Effect of Testosterone Treatment on Bone Microarchitecture and Bone Mineral Density in Men: A 2-Year RCT
Abstract Context Testosterone treatment increases bone mineral density (BMD) in hypogonadal men. Effects on bone microarchitecture, a determinant of fracture risk, are unknown. Objective We aimed to determine the effect of testosterone treatment on bone microarchitecture using high resolution–periph...
Gespeichert in:
| Veröffentlicht in: | The journal of clinical endocrinology and metabolism Jg. 106; H. 8; S. e3143 - e3158 |
|---|---|
| Hauptverfasser: | , , , , , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
US
Oxford University Press
01.08.2021
|
| Schlagworte: | |
| ISSN: | 0021-972X, 1945-7197, 1945-7197 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Abstract
Context
Testosterone treatment increases bone mineral density (BMD) in hypogonadal men. Effects on bone microarchitecture, a determinant of fracture risk, are unknown.
Objective
We aimed to determine the effect of testosterone treatment on bone microarchitecture using high resolution–peripheral quantitative computed tomography (HR-pQCT).
Methods
Men ≥ 50 years of age were recruited from 6 Australian centers and were randomized to receive injectable testosterone undecanoate or placebo over 2 years on the background of a community-based lifestyle program. The primary endpoint was cortical volumetric BMD (vBMD) at the distal tibia, measured using HR-pQCT in 177 men (1 center). Secondary endpoints included other HR-pQCT parameters and bone remodeling markers. Areal BMD (aBMD) was measured by dual-energy x-ray absorptiometry (DXA) in 601 men (5 centers). Using a linear mixed model for repeated measures, the mean adjusted differences (95% CI) at 12 and 24 months between groups are reported as treatment effect.
Results
Over 24 months, testosterone treatment, versus placebo, increased tibial cortical vBMD, 9.33 mg hydroxyapatite (HA)/cm3) (3.96, 14.71), P < 0.001 or 3.1% (1.2, 5.0); radial cortical vBMD, 8.96 mg HA/cm3 (3.30, 14.62), P = 0.005 or 2.9% (1.0, 4.9); total tibial vBMD, 4.16 mg HA/cm3 (2.14, 6.19), P < 0.001 or 1.3% (0.6, 1.9); and total radial vBMD, 4.42 mg HA/cm3 (1.67, 7.16), P = 0.002 or 1.8% (0.4, 2.0). Testosterone also significantly increased cortical area and thickness at both sites. Effects on trabecular architecture were minor. Testosterone reduced bone remodeling markers CTX, −48.1 ng/L [−81.1, −15.1], P < 0.001 and P1NP, −6.8 μg/L[−10.9, −2.7], P < 0.001. Testosterone significantly increased aBMD at the lumbar spine, 0.04 g/cm2 (0.03, 0.05), P < 0.001 and the total hip, 0.01 g/cm2 (0.01, 0.02), P < 0.001.
Conclusion
In men ≥ 50 years of age, testosterone treatment for 2 years increased volumetric bone density, predominantly via effects on cortical bone. Implications for fracture risk reduction require further study. |
|---|---|
| AbstractList | Testosterone treatment increases bone mineral density (BMD) in hypogonadal men. Effects on bone microarchitecture, a determinant of fracture risk, are unknown.CONTEXTTestosterone treatment increases bone mineral density (BMD) in hypogonadal men. Effects on bone microarchitecture, a determinant of fracture risk, are unknown.We aimed to determine the effect of testosterone treatment on bone microarchitecture using high resolution-peripheral quantitative computed tomography (HR-pQCT).OBJECTIVEWe aimed to determine the effect of testosterone treatment on bone microarchitecture using high resolution-peripheral quantitative computed tomography (HR-pQCT).Men ≥ 50 years of age were recruited from 6 Australian centers and were randomized to receive injectable testosterone undecanoate or placebo over 2 years on the background of a community-based lifestyle program. The primary endpoint was cortical volumetric BMD (vBMD) at the distal tibia, measured using HR-pQCT in 177 men (1 center). Secondary endpoints included other HR-pQCT parameters and bone remodeling markers. Areal BMD (aBMD) was measured by dual-energy x-ray absorptiometry (DXA) in 601 men (5 centers). Using a linear mixed model for repeated measures, the mean adjusted differences (95% CI) at 12 and 24 months between groups are reported as treatment effect.METHODSMen ≥ 50 years of age were recruited from 6 Australian centers and were randomized to receive injectable testosterone undecanoate or placebo over 2 years on the background of a community-based lifestyle program. The primary endpoint was cortical volumetric BMD (vBMD) at the distal tibia, measured using HR-pQCT in 177 men (1 center). Secondary endpoints included other HR-pQCT parameters and bone remodeling markers. Areal BMD (aBMD) was measured by dual-energy x-ray absorptiometry (DXA) in 601 men (5 centers). Using a linear mixed model for repeated measures, the mean adjusted differences (95% CI) at 12 and 24 months between groups are reported as treatment effect.Over 24 months, testosterone treatment, versus placebo, increased tibial cortical vBMD, 9.33 mg hydroxyapatite (HA)/cm3) (3.96, 14.71), P < 0.001 or 3.1% (1.2, 5.0); radial cortical vBMD, 8.96 mg HA/cm3 (3.30, 14.62), P = 0.005 or 2.9% (1.0, 4.9); total tibial vBMD, 4.16 mg HA/cm3 (2.14, 6.19), P < 0.001 or 1.3% (0.6, 1.9); and total radial vBMD, 4.42 mg HA/cm3 (1.67, 7.16), P = 0.002 or 1.8% (0.4, 2.0). Testosterone also significantly increased cortical area and thickness at both sites. Effects on trabecular architecture were minor. Testosterone reduced bone remodeling markers CTX, -48.1 ng/L [-81.1, -15.1], P < 