Effect of Testosterone Treatment on Bone Microarchitecture and Bone Mineral Density in Men: A 2-Year RCT

Abstract Context Testosterone treatment increases bone mineral density (BMD) in hypogonadal men. Effects on bone microarchitecture, a determinant of fracture risk, are unknown. Objective We aimed to determine the effect of testosterone treatment on bone microarchitecture using high resolution–periph...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of clinical endocrinology and metabolism Jg. 106; H. 8; S. e3143 - e3158
Hauptverfasser: Ng Tang Fui, Mark, Hoermann, Rudolf, Bracken, Karen, Handelsman, David J, Inder