)
NatarajanKPachamanovaDSimMIncorporating asymmetric distributional information in robust value-at-risk optimizationManag. Sci.200854357358510.1287/mnsc.1070.07691142.91593
OwhadiHScovelCSullivanTJMcKernsMOrtizMOptimal uncertainty quantificationSIAM Rev.201355227134510.1137/10080782X1278.600403049922
Ben-TalAGhaouiL ElNemirovskiARobust Optimization2009PrincetonPrinceton University Press10.1515/97814008310501221.90001
HuberPJRobust estimation of a location parameterAnn. Stat.19645317310110.1214/aoms/1177703732
Van Parys, B.P.G., Goulart, P.J., Kuhn, D.: Generalized Gauss inequalities via semidefinite programming. Math. Program. A (2015) (in press)
PflugGPichlerAWozabalDThe 1/n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1/n$$\end{document} investment strategy is optimal under high model ambiguityJ. Bank. Finance201236241041710.1016/j.jbankfin.2011.07.018
ShapiroAKleywegtAMinimax analysis of stochastic problemsOptim. Methods Softw.200217352354210.1080/10556780210000340081040.900301944294
Han, S., Tao, M., Topcu, U., Owhadi, H., Murray, R. M.: Convex optimal uncertainty quantification. Available on arXiv.org, (2013)
ZymlerSKuhnDRustemBDistributionally robust joint chance constraints with second-order moment informationMath. Program. A20131371–216719810.1007/s10107-011-0494-71286.901033010424
Hu, Z., Hong, L. J., So,A. M.-C.: Ambiguous probabilistic programs. Available on optimization online (2013)
Jiang, R., Guan, Y.: Data-driven chance constrained stochastic program. Available on optimization online (2012)
XuHCaramanisCMannorSOptimization under probabilistic envelope constraintsOper. Res.201260368269910.1287/opre.1120.10541251.903012960538
RachevSTProbability Metrics and the Stability of Stochastic Models1991New YorkWiley0744.60004
Shapiro, A.: On duality theory of conic linear problems. In: Semi-infinite Programming, chapter 7, pp 135–165. Kluwer Academic Publishers (2001)
ChenXSimMSunPA robust optimization perspective on stochastic programmingOper. Res.20075561058107110.1287/opre.1070.04411167.906082372277
BoydSVandenbergheLConvex Optimization2004CambridgeCambridge University Press10.1017/CBO97805118044411058.90049
Casella, G., Berger, R.L.: Statistical Inference, 2nd edn. Duxbury Thomson Learning, Pacific Grove, CA (2002)
PopescuIAn SDP approach to optimal moment bounds for convex classes of distributionsMath. Oper. Res.200550363265710.1287/moor.1040.0137
VandenbergheLBoydSComanorKGeneralized Chebyshev bounds via semidefinite programmingSIAM Rev.2007491526410.1137/S00361445044405431151.905122302547
ZymlerSKuhnDRustemBWorst-case value-at-risk of non-linear portfoliosManag. Sci.201359117218810.1287/mnsc.1120.16153010424
LamS-WNgTSSimMSongJ-HMultiple objectives satisficing under uncertaintyOper. Res.201361121422710.1287/opre.1120.11321267.901333042752
WiesemannWKuhnDSimMDistributionally robust convex optimizationOper. Res.20146261358137610.1287/opre.2014.13143294550
NemirovskiAShapiroAConvex approximations of chance constrained programsSIAM J. Optim.200617496999610.1137/0506223281126.900562274500
BertsimasDSimMThe price of robustnessOper. Res.2004521355310.1287/opre.1030.00651165.905652066239
CalafioreGCEl GhaouiLOn distributionally robust chance-constrained linear programsJ. Optim. Theory Appl.2006130112210.1007/s10957-006-9084-x1143.900212275351
DharmadhikariSWJoag-DevKUnimodality, Convexity, and Applications, Volume 27 of Probability and Mathematical Statistics1988WalthamAcademic Press
El GhaouiLOksMOustryFWorst-case value-at-risk and robust portfolio optimization: a conic programming approachOper. Res.200351454355610.1287/opre.51.4.543.161011165.913971991970