0.001 and P1NP, -6.8 μg/L[-10.9, -2.7], P < 0.001. Testosterone significantly increased aBMD at the lumbar spine, 0.04 g/cm2 (0.03, 0.05), P < 0.001 and the total hip, 0.01 g/cm2 (0.01, 0.02), P < 0.001.RESULTSOver 24 months, testosterone treatment, versus placebo, increased tibial cortical vBMD, 9.33 mg hydroxyapatite (HA)/cm3) (3.96, 14.71), P < 0.001 or 3.1% (1.2, 5.0); radial cortical vBMD, 8.96 mg HA/cm3 (3.30, 14.62), P = 0.005 or 2.9% (1.0, 4.9); total tibial vBMD, 4.16 mg HA/cm3 (2.14, 6.19), P < 0.001 or 1.3% (0.6, 1.9); and total radial vBMD, 4.42 mg HA/cm3 (1.67, 7.16), P = 0.002 or 1.8% (0.4, 2.0). Testosterone also significantly increased cortical area and thickness at both sites. Effects on trabecular architecture were minor. Testosterone reduced bone remodeling markers CTX, -48.1 ng/L [-81.1, -15.1], P < 0.001 and P1NP, -6.8 μg/L[-10.9, -2.7], P < 0.001. Testosterone significantly increased aBMD at the lumbar spine, 0.04 g/cm2 (0.03, 0.05), P < 0.001 and the total hip, 0.01 g/cm2 (0.01, 0.02), P < 0.001.In men ≥ 50 years of age, testosterone treatment for 2 years increased volumetric bone density, predominantly via effects on cortical bone. Implications for fracture risk reduction require further study.CONCLUSIONIn men ≥ 50 years of age, testosterone treatment for 2 years increased volumetric bone density, predominantly via effects on cortical bone. Implications for fracture risk reduction require further study. Context: Testosterone treatment increases bone mineral density (BMD) in hypogonadal men. Effects on bone microarchitecture, a determinant of fracture risk, are unknown. Objective: We aimed to determine the effect of testosterone treatment on bone microarchitecture using high resolution-peripheral quantitative computed tomography (HR-pQCT). Methods: Men [greater than or equal to] 50 years of age were recruited from 6 Australian centers and were randomized to receive injectable testosterone undecanoate or placebo over 2 years on the background of a community-based lifestyle program. The primary endpoint was cortical volumetric BMD (vBMD) at the distal tibia, measured using HR-pQCT in 177 men (1 center). Secondary endpoints included other HR-pQCT parameters and bone remodeling markers. Areal BMD (aBMD) was measured by dual-energy x-ray absorptiometry (DXA) in 601 men (5 centers). Using a linear mixed model for repeated measures, the mean adjusted differences (95% CI) at 12 and 24 months between groups are reported as treatment effect. Results: Over 24 months, testosterone treatment, versus placebo, increased tibial cortical vBMD, 9.33 mg hydroxyapatite (HA)/[cm.sup.3]) (3.96, 14.71), P < 0.001 or 3.1% (1.2, 5.0); radial cortical vBMD, 8.96 mg HA/[cm.sup.3] (3.30, 14.62), P = 0.005 or 2.9% (1.0, 4.9); total tibial vBMD, 4.16 mg HA/[cm.sup.3] (2.14, 6.19), P < 0.001 or 1.3% (0.6, 1.9); and total radial vBMD, 4.42 mg HA/[cm.sup.3] (1.67, 7.16), P = 0.002 or 1.8% (0.4, 2.0). Testosterone also significantly increased cortical area and thickness at both sites. Effects on trabecular architecture were minor. Testosterone reduced bone remodeling markers CTX, -48.1 ng/L [-81.1, -15.1], P < 0.001 and P1NP, -6.8 [micro]g/L[-10.9, -2.7], P < 0.001. Testosterone significantly increased aBMD at the lumbar spine, 0.04 g/[cm.sup.2] (0.03, 0.05), P < 0.001 and the total hip, 0.01 g/[cm.sup.2] (0.01, 0.02), P < 0.001. Conclusion: In men [greater than or equal to] 50 years of age, testosterone treatment for 2 years increased volumetric bone density, predominantly via effects on cortical bone. Implications for fracture risk reduction require further study. Key Words: testosterone, bone, microarchitecture, T4DM Context Testosterone treatment increases bone mineral density (BMD) in hypogonadal men. Effects on bone microarchitecture, a determinant of fracture risk, are unknown. Objective We aimed to determine the effect of testosterone treatment on bone microarchitecture using high resolution–peripheral quantitative computed tomography (HR-pQCT). Methods Men ≥ 50 years of age were recruited from 6 Australian centers and were randomized to receive injectable testosterone undecanoate or placebo over 2 years on the background of a community-based lifestyle program. The primary endpoint was cortical volumetric BMD (vBMD) at the distal tibia, measured using HR-pQCT in 177 men (1 center). Secondary endpoints included other HR-pQCT parameters and bone remodeling markers. Areal BMD (aBMD) was measured by dual-energy x-ray absorptiometry (DXA) in 601 men (5 centers). Using a linear mixed model for repeated measures, the mean adjusted differences (95% CI) at 12 and 24 months between groups are reported as treatment effect. Results Over 24 months, testosterone treatment, versus placebo, increased tibial cortical vBMD, 9.33 mg hydroxyapatite (HA)/cm3) (3.96, 14.71), P < 0.001 or 3.1% (1.2, 5.0); radial cortical vBMD, 8.96 mg HA/cm3 (3.30, 14.62), P = 0.005 or 2.9% (1.0, 4.9); total tibial vBMD, 4.16 mg HA/cm3 (2.14, 6.19), P < 0.001 or 1.3% (0.6, 1.9); and total radial vBMD, 4.42 mg HA/cm3 (1.67, 7.16), P = 0.002 or 1.8% (0.4, 2.0). Testosterone also significantly increased cortical area and thickness at both sites. Effects on trabecular architecture were minor. Testosterone reduced bone remodeling markers CTX, −48.1 ng/L [−81.1, −15.1], P < 0.001 and P1NP, −6.8 μg/L[−10.9, −2.7], P < 0.001. Testosterone significantly increased aBMD at the lumbar spine, 0.04 g/cm2 (0.03, 0.05), P < 0.001 and the total hip, 0.01 g/cm2 (0.01, 0.02), P < 0.001. Conclusion In men ≥ 50 years of age, testosterone treatment for 2 years increased volumetric bone density, predominantly via effects on cortical bone. Implications for fracture risk reduction require further study. Abstract Context Testosterone treatment increases bone mineral density (BMD) in hypogonadal men. Effects on bone microarchitecture, a determinant of fracture risk, are unknown. Objective We aimed to determine the effect of testosterone treatment on bone microarchitecture using high resolution–peripheral quantitative computed tomography (HR-pQCT). Methods Men ≥ 50 years of age were recruited from 6 Australian centers and were randomized to receive injectable testosterone undecanoate or placebo over 2 years on the background of a community-based lifestyle program. The primary endpoint was cortical volumetric BMD (vBMD) at the distal tibia, measured using HR-pQCT in 177 men (1 center). Secondary endpoints included other HR-pQCT parameters and bone remodeling markers. Areal BMD (aBMD) was measured by dual-energy x-ray absorptiometry (DXA) in 601 men (5 centers). Using a linear mixed model for repeated measures, the mean adjusted differences (95% CI) at 12 and 24 months between groups are reported as treatment effect. Results Over 24 months, testosterone treatment, versus placebo, increased tibial cortical vBMD, 9.33 mg hydroxyapatite (HA)/cm3) (3.96, 14.71), P < 0.001 or 3.1% (1.2, 5.0); radial cortical vBMD, 8.96 mg HA/cm3 (3.30, 14.62), P = 0.005 or 2.9% (1.0, 4.9); total tibial vBMD, 4.16 mg HA/cm3 (2.14, 6.19), P < 0.001 or 1.3% (0.6, 1.9); and total radial vBMD, 4.42 mg HA/cm3 (1.67, 7.16), P = 0.002 or 1.8% (0.4, 2.0). Testosterone also significantly increased cortical area and thickness at both sites. Effects on trabecular architecture were minor. Testosterone reduced bone remodeling markers CTX, −48.1 ng/L [−81.1, −15.1], P < 0.001 and P1NP, −6.8 μg/L[−10.9, −2.7], P < 0.001. Testosterone significantly increased aBMD at the lumbar spine, 0.04 g/cm2 (0.03, 0.05), P < 0.001 and the total hip, 0.01 g/cm2 (0.01, 0.02), P < 0.001. Conclusion In men ≥ 50 years of age, testosterone treatment for 2 years increased volumetric bone density, predominantly via effects on cortical bone. Implications for fracture risk reduction require further study. |
| Audience | Academic |
| Author | Zajac, Jeffrey D Handelsman, David J Jesudason, David Hoermann, Rudolf Wittert, Gary A Yeap, Bu B Ng Tang Fui, Mark Inder, Warrick J Ghasem-Zadeh, Ali Stuckey, Bronwyn G A Robledo, Kristy P Bracken, Karen Grossmann, Mathis |
| Author_xml | – sequence: 1 givenname: Mark surname: Ng Tang Fui fullname: Ng Tang Fui, Mark organization: Department of Medicine (Austin Health), The University of Melbourne, Victoria, 3084, Australia – sequence: 2 givenname: Rudolf surname: Hoermann fullname: Hoermann, Rudolf organization: Department of Medicine (Austin Health), The University of Melbourne, Victoria, 3084, Australia – sequence: 3 givenname: Karen surname: Bracken fullname: Bracken, Karen organization: NHMRC Clinical Trials Centre, University of Sydney, New South Wales, 2050, Australia – sequence: 4 givenname: David J orcidid: 0000-0002-4200-7476 surname: Handelsman fullname: Handelsman, David J organization: ANZAC Research Institute, University of Sydney and Department of Andrology, Concord Hospital, Sydney New South Wales, 2139, Australia – sequence: 5 givenname: Warrick J surname: Inder fullname: Inder, Warrick J organization: Princess Alexandra Hospital and the University of Queensland, Queensland, 4102, Australia – sequence: 6 givenname: Bronwyn G A surname: Stuckey fullname: Stuckey, Bronwyn G A organization: Keogh Institute for Medical Research, Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital and University of Western Australia, Western Australia, 6009, Australia – sequence: 7 givenname: Bu B surname: Yeap fullname: Yeap, Bu B organization: Medical School, University of Western Australia and Department of Endocrinology and Diabetes, Freemantle & Fiona Stanley Hospital, Perth, Western Australia, 6150, Australia – sequence: 8 givenname: Ali surname: Ghasem-Zadeh fullname: Ghasem-Zadeh, Ali organization: Department of Medicine (Austin Health), The University of Melbourne, Victoria, 3084, Australia – sequence: 9 givenname: Kristy P surname: Robledo fullname: Robledo, Kristy P organization: NHMRC Clinical Trials Centre, University of Sydney, New South Wales, 2050, Australia – sequence: 10 givenname: David surname: Jesudason fullname: Jesudason, David organization: Freemasons Foundation Centre for Men’s Health, University of Adelaide, Adelaide, South Australia, Australia, and The Queen Elizabeth Hospital, South Australia, 5000, Australia – sequence: 11 givenname: Jeffrey D surname: Zajac fullname: Zajac, Jeffrey D organization: Department of Medicine (Austin Health), The University of Melbourne, Victoria, 3084, Australia – sequence: 12 givenname: Gary A orcidid: 0000-0001-6818-6065 surname: Wittert fullname: Wittert, Gary A organization: Freemasons Foundation Centre for Men’s Health, University of Adelaide, Adelaide, South Australia, Australia, and The Queen Elizabeth Hospital, South Australia, 5000, Australia – sequence: 13 givenname: Mathis orcidid: 0000-0001-8261-3457 surname: Grossmann fullname: Grossmann, Mathis email: mathisg@unimelb.edu.au organization: Department of Medicine (Austin Health), The University of Melbourne, Victoria, 3084, Australia |
| BookMark | eNqFkcFrFDEUxoNUcFu9eg540cO0L5nMZOJtXasVWgRZQU8hk3lpU2aSNZM59L83y1YKpSo5BN77fe9L3ndMjkIMSMhrBqeMMzizow84nQ3XpmdCPSMrpkRTSabkEVkBcFYpyX-8IMfzfAvAhGjqFbk5dw5tptHRLc45zhlTGUu3CU2eMJROoB_2lStvUzTJ3vhcBEtCasLwpxUwmZF-xDD7fEd9oFcY3tM15dVPNIl-22xfkufOjDO-ur9PyPdP59vNRXX59fOXzfqysoKrXFmQEpxtuMSuHXpRi95ZxRzUjEkHQ9f2A0NmemN7ZVTbK65gUNjZbsBWuPqEvD3M3aX4aylf0pOfLY6jCRiXWfMGoJa8kV1B3zxCb-OSQnmdrpkEkC2T6l8UV03LaoBGPFDXZkTtg4s5Gbu31msJvDiqri7U6RNUOQNO3pZVOl_qTwnK7uc5odO75CeT7jQDvU9dH1LX96kXgXgksD6b7GMoTn78u-zdQRaX3f8sfgO5rMFp |
| CitedBy_id | crossref_primary_10_1111_cen_15153 crossref_primary_10_1007_s00120_024_02455_8 crossref_primary_10_1093_ejendo_lvad015 crossref_primary_10_1007_s11154_022_09746_5 crossref_primary_10_1080_13685538_2022_2134338 crossref_primary_10_1210_clinem_dgae703 crossref_primary_10_1007_s00223_024_01207_2 crossref_primary_10_1016_j_jcte_2024_100365 crossref_primary_10_1016_j_metabol_2023_155638 crossref_primary_10_3390_ijms231911952 crossref_primary_10_1016_j_beem_2021_101598 crossref_primary_10_1016_j_maturitas_2023_107854 crossref_primary_10_1080_17512433_2024_2366505 crossref_primary_10_1007_s11154_022_09728_7 crossref_primary_10_1097_MED_0000000000000884 crossref_primary_10_1210_jendso_bvaf074 crossref_primary_10_1097_MED_0000000000000886 crossref_primary_10_1007_s00108_024_01824_x crossref_primary_10_3389_fphys_2022_838526 crossref_primary_10_5435_JAAOSGlobal_D_24_00248 crossref_primary_10_1080_13685538_2023_2223712 crossref_primary_10_1210_clinem_dgaf191 crossref_primary_10_1080_13685538_2023_2223699 crossref_primary_10_3389_fendo_2023_1168687 crossref_primary_10_1007_s40618_021_01702_5 crossref_primary_10_1056_NEJMe2313787 crossref_primary_10_1007_s11154_022_09738_5 crossref_primary_10_1016_j_beem_2022_101624 crossref_primary_10_1016_j_tips_2025_01_007 crossref_primary_10_1016_j_cger_2025_01_002 crossref_primary_10_3390_biomedicines12081830 crossref_primary_10_1016_j_eprac_2022_07_011 crossref_primary_10_1093_ejendo_lvae071 crossref_primary_10_1056_NEJMra2404637 crossref_primary_10_3390_biom15010079 crossref_primary_10_1007_s40618_022_01859_7 crossref_primary_10_1210_clinem_dgad180 crossref_primary_10_1007_s40266_025_01209_1 crossref_primary_10_1080_13685538_2023_2296460 crossref_primary_10_3389_fendo_2022_939897 crossref_primary_10_5534_wjmh_240266 crossref_primary_10_1210_clinem_dgaf066 crossref_primary_10_1038_s41584_024_01094_9 crossref_primary_10_1093_ejendo_lvad100 |
| Cites_doi | 10.1001/jamainternmed.2016.9539 10.1210/jcem-69-4-776 10.1016/j.bone.2017.05.010 10.1007/s00198-009-1062-3 10.1056/NEJMcp0707217 10.1210/clinem/dgaa318 10.1172/JCI84137 10.1210/jc.2003-031110 10.1016/j.bone.2020.115778 10.1056/NEJMoa1000485 10.1002/jbmr.319 10.1016/0021-9290(88)90186-8 10.1359/jbmr.080518 10.1016/S0140-6736(10)60320-0 10.1002/jbmr.3433 10.1016/j.bone.2018.05.005 10.1111/dom.13601 10.1359/JBMR.050606 10.1002/jbmr.3451 10.1359/jbmr.1997.12.9.1463 10.1210/jc.2012-2246 10.1210/jc.2006-0173 10.1210/jc.2013-3665 10.1002/jbmr.81 10.1056/NEJMoa1206168 10.1016/S2213-8587(20)30367-3 10.1210/jc.2004-1184 10.1016/S2213-8587(18)30308-5 10.1007/s00198-016-3621-8 10.1002/jbmr.157 10.1210/jc.2016-1160 10.18637/jss.v087.i09 10.18637/jss.v056.i06 10.1002/jbmr.1784 10.1210/jc.2002-021691 10.1002/jbmr.3746 10.1210/jc.2013-3233 10.1007/s00198-020-05438-5 10.1016/j.cca.2009.09.003 10.1210/jc.2010-0902 10.1210/jc.2006-0036 10.18637/jss.v067.i01 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2021. Published by Oxford University Press on behalf of the Endocrine Society. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2021 COPYRIGHT 2021 Oxford University Press The Author(s) 2021. Published by Oxford University Press on behalf of the Endocrine Society. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com The Author(s) 2021. Published by Oxford University Press on behalf of the Endocrine Society. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. |
| Copyright_xml | – notice: The Author(s) 2021. Published by Oxford University Press on behalf of the Endocrine Society. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2021 – notice: COPYRIGHT 2021 Oxford University Press – notice: The Author(s) 2021. Published by Oxford University Press on behalf of the Endocrine Society. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com – notice: The Author(s) 2021. Published by Oxford University Press on behalf of the Endocrine Society. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. |
| DBID | AAYXX CITATION 7QP 7T5 7TM H94 K9. 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA BENPR CCPQU FYUFA GHDGH M0S M1P PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 |
| DOI | 10.1210/clinem/dgab149 |
| DatabaseName | CrossRef Calcium & Calcified Tissue Abstracts Immunology Abstracts Nucleic Acids Abstracts AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central ProQuest One Community College Health Research Premium Collection Health Research Premium Collection (Alumni) Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic |
| DatabaseTitle | CrossRef AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Immunology Abstracts Calcium & Calcified Tissue Abstracts Nucleic Acids Abstracts ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic ProQuest One Academic Middle East (New) AIDS and Cancer Research Abstracts |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1945-7197 |
| EndPage | e3158 |
| ExternalDocumentID | A702372983 10_1210_clinem_dgab149 10.1210/clinem/dgab149 |
| GeographicLocations | Australia Germany |