W Wiesemann (896_CR45) 2014; 62
H Owhadi (896_CR34) 2013; 55
ST Rachev (896_CR37) 1991
S-W Lam (896_CR30) 2013; 61
D Bertsimas (896_CR7) 2004; 52
S Boyd (896_CR8) 2004
A Nemirovski (896_CR33) 2006; 17
896_CR25
896_CR28
G Pflug (896_CR35) 2012; 36
896_CR27
896_CR22
896_CR21
CF Gauss (896_CR20) 1821; 33
896_CR24
896_CR23
W Chen (896_CR11) 2010; 58
W Wiesemann (896_CR44) 2013; 38
A Shapiro (896_CR39) 2002; 17
GC Calafiore (896_CR9) 2006; 130
J Žáčková (896_CR48) 1966; 91
896_CR31
PJ Huber (896_CR26) 1964; 53
896_CR38
L Ghaoui El (896_CR18) 2003; 51
E Delage (896_CR13) 2010; 58
I Popescu (896_CR36) 2005; 50
D Bertsimas (896_CR6) 2004; 15
896_CR40
896_CR42
896_CR41
SW Dharmadhikari (896_CR15) 1988
A Ben-Tal (896_CR4) 2001
H Xu (896_CR46) 2012; 60
V DeMiguel (896_CR14) 2009; 57
A Ben-Tal (896_CR2) 2013; 59
İ Yanıkoğlu (896_CR47) 2013; 25
K Natarajan (896_CR32) 2008; 54
XV Doan (896_CR17) 2012; 60
L Vandenberghe (896_CR43) 2007; 49
A Ben-Tal (896_CR3) 2000; 88
J Korski (896_CR29) 2007; 66
A Ben-Tal (896_CR1) 2009
X Chen (896_CR12) 2007; 55
896_CR5
896_CR16
E Erdoğan (896_CR19) 2006; 107
896_CR10
S Zymler (896_CR49) 2013; 137
S Zymler (896_CR50) 2013; 59
References_xml – reference: DharmadhikariSWJoag-DevKUnimodality, Convexity, and Applications, Volume 27 of Probability and Mathematical Statistics1988WalthamAcademic Press
– reference: ShapiroAKleywegtAMinimax analysis of stochastic problemsOptim. Methods Softw.200217352354210.1080/10556780210000340081040.900301944294
– reference: Jiang, R., Guan, Y.: Data-driven chance constrained stochastic program. Available on optimization online (2012)
– reference: Hanasusanto, G.A., Roitch, V., Kuhn, D., Wiesemann, W.: A distributionally robust perspective on uncertainty quantification and chance constrained programming. Technical Report, Imperial College London and École Polytechnique Fédérale de Lausanne (2015)
– reference: BertsimasDPopescuIOptimal inequalities in probability theory: a convex optimization approachSIAM J. Optim.200415378080410.1137/S10526234013999032142860
– reference: YanıkoğluİDen HertogDSafe approximations of ambiguous chance constraints using historical dataINFORMS J. Comput.201325466668110.1287/ijoc.1120.05293120926
– reference: NemirovskiAShapiroAConvex approximations of chance constrained programsSIAM J. Optim.200617496999610.1137/0506223281126.900562274500
– reference: GaussCFTheoria combinationis observationum erroribus minimis obnoxiae, pars priorComment. Soc. Reg. Sci. Gott. Recent.182133321327
– reference: KorskiJPfeufferFKlamrothKBiconvex sets and optimization with biconvex functions: a survey and extensionsMath. Methods Oper. Res.200766337340710.1007/s00186-007-0161-12357657
– reference: Mohajerin Esfahani, P., Kuhn, D.: Data-driven distributionally robust optimization using the Wasserstein metric: performance guarantees and tractable reformulations. Working Paper, École Polytechnique Fédérale de Lausanne (2015)
– reference: ZymlerSKuhnDRustemBDistributionally robust joint chance constraints with second-order moment informationMath. Program. A20131371–216719810.1007/s10107-011-0494-71286.901033010424
– reference: HuberPJRobust estimation of a location parameterAnn. Stat.19645317310110.1214/aoms/1177703732
– reference: Van Parys, B.P.G., Goulart, P.J., Kuhn, D.: Generalized Gauss inequalities via semidefinite programming. Math. Program. A (2015) (in press)
– reference: ErdoğanEIyengarGAmbiguous chance constrained problems and robust optimizationMath. Program. B20061071–2376110.1007/s10107-005-0678-01134.90028