| GeographicLocations_xml | – name: Germany – name: Australia |
| GroupedDBID | --- -~X .55 .GJ .XZ 08P 0R~ 18M 1TH 29K 2WC 34G 354 39C 3O- 3V. 4.4 48X 53G 5GY 5RS 5YH 7X7 88E 8F7 8FI 8FJ AABZA AACZT AAIMJ AAJQQ AAKAS AAPGJ AAPQZ AAPXW AAQQT AARHZ AAUAY AAUQX AAVAP AAWDT AAWTL AAYJJ ABBLC ABDFA ABDPE ABEJV ABGNP ABJNI ABLJU ABMNT ABNHQ ABOCM ABPMR ABPPZ ABPQP ABPTD ABQNK ABUWG ABVGC ABWST ABXVV ACFRR ACGFO ACGFS ACPRK ACUTJ ACYHN ACZBC ADBBV ADGKP ADGZP ADHKW ADQBN ADRTK ADVEK ADZCM AELWJ AEMDU AENEX AENZO AERZD AETBJ AEWNT AFCHL AFFNX AFFQV AFFZL AFGWE AFKRA AFOFC AFRAH AFXAL AFYAG AGINJ AGKRT AGMDO AGQXC AGUTN AHMBA AHMMS AI. AJEEA ALMA_UNASSIGNED_HOLDINGS APIBT APJGH AQDSO AQKUS ARIXL ASPBG ATGXG AVWKF AZFZN BAWUL BAYMD BCRHZ BENPR BEYMZ BPHCQ BSWAC BTRTY BVXVI C45 CCPQU CDBKE CS3 D-I DAKXR DIK E3Z EBS EIHJH EJD EMOBN ENERS F5P FECEO FEDTE FHSFR FLUFQ FOEOM FOTVD FQBLK FYUFA GAUVT GJXCC GX1 H13 HMCUK HVGLF HZ~ H~9 IAO IHR INH ITC J5H KBUDW KOP KQ8 KSI KSN L7B M1P M5~ MBLQV MHKGH MJL N4W N9A NLBLG NOMLY NOYVH NVLIB O9- OAUYM OBH OCB ODMLO OFXIZ OGEVE OHH OJZSN OK1 OPAEJ OVD OVIDX P2P P6G PQQKQ PROAC PSQYO REU ROX ROZ TEORI TJX TLC TMA TR2 TWZ UKHRP VH1 VVN W8F WHG WOQ X52 X7M YBU YFH YHG YOC YSK ZGI ZXP ZY1 ~02 ~H1 AAYXX ABXZS ADNBA AEHZK AEMQT AEOTA AFFHD AHGBF AJBYB ALXQX CITATION NU- PHGZM PHGZT PJZUB PPXIY 7QP 7T5 7TM H94 K9. 7XB 8FK PKEHL PQEST PQUKI PRINS 7X8 |
| ID | FETCH-LOGICAL-c429t-c0770fc527e86db434bfc91f03117f0d86bd1e1abacb9a96b9290d9e8c8de64f3 |
| IEDL.DBID | 7X7 |
| ISICitedReferencesCount | 40 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000685227300049&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0021-972X 1945-7197 |
| IngestDate | Sun Nov 09 12:00:09 EST 2025 Tue Oct 07 07:29:02 EDT 2025 Tue Oct 07 06:52:14 EDT 2025 Tue Nov 11 10:15:12 EST 2025 Tue Nov 04 17:32:40 EST 2025 Tue Nov 18 22:36:10 EST 2025 Sat Nov 29 02:29:28 EST 2025 Fri Feb 07 10:35:44 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Keywords | bone testosterone microarchitecture T4DM |
| Language | English |
| License | This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model) https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c429t-c0770fc527e86db434bfc91f03117f0d86bd1e1abacb9a96b9290d9e8c8de64f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Undefined-3 |
| ORCID | 0000-0001-6818-6065 0000-0002-4200-7476 0000-0001-8261-3457 |
| PQID | 3170076179 |
| PQPubID | 2046206 |
| ParticipantIDs | proquest_miscellaneous_2500372578 proquest_journals_3170076179 proquest_journals_2956130054 gale_infotracmisc_A702372983 gale_infotracacademiconefile_A702372983 crossref_primary_10_1210_clinem_dgab149 crossref_citationtrail_10_1210_clinem_dgab149 oup_primary_10_1210_clinem_dgab149 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-08-01 |
| PublicationDateYYYYMMDD | 2021-08-01 |
| PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | US |
| PublicationPlace_xml | – name: US – name: Washington |
| PublicationTitle | The journal of clinical endocrinology and metabolism |
| PublicationYear | 2021 |
| Publisher | Oxford University Press |
| Publisher_xml | – name: Oxford University Press |
| References | Bredella (2021122204330164000_OP-B39) 2012; 97 Bates (2021122204330164000_OP-B27) 2015; 67 Finkelstein (2021122204330164000_OP-B45) 2013; 369 Whittier (2021122204330164000_OP-B8) 2020 Burghardt (2021122204330164000_OP-B36) 2010; 25 Amory (2021122204330164000_OP-B6) 2004; 89 Hansen (2021122204330164000_OP-B37) 2013; 28 Schaffler (2021122204330164000_OP-B33) 1988; 21 Piot (2021122204330164000_OP-B13) 2019; 34 Fink (2021122204330164000_OP-B41) 2006; 91 Snyder (2021122204330164000_OP-B5) 1999; 84 Hamilton (2021122204330164000_OP-B12) 2010; 95 Szulc (2021122204330164000_OP-B17) 2011; 26 Basaria (2021122204330164000_OP-B40) 2010; 363 Snyder (2021122204330164000_OP-B7) 2017; 177 Seeman (2021122204330164000_OP-B35) 2010; 25 Benito (2021122204330164000_OP-B31) 2005; 20 Ebeling (2021122204330164000_OP-B1) 2008; 358 R Core team. (2021122204330164000_OP-B29) 2019 Finkelstein (2021122204330164000_OP-B42) 2016; 126 Finkelstein (2021122204330164000_OP-B43) 2020; 105 Wittert (2021122204330164000_OP-B10) 2019; 21 Wittert (2021122204330164000_OP-B11) 2021; 9 Langsetmo (2021122204330164000_OP-B15) 2018; 33 Harwood (2021122204330164000_OP-B19) 2009; 409 Fan (2021122204330164000_OP-B23) 2010; 21 Al Mukaddam (2021122204330164000_OP-B32) 2014; 99 Tsai (2021122204330164000_OP-B38) 2016; 101 Agarwal (2021122204330164000_OP-B46) 2016; 27 Van Pottelbergh (2021122204330164000_OP-B3) 2003; 88 Szulc (2021122204330164000_OP-B34) 2018; 33 Samelson (2021122204330164000_OP-B9) 2019; 7 Fink (2021122204330164000_OP-B16) 2018; 113 Ohlsson (2021122204330164000_OP-B18) 2017; 102 Ghasem-Zadeh (2021122204330164000_OP-B22) 2021; 142 Finkelstein (2021122204330164000_OP-B30) 1989; 69 Jamshidian (2021122204330164000_OP-B26) 2014; 56 Bhasin (2021122204330164000_OP-B44) 2005; 90 Mellstrom (2021122204330164000_OP-B4) 2008; 23 Ghasem-Zadeh (2021122204330164000_OP-B20) 2017; 101 Katznelson (2021122204330164000_OP-B2) 1996; 81 Argoud (2021122204330164000_OP-B14) 2014; 99 Fox (2021122204330164000_OP-B28) 2018; 87 Zebaze (2021122204330164000_OP-B21) 2010; 375 Hui (2021122204330164000_OP-B24) 1997; 12 Tracz (2021122204330164000_OP-B25) 2006; 91 |
| References_xml | – volume: 84 start-page: 1966 issue: 6 year: 1999 ident: 2021122204330164000_OP-B5 article-title: Effect of testosterone treatment on bone mineral density in men over 65 years of age publication-title: J Clin Endocrinol Metab – volume: 177 start-page: 471 issue: 4 year: 2017 ident: 2021122204330164000_OP-B7 article-title: Effect of testosterone treatment on volumetric bone density and strength in older men with low testosterone: a controlled clinical trial publication-title: JAMA Intern Med doi: 10.1001/jamainternmed.2016.9539 – volume: 69 start-page: 776 issue: 4 year: 1989 ident: 2021122204330164000_OP-B30 article-title: Increases in bone density during treatment of men with idiopathic hypogonadotropic hypogonadism publication-title: J Clin Endocrinol Metab doi: 10.1210/jcem-69-4-776 – volume: 101 start-page: 206 year: 2017 ident: 2021122204330164000_OP-B20 article-title: Quantifying sex, race, and age specific differences in bone microstructure requires measurement of anatomically equivalent regions publication-title: Bone doi: 10.1016/j.bone.2017.05.010 – volume: 21 start-page: 1227 issue: 7 year: 2010 ident: 2021122204330164000_OP-B23 article-title: Does standardized BMD still remove differences between Hologic and GE-Lunar state-of-the-art DXA systems? publication-title: Osteoporos Int doi: 10.1007/s00198-009-1062-3 – volume: 358 start-page: 1474 issue: 14 year: 2008 ident: 2021122204330164000_OP-B1 article-title: Clinical practice. Osteoporosis in men publication-title: N Engl J Med doi: 10.1056/NEJMcp0707217 – volume: 105 start-page: 2779 issue: 8 year: 2020 ident: 2021122204330164000_OP-B43 article-title: Dose-response relationships between gonadal steroids and bone, body composition, and sexual function in aging men publication-title: J Clin Endocrinol Metab doi: 10.1210/clinem/dgaa318 – volume: 126 start-page: 1114 issue: 3 year: 2016 ident: 2021122204330164000_OP-B42 article-title: Gonadal steroid-dependent effects on bone turnover and bone mineral density in men publication-title: J Clin Invest doi: 10.1172/JCI84137 – volume: 89 start-page: 503 issue: 2 year: 2004 ident: 2021122204330164000_OP-B6 article-title: Exogenous testosterone or testosterone with finasteride increases bone mineral density in older men with low serum testosterone publication-title: J Clin Endocrinol Metab doi: 10.1210/jc.2003-031110 – volume: 142 start-page: 115778 year: 2021 ident: 2021122204330164000_OP-B22 article-title: Heterogeneity in microstructural deterioration following spinal cord injury publication-title: Bone doi: 10.1016/j.bone.2020.115778 – volume: 363 start-page: 109 issue: 2 year: 2010 ident: 2021122204330164000_OP-B40 article-title: Adverse events associated with testosterone administration publication-title: N Engl J Med doi: 10.1056/NEJMoa1000485 – volume: 26 start-page: 1358 issue: 6 year: 2011 ident: 2021122204330164000_OP-B17 article-title: Cross-sectional analysis of the association between fragility fractures and bone microarchitecture in older men: the STRAMBO study publication-title: J Bone Miner Res doi: 10.1002/jbmr.319 – volume: 21 start-page: 13 issue: 1 year: 1988 ident: 2021122204330164000_OP-B33 article-title: Stiffness of compact bone: effects of porosity and density publication-title: J Biomech doi: 10.1016/0021-9290(88)90186-8 – volume: 23 start-page: 1552 issue: 10 year: 2008 ident: 2021122204330164000_OP-B4 article-title: Older men with low serum estradiol and high serum SHBG have an increased risk of fractures publication-title: J Bone Miner Res doi: 10.1359/jbmr.080518 – volume: 102 start-page: 516 issue: 2 year: 2017 ident: 2021122204330164000_OP-B18 article-title: Cortical bone area predicts incident fractures independently of areal bone mineral density in older men publication-title: J Clin Endocrinol Metab – volume: 375 start-page: 1729 issue: 9727 year: 2010 ident: 2021122204330164000_OP-B21 article-title: Intracortical remodelling and porosity in the distal radius and post-mortem femurs of women: a cross-sectional study publication-title: Lancet doi: 10.1016/S0140-6736(10)60320-0 – volume: 33 start-page: 1302 issue: 7 year: 2018 ident: 2021122204330164000_OP-B15 article-title: Volumetric bone mineral density and failure load of distal limbs predict incident clinical fracture independent HR-pQCT BMD and failure load predicts incident clinical fracture of FRAX and clinical risk factors among older men publication-title: J Bone Miner Res doi: 10.1002/jbmr.3433 – volume: 113 start-page: 49 year: 2018 ident: 2021122204330164000_OP-B16 article-title: Association of High-resolution Peripheral Quantitative Computed Tomography (HR-pQCT) bone microarchitectural parameters with previous clinical fracture in older men: The Osteoporotic Fractures in Men (MrOS) study publication-title: Bone doi: 10.1016/j.bone.2018.05.005 – volume: 21 start-page: 772 issue: 4 year: 2019 ident: 2021122204330164000_OP-B10 article-title: Testosterone therapy to prevent type 2 diabetes mellitus in at-risk men (T4DM): Design and implementation of a double-blind randomized controlled trial publication-title: Diabetes Obes Metab doi: 10.1111/dom.13601 – volume: 20 start-page: 1785 issue: 10 year: 2005 ident: 2021122204330164000_OP-B31 article-title: Effect of testosterone replacement on trabecular architecture in hypogonadal men publication-title: J Bone Miner Res doi: 10.1359/JBMR.050606 – volume: 33 start-page: 1470 issue: 8 year: 2018 ident: 2021122204330164000_OP-B34 article-title: Prediction of fractures in men using bone microarchitectural parameters assessed by high-resolution peripheral quantitative computed tomography-the prospective STRAMBO study publication-title: J Bone Miner Res doi: 10.1002/jbmr.3451 – volume: 12 start-page: 