– reference: Ben-TalANemirovskiALectures on Modern Convex Optimization: Analysis, Algorithms, and Engineering Applications2001PhiladelphiaSIAM10.1137/1.9780898718829
– reference: ŽáčkováJOn minimax solutions of stochastic linear programming problemsČas. Pěst. Mat.19669144234300161.17102
– reference: Jasour, A., Aybat, N. S., Lagoa, C.: Semidefinite programming for chance optimization over semialgebraic sets. Available on arXiv.org (2014)
– reference: PflugGPichlerAWozabalDThe 1/n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1/n$$\end{document} investment strategy is optimal under high model ambiguityJ. Bank. Finance201236241041710.1016/j.jbankfin.2011.07.018
– reference: CalafioreGCEl GhaouiLOn distributionally robust chance-constrained linear programsJ. Optim. Theory Appl.2006130112210.1007/s10957-006-9084-x1143.900212275351
– reference: Hu Z., Hong,L. J.: Kullback-Leibler divergence constrained distributionally robust optimization. Available on optimization online (2012)
– reference: WiesemannWKuhnDRustemBRobust Markov decision processesMath. Oper. Res.201338115318310.1287/moor.1120.05661291.902953029483
– reference: DelageEYeYDistributionally robust optimization under moment uncertainty with application to data-driven problemsOper. Res.201058359661210.1287/opre.1090.07412680566
– reference: XuHCaramanisCMannorSOptimization under probabilistic envelope constraintsOper. Res.201260368269910.1287/opre.1120.10541251.903012960538
– reference: PopescuIAn SDP approach to optimal moment bounds for convex classes of distributionsMath. Oper. Res.200550363265710.1287/moor.1040.0137
– reference: BertsimasDSimMThe price of robustnessOper. Res.2004521355310.1287/opre.1030.00651165.905652066239
– reference: ChenWSimMSunJTeoC-PFrom CVaR to uncertainty set: implications in joint chance-constrained optimizationOper. Res.201058247048510.1287/opre.1090.07121226.900512674810
– reference: ChenXSimMSunPA robust optimization perspective on stochastic programmingOper. Res.20075561058107110.1287/opre.1070.04411167.906082372277
– reference: VandenbergheLBoydSComanorKGeneralized Chebyshev bounds via semidefinite programmingSIAM Rev.2007491526410.1137/S00361445044405431151.905122302547
– reference: DoanXVNatarajanKOn the complexity of nonoverlapping multivariate marginal bounds for probabilistic combinatorial optimization problemsOper. Res.201260113814910.1287/opre.1110.10051245.900992911663
– reference: Ben-TalADen HertogDDe WaegenaereAMelenbergBRennenGRobust solutions of optimization problems affected by uncertain probabilitiesManag. Sci.201359234135710.1287/mnsc.1120.1641
– reference: WiesemannWKuhnDSimMDistributionally robust convex optimizationOper. Res.20146261358137610.1287/opre.2014.13143294550
– reference: Ben-TalANemirovskiARobust solutions of linear programming problems contaminated with uncertain dataMath. Program. A200088341142410.1007/PL000113800964.900251782149
– reference: Van Parys, B.P.G., Kuhn, D., Goulart, P.J., Morari, M.: Distributionally robust control of constrained stochastic systems. Available on optimization online (2013)
– reference: Hanasusanto, G. A., Roitch, V., Kuhn, D., Wiesemann,W.: Ambiguous joint chance constraints with conic dispersion measures. Working Paper, Imperial College London and École Polytechnique Fédérale de Lausanne 2015
– reference: OwhadiHScovelCSullivanTJMcKernsMOrtizMOptimal uncertainty quantificationSIAM Rev.201355227134510.1137/10080782X1278.600403049922
– reference: Ben-TalAGhaouiL ElNemirovskiARobust Optimization2009PrincetonPrinceton University Press10.1515/97814008310501221.90001