1463 issue: 9 year: 1997 ident: 2021122204330164000_OP-B24 article-title: Universal standardization of bone density measurements: a method with optimal properties for calibration among several instruments publication-title: J Bone Miner Res doi: 10.1359/jbmr.1997.12.9.1463 – volume: 97 start-page: 4115 issue: 11 year: 2012 ident: 2021122204330164000_OP-B39 article-title: Determinants of bone microarchitecture and mechanical properties in obese men publication-title: J Clin Endocrinol Metab doi: 10.1210/jc.2012-2246 – volume: 91 start-page: 3908 issue: 10 year: 2006 ident: 2021122204330164000_OP-B41 article-title: Association of testosterone and estradiol deficiency with osteoporosis and rapid bone loss in older men publication-title: J Clin Endocrinol Metab doi: 10.1210/jc.2006-0173 – volume: 99 start-page: 1236 issue: 4 year: 2014 ident: 2021122204330164000_OP-B32 article-title: Effects of testosterone and growth hormone on the structural and mechanical properties of bone by micro-MRI in the distal tibia of men with hypopituitarism publication-title: J Clin Endocrinol Metab doi: 10.1210/jc.2013-3665 – volume: 25 start-page: 1886 issue: 8 year: 2010 ident: 2021122204330164000_OP-B35 article-title: Microarchitectural deterioration of cortical and trabecular bone: differing effects of denosumab and alendronate publication-title: J Bone Miner Res doi: 10.1002/jbmr.81 – volume: 369 start-page: 1011 issue: 11 year: 2013 ident: 2021122204330164000_OP-B45 article-title: Gonadal steroids and body composition, strength, and sexual function in men publication-title: N Engl J Med doi: 10.1056/NEJMoa1206168 – volume-title: R: A Language and Environment for Statistical Computing year: 2019 ident: 2021122204330164000_OP-B29 – volume: 9 start-page: 32 issue: 1 year: 2021 ident: 2021122204330164000_OP-B11 article-title: Testosterone treatment to prevent or revert type 2 diabetes in men enrolled in a lifestyle programme (T4DM): a randomised, double-blind, placebo-controlled, 2-year, phase 3b trial publication-title: Lancet Lancet Diabetes Endocrinol doi: 10.1016/S2213-8587(20)30367-3 – volume: 90 start-page: 678 issue: 2 year: 2005 ident: 2021122204330164000_OP-B44 article-title: Older men are as responsive as young men to the anabolic effects of graded doses of testosterone on the skeletal muscle publication-title: J Clin Endocrinol Metab doi: 10.1210/jc.2004-1184 – volume: 7 start-page: 34 issue: 1 year: 2019 ident: 2021122204330164000_OP-B9 article-title: Cortical and trabecular bone microarchitecture as an independent predictor of incident fracture risk in older women and men in the Bone Microarchitecture International Consortium (BoMIC): a prospective study publication-title: Lancet Diabetes Endocrinol doi: 10.1016/S2213-8587(18)30308-5 – volume: 27 start-page: 2955 issue: 10 year: 2016 ident: 2021122204330164000_OP-B46 article-title: In vivo assessment of bone structure and estimated bone strength by first- and second-generation HR-pQCT publication-title: Osteoporos Int doi: 10.1007/s00198-016-3621-8 – volume: 25 start-page: 2558 issue: 12 year: 2010 ident: 2021122204330164000_OP-B36 article-title: A longitudinal HR-pQCT study of alendronate treatment in postmenopausal women with low bone density: Relations among density, cortical and trabecular microarchitecture, biomechanics, and bone turnover publication-title: J Bone Miner Res doi: 10.1002/jbmr.157 – volume: 101 start-page: 2023 issue: 5 year: 2016 ident: 2021122204330164000_OP-B38 article-title: Effects of two years of teriparatide, denosumab, or both on bone microarchitecture and strength (DATA-HRpQCT study) publication-title: J Clin Endocrinol Metab doi: 10.1210/jc.2016-1160 – volume: 87 start-page: 1 issue: 9 year: 2018 ident: 2021122204330164000_OP-B28 article-title: Visualizing fit and lack of fit in complex regression models with predictor effect plots and partial residuals publication-title: J Statist Softw doi: 10.18637/jss.v087.i09 – volume: 56 start-page: 1 year: 2014 ident: 2021122204330164000_OP-B26 article-title: Missmech: An r package for testing homoscedasticity, multivariate normality, and missing completely at random (MCAR) publication-title: J Stat Softw doi: 10.18637/jss.v056.i06 – volume: 28 start-page: 736 issue: 4 year: 2013 ident: 2021122204330164000_OP-B37 article-title: Differing effects of PTH 1–34, PTH 1–84, and zoledronic acid on bone microarchitecture and estimated strength in postmenopausal women with osteoporosis: an 18-month open-labeled observational study using HR-pQCT publication-title: J Bone Miner Res doi: 10.1002/jbmr.1784 – volume: 88 start-page: 3075 issue: 7 year: 2003 ident: 2021122204330164000_OP-B3 article-title: Bioavailable estradiol and an aromatase gene polymorphism are determinants of bone mineral density changes in men over 70 years of age publication-title: J Clin Endocrinol Metab doi: 10.1210/jc.2002-021691 – volume: 34 start-page: 1562 issue: 9 year: 2019 ident: 2021122204330164000_OP-B13 article-title: Relationship between sex steroids and deterioration of bone microarchitecture in older men: the prospective STRAMBO study publication-title: J Bone Miner Res doi: 10.1002/jbmr.3746 – volume: 81 start-page: 4358 issue: 12 year: 1996 ident: 2021122204330164000_OP-B2 article-title: Increase in bone density and lean body mass during testosterone administration in men with acquired hypogonadism publication-title: J Clin Endocrinol Metab – volume: 99 start-page: 1400 issue: 4 year: 2014 ident: 2021122204330164000_OP-B14 