– reference: El GhaouiLOksMOustryFWorst-case value-at-risk and robust portfolio optimization: a conic programming approachOper. Res.200351454355610.1287/opre.51.4.543.161011165.913971991970
– reference: Shapiro, A.: On duality theory of conic linear problems. In: Semi-infinite Programming, chapter 7, pp 135–165. Kluwer Academic Publishers (2001)
– reference: NatarajanKPachamanovaDSimMIncorporating asymmetric distributional information in robust value-at-risk optimizationManag. Sci.200854357358510.1287/mnsc.1070.07691142.91593
– reference: Bertsimas, D., Gupta, V., Kallus,N.: Data-driven robust optimization. Available on arXiv.org (2013)
– reference: BoydSVandenbergheLConvex Optimization2004CambridgeCambridge University Press10.1017/CBO97805118044411058.90049
– reference: Doan, X.V., Li, X., Natarajan, K.: Robustness to dependency in portfolio optimization using overlapping marginals. Available on optimization online (2013)
– reference: Sun, H., Xu, H.: Asymptotic convergence analysis for distributional robust optimization and equilibrium problems. Available on optimization online (2013)
– reference: DeMiguelVNogalesFJPortfolio selection with robust estimationOper. Res.200957356057710.1287/opre.1080.05661233.912402554255
– reference: LamS-WNgTSSimMSongJ-HMultiple objectives satisficing under uncertaintyOper. Res.201361121422710.1287/opre.1120.11321267.901333042752
– reference: Casella, G., Berger, R.L.: Statistical Inference, 2nd edn. Duxbury Thomson Learning, Pacific Grove, CA (2002)
– reference: ZymlerSKuhnDRustemBWorst-case value-at-risk of non-linear portfoliosManag. Sci.201359117218810.1287/mnsc.1120.16153010424
– reference: Han, S., Tao, M., Topcu, U., Owhadi, H., Murray, R. M.: Convex optimal uncertainty quantification. Available on arXiv.org, (2013)
– reference: Hu, Z., Hong, L. J., So,A. M.-C.: Ambiguous probabilistic programs. Available on optimization online (2013)
– reference: RachevSTProbability Metrics and the Stability of Stochastic Models1991New YorkWiley0744.60004
– ident: 896_CR24
– volume: 58
  start-page: 596
  issue: 3
  year: 2010
  ident: 896_CR13
  publication-title: Oper. Res.
  doi: 10.1287/opre.1090.0741
– ident: 896_CR38
  doi: 10.1007/978-1-4757-3403-4_7
– volume: 59
  start-page: 341
  issue: 2
  year: 2013
  ident: 896_CR2
  publication-title: Manag. Sci.
  doi: 10.1287/mnsc.1120.1641
– volume: 36
  start-page: 410
  issue: 2
  year: 2012
  ident: 896_CR35
  publication-title: J. Bank. Finance
  doi: 10.1016/j.jbankfin.2011.07.018
– ident: 896_CR10
– volume: 17
  start-page: 523
  issue: 3
  year: 2002
  ident: 896_CR39
  publication-title: Optim. Methods Softw.
  doi: 10.1080/1055678021000034008
– volume: 60
  start-page: 682
  issue: 3
  year: 2012
  ident: 896_CR46
  publication-title: Oper. Res.
  doi: 10.1287/opre.1120.1054
– ident: 896_CR28
– volume-title: Probability Metrics and the Stability of Stochastic Models
  year: 1991
  ident: 896_CR37
– ident: 896_CR25
– ident: 896_CR21
– ident: 896_CR31
– volume: 17
  start-page: 969
  issue: 4
  year: 2006
  ident: 896_CR33
  publication-title: SIAM J. Optim.
  doi: 10.1137/050622328
– ident: 896_CR5
– volume-title: Unimodality, Convexity, and Applications, Volume 27 of Probability and Mathematical Statistics
  year: 1988
  ident: 896_CR15
– volume: 38
  start-page: 153
  issue: 1
  year: 2013
  ident: 896_CR44
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.1120.0566
– volume: 51
  start-page: 543
  issue: 4
  year: 2003
  ident: 896_CR18
  publication-title: Oper. Res.
  doi: 10.1287/opre.51.4.543.16101
– volume: 88
  start-page: 411
  issue: 3
  year: 2000
  ident: 896_CR3
  publication-title: Math. Program. A
  doi: 10.1007/PL00011380
– volume: 58
  start-page: 470
  issue: 2
  year: 2010
  ident: 896_CR11
  publication-title: Oper. Res.
  doi: 10.1287/opre.1090.0712
– volume: 54
  start-page: 573
  issue: 3
  year: 2008
  ident: 896_CR32
  publication-title: Manag. Sci.
  doi: 10.1287/mnsc.1070.0769
– volume: 62
  start-page: 1358
  issue: 6
  year: 2014
  ident: 896_CR45
  publication-title: Oper. Res.
  doi: 10.1287/opre.2014.1314
– volume: 66
  start-page: 373
  issue: 3
  year: 2007
  ident: 896_CR29
  publication-title: Math. Methods Oper. Res.
  doi: 10.1007/s00186-007-0161-1
– ident: 896_CR42
– volume: 50
  start-page: 632
  issue: 3
  year: 2005
  ident: 896_CR36
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.1040.0137
– ident: 896_CR41
  doi: 10.1007/s10107-015-0878-1
– volume: 49
  start-page: 52
  issue: 1
  year: 2007
  ident: 896_CR43
  publication-title: SIAM Rev.
  doi: 10.1137/S0036144504440543
– volume: 59
  start-page: 172
  issue: 1
  year: 2013
  ident: 896_CR50
  publication-title: Manag. Sci.
  doi: 10.1287/mnsc.1120.1615
– ident: 896_CR27
  doi: 10.1137/140958736
– volume-title: Lectures on Modern Convex Optimization: Analysis, Algorithms, and Engineering Applications
  year: 2001
  ident: 896_CR4
  doi: 10.1137/1.9780898718829
– volume: 60
  start-page: 138
  issue: 1
  year: 2012
  ident: 896_CR17
  publication-title: Oper. Res.
  doi: 10.1287/opre.1110.1005
– volume: 25
  start-page: 666
  issue: 4
  year: 2013
  ident: 896_CR47
  publication-title: INFORMS J. Comput.
  doi: 10.1287/ijoc.1120.0529
– ident: 896_CR22
– volume: 91
  start-page: 423
  issue: 4
  year: 1966
  ident: 896_CR48
  publication-title: Čas. Pěst. Mat.
  doi: 10.21136/CPM.1966.117583
– volume: 52
  start-page: 35
  issue: 1
  year: 2004
  ident: 896_CR7
  publication-title: Oper. Res.
  doi: 10.1287/opre.1030.0065
– ident: 896_CR16
– ident: 896_CR23
  doi: 10.1007/s10107-015-0896-z
– volume: 57
  start-page: 560
  issue: 3
  year: 2009
  ident: 896_CR14
  publication-title: Oper. Res.
  doi: 10.1287/opre.1080.0566
– volume: 61
  start-page: 214
  issue: 1
  year: 2013
  ident: 896_CR30
  publication-title: Oper. Res.
  doi: 10.1287/opre.1120.1132
– volume: 137
  start-page: 167
  issue: 1–2
  year: 2013
  ident: 896_CR49
  publication-title: Math. Program. A
  doi: 10.1007/s10107-011-0494-7
– volume-title: Convex Optimization
  year: 2004
  ident: 896_CR8
  doi: 10.1017/CBO9780511804441
– volume: 55
  start-page: 271
  issue: 2
  year: 2013
  ident: 896_CR34
  publication-title: SIAM Rev.
  doi: 10.1137/10080782X
– volume: 15
  start-page: 780
  issue: 3
  year: 2004
  ident: 896_CR6
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623401399903
– volume: 107
  start-page: 37
  issue: 1–2
  year: 2006
  ident: 896_CR19
  publication-title: Math. Program. B
  doi: 10.1007/s10107-005-0678-0
– volume-title: Robust Optimization
  year: 2009
  ident: 896_CR1
  doi: 10.1515/9781400831050
– ident: 896_CR40
– volume: 33
  start-page: 321
  year: 1821
  ident: 896_CR20
  publication-title: Comment. Soc. Reg. Sci. Gott. Recent.