article-title: Association between sex steroid levels and bone microarchitecture in men: the STRAMBO study publication-title: J Clin Endocrinol Metab doi: 10.1210/jc.2013-3233 – year: 2020 ident: 2021122204330164000_OP-B8 article-title: Guidelines for the assessment of bone density and microarchitecture in vivo using high-resolution peripheral quantitative computed tomography publication-title: Osteoporos Int doi: 10.1007/s00198-020-05438-5 – volume: 409 start-page: 78 issue: 1-2 year: 2009 ident: 2021122204330164000_OP-B19 article-title: Development and validation of a sensitive liquid chromatography-tandem mass spectrometry assay to simultaneously measure androgens and estrogens in serum without derivatization publication-title: Clin Chim Acta doi: 10.1016/j.cca.2009.09.003 – volume: 95 start-page: E456 issue: 12 year: 2010 ident: 2021122204330164000_OP-B12 article-title: Structural decay of bone microarchitecture in men with prostate cancer treated with androgen deprivation therapy publication-title: J Clin Endocrinol Metab doi: 10.1210/jc.2010-0902 – volume: 91 start-page: 2011 issue: 6 year: 2006 ident: 2021122204330164000_OP-B25 article-title: Testosterone use in men and its effects on bone health. A systematic review and meta-analysis of randomized placebo-controlled trials publication-title: J Clin Endocrinol Metab doi: 10.1210/jc.2006-0036 – volume: 67 start-page: 1 year: 2015 ident: 2021122204330164000_OP-B27 article-title: Fitting linear mixed-effects models using lme4 publication-title: J Stat Softw doi: 10.18637/jss.v067.i01 |
| SSID | ssj0014453 |
| Score | 2.5680919 |
| Snippet | Abstract
Context
Testosterone treatment increases bone mineral density (BMD) in hypogonadal men. Effects on bone microarchitecture, a determinant of fracture... Context: Testosterone treatment increases bone mineral density (BMD) in hypogonadal men. Effects on bone microarchitecture, a determinant of fracture risk, are... Context Testosterone treatment increases bone mineral density (BMD) in hypogonadal men. Effects on bone microarchitecture, a determinant of fracture risk, are... Testosterone treatment increases bone mineral density (BMD) in hypogonadal men. Effects on bone microarchitecture, a determinant of fracture risk, are... |
| SourceID | proquest gale crossref oup |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | e3143 |
| SubjectTerms | Analysis Bone density Bone mineral density Bone remodeling Bones Collagen Computed tomography Cortical bone Density Dual energy X-ray absorptiometry Fractures Hydroxyapatite Pharmaceutical industry Placebos Spine (lumbar) Testosterone Tibia Type 2 diabetes |
| Title | Effect of Testosterone Treatment on Bone Microarchitecture and Bone Mineral Density in Men: A 2-Year RCT |
| URI | https://www.proquest.com/docview/2956130054 https://www.proquest.com/docview/3170076179 https://www.proquest.com/docview/2500372578 |
| Volume | 106 |
| WOSCitedRecordID | wos000685227300049&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1945-7197 dateEnd: 20211231 omitProxy: false ssIdentifier: ssj0014453 issn: 0021-972X databaseCode: 7X7 dateStart: 20170101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1945-7197 dateEnd: 20211231 omitProxy: false ssIdentifier: ssj0014453 issn: 0021-972X databaseCode: BENPR dateStart: 20170101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED9tME28jDFA69YhgybtySKJ0zjey1S-tJdWCBWpe4psx4ZKUwK0TNp_v7vEKVTa4GEvechZFyv34Tv7_DuAzyYfYEodO-6NEjwVVnFtVcyllxiPCJG5gW6aTcjxOJ9O1XnYcJuHssrOJzaOuqwt7ZEfCgKSw5xbqm83t5y6RtHpamih8RLWqW026bmcLhMuzBUCCiWVIchkGkAb6dYK3Tt0yP1Km5hwNB8tSsE1r9x36xx0s-qcbf7vfN_CmxBvsmGrIFvwwlXv4PUonKhvw3ULX8xqzybUZIZwE-rKsUlXgM7qih3RmxGV7j0-d2C6KjtSg13NTqgafvGbzSo2ctVXNmQJ_4GmxC6OJztweXY6Of7OQ_cFbnGNWnAbSRl5O0iky7PSpCI1HqXo0QvE0kdlnpkydrE22hqlVWYw0IpK5XKbly5LvdiFtQrn8B6YSl0ipJBKap9G2uFwGVtn0CEIr2PTA979_sIGaHLqkPGzoBQFxVW04iqCuHrwZTn-pgXl-PdIkmZB1oocrQ6XDnBehHtVDCXGLJhf5KIH_ZWRaGV2hXyA-vDs1_qdLhTBFcyLRDU5GobGfyU_6EkP9pdk-jpVv1WuvkcWA4IJIuf64WkWH2GDLK8tUOzD2uLu3n2CV_bXYja_22uMo3nme7B-dDo-v_gD-x8aWA |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VgoALb8TCAgaBOFkkcTaOkRBaWqpW7a4QCtJyCrZjt5VQUrpbUP8Uv5GZxFm6Eo9TD1xja2InX-YRz3wD8MzkIwypY8e9UYKnwiqurYq59BL9ESEyN9Jtswk5neazmXq_Bj_6WhhKq-x1Yquoq8bSP_KXgojkMOaW6s3RV05do-h0tW-h0cFi151-x5Bt_npnE9_v8yTZeldsbPPQVYBb1L0LbiMpI29HiXR5VplUpMbj6jyiO5Y-qvLMVLGLtdHWKK0ygw5EVCmX27xyWeoFyr0AF1GWpGBPzpYBHsYmgfWS0h5kMgskkVQlQ3WODnezr01MvJ1njGAwBSv1db1BaK3c1vX_7fncgGvBn2bj7gO4CWuuvgWXJyFj4DYcdPTMrPGsoCY6xAvR1I4VfYI9a2r2lq5MKDXx7LkK03XVD7Xc3GyTsv0Xp-ywZhNXv2JjlvBPuGf2YaO4Ax_PZZ93Yb3GNdwDplKXCCmkktqnkXY4XcbWGVR4wuvYDID3r7u0gXqdOoB8KSkEQ3iUHTzKAI8BvFjOP-pIR_48k9BTkjZCiVaHogpcF_F6lWOJPhnGT7kYwHBlJmoRuzL8FPH3z7sNe-yVQdXNy0S1MSi6_r8d_oXLATxZDtPdKbuvds0JihgRDRIZj_t_F_EYrmwXk71yb2e6-wCukpbpkjGHsL44PnEP4ZL9tjicHz9qP0wGn88b6T8B_N923A |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+Testosterone+Treatment+on+Bone+Microarchitecture+and+Bone+Mineral+Density+in+Men%3A+A+2-Year+RCT&rft.jtitle=The+journal+of+clinical+endocrinology+and+metabolism&rft.au=Fui%2C+Mark+Ng+Tang&rft.au=Hoermann%2C+Rudolf&rft.au=Bracken%2C+Karen&rft.au=Handelsman%2C+David+J&rft.date=2021-08-01&rft.pub=Oxford+University+Press&rft.issn=0021-972X&rft.volume=106&rft.issue=8&rft.spage=e3143&rft_id=info:doi/10.1210%2Fclinem%2Fdgab149&rft.externalDocID=A702372983 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-972X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-972X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-972X&client=summon |