– volume: 55
  start-page: 1058
  issue: 6
  year: 2007
  ident: 896_CR12
  publication-title: Oper. Res.
  doi: 10.1287/opre.1070.0441
– volume: 130
  start-page: 1
  issue: 1
  year: 2006
  ident: 896_CR9
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-006-9084-x
– volume: 53
  start-page: 73
  issue: 1
  year: 1964
  ident: 896_CR26
  publication-title: Ann. Stat.
  doi: 10.1214/aoms/1177703732
SSID ssj0001388
Score 2.5237844
Snippet The objective of uncertainty quantification is to certify that a given physical, engineering or economic system satisfies multiple safety conditions with high...
Issue Title: Special Issue: International Symposium on Mathematical Programming, Pittsburgh, July 2015 The objective of uncertainty quantification is to...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 35
SubjectTerms Calculus of Variations and Optimal Control; Optimization
Combinatorics
Full Length Paper
Mathematical and Computational Physics
Mathematical Methods in Physics
Mathematics
Mathematics and Statistics
Mathematics of Computing
Numerical Analysis
Optimization techniques
Polytopes
Probability
Probability distribution
Random variables
Studies
Theoretical
Uncertainty
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5aPejBt1hf5OBJCWz20U2ORSwetAhq6W1JJgkIdVu7W6H99Sb7aKuooMdls9kwM8nMZGa-QejCakjt-5oTYd1lEmojCTcgSCSNBqaYiovaqt5d3O2yfp8_VHXcWZ3tXocki5N6qdiNFmmSEfEYb5HZKlqLHNiMc9Efe_PjlwaM1X1anXFQhzK_m-KzMlpYmF-CooWu6Wz_a5U7aKsyLXG7lIVdtKLTPbS5BDhon-7nKK3ZPjJtrBxubtXySgwGUzweykmW49GiBhMPU2yVX5k6kE_x20SUCUYFT7FIFXbVw6AxOFvTtZzQCld5X6_2twfouXPzdH1Lqr4LBKx2yglQAUzGJuQgNEQtAXbfKx6C5xsvth5aS4EIpZZcuRtUbYSk4AWhA-dj0tPBIWqkw1QfIRxSBQ5hhwXGNRDXXGgTAW1pE0oaSdFEXs2ABCpQcrfQQbKAU3YETSxBE0fQZNZEl_NPRiUix2-DT2uuJtXmzBLqMNci66j5TXRVc3Hp9U-THf9p9Ana8AsxcDc2p6iRjyf6DK3De_6Sjc8Lmf0ACT_q4g
  priority: 102
  providerName: Springer Nature
Title A distributionally robust perspective on uncertainty quantification and chance constrained programming
URI https://link.springer.com/article/10.1007/s10107-015-0896-z
https://www.proquest.com/docview/1681258752
Volume 151
WOSCitedRecordID wos000354623300003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ABI/INFORM Collection
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: 7WY
  dateStart: 20011001
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/abicomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ABI/INFORM Global
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: M0C
  dateStart: 20011001
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/abiglobal
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: P5Z
  dateStart: 20011001
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: K7-
  dateStart: 20011001
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: M7S
  dateStart: 20011001
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: BENPR
  dateStart: 20011001
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: M2P
  dateStart: 20011001
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fa9swED62tg_bw7r-Ytnaooc-bYjajh3LT6MtLYWtIbRblvXFSCcJBpmTxs6g_euns-UkGywvezkQsmXBybrT6e77AE6chTRRZDIu3XGZx8YqnlmUPFHWoNBCp3Vt1fBz2u-L0Sgb-IBb6dMq2z2x3qj1BClGfhoSUFbivOvo4_SBE2sU3a56Co3nsOk6E2IwSL99X-zEYVeIlrKV_IT2VrMpnQvrpMuEByLr8ac_7dLS2fzrfrQ2O1fb_zvh1_DKO5zsrFkhO_DMFLvwcgWG0LVuFtit5R7YM6YJTdcTYcnx-JHNJmpeVmy6rMxkk4I5k9gkFFSP7GEum7SjWtNMFppRTTEahuSBEhGF0cxng_10n92Hr1eXXy6uuWdj4OhsVsUxlChUauMMpcGkJ9HtBjqLMYhskLpzW0-jjJVRmaa4qrFShRh0Y4LsEyow3QPYKCaFeQMsDjUS7o7oWqIVN5k0NsGwZ2yswkTJDgStLnL0UOU00XG-BFkm9eVOfTmpL3_qwPvFK9MGp2Pdw4etynL_y5b5Ul8d-NAqfaX7X4O9XT_YO3gR1auMAjeHsFHN5uYItvBX9aOcHdfr9Rg2zy_7g1vX-pRyJ2-CC5LRgGR65-QguXfy9m74GyVb_C4
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VgkQ58K5YKOADXEAWeW6cA0IVULXa7YpDQb0FezyWkJbsdpMFbX8UvxFPHrsFid564BglcR7-PDO2Z74P4IX3kBRFlEvtp8syIWdk7lDL1DhCZZXNmtqqL-NsMlGnp_mnLfjV18JwWmVvExtDbWfIa-RvQibKSn10Hb2bn0lWjeLd1V5Co4XFiFY__ZStenv0wffvyyg6-Hjy_lB2qgISve2tJYYalclckqMmTIcaPaptnmAQuSDz84-hRZ0YMrnl9UFy2oQYxAlTzykTUOzbvQbXk1gNeUSNMrm2_GGsVC8Ry3FJv4valuqFTZJnKgP_CHn-px_cBLd_7cc2bu7gzv_2g-7C7S6gFvvtCLgHW1Teh1sXaBb90fGam7Z6AG5fWGYL7oS-9HS6EouZWVa1mG8qT8WsFN7ltwkT9UqcLXWbVtUgWejSCq6ZRhLIETYLbZAVXbbbd__Yh_D5Sj57F7bLWUmPQCShReYVUrFj2XTKNbkUwyG5xISp0QMI-r4vsKNi5xedFhsSaYZL4eFSMFyK8wG8Wt8yb3lILrt4r4dI0ZmkqtjgYwCve5BdOP2vxh5f3thzuHl4cjwuxkeT0RPYiRqE8yLVHmzXiyU9hRv4o_5WLZ41Y0XA16vG3m9K8FPG
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZ4CcGBN2I8c-AEimi7dkuPEzCBGBPiJW5V4iQS0ujG2iGNX0_SxzYQICGObdM0st3Yju3PAIdGQyrPUyHlxl2mvtKChho5DYRWyCST9ay26rFVb7fZ01N4U_Q5Tcps9zIkmdc0WJSmOD3pSX0yUfjmZimTAXVYWKPv0zDrmzs2p-v27nG0FbtVxsqerdZQKMOa303xWTGNrc0vAdJM7zSX_73iFVgqTE7SyGVkFaZUvAaLE0CE5up6hN6arINuEGnxdItWWLzTGZJ-VwySlPTGtZmkGxOjFPOUgnRIXgc8TzzKeE14LImtKkZF0NqgthWFkqTIB3sxn92Ah-b5_ekFLfoxUDRaK6XocmSirv0QucKgxtHsBzL00fG0UzeeW00i94USobQnq0pz4aJT9S1oHxOOqm7CTNyN1RYQ35VokXdYVdvG4irkSgfo1pT2hRsIXgGnZEaEBVi5XWgnGsMsW4JGhqCRJWj0XoGj0Su9HKnjt8G7JYej4qdNItdisQXGgfMqcFxydOLxT5Nt_2n0AczfnDWj1mX7agcWvEwi7KHOLsyk_YHagzl8S5-T_n4myh9oJPaq
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+distributionally+robust+perspective+on+uncertainty+quantification+and+chance+constrained+programming&rft.jtitle=Mathematical+programming&rft.au=Hanasusanto%2C+Grani+A.&rft.au=Roitch%2C+Vladimir&rft.au=Kuhn%2C+Daniel&rft.au=Wiesemann%2C+Wolfram&rft.date=2015-06-01&rft.issn=0025-5610&rft.eissn=1436-4646&rft.volume=151&rft.issue=1&rft.spage=35&rft.epage=62&rft_id=info:doi/10.1007%2Fs10107-015-0896-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10107_015_0896_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-5610&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-5610&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-5610&client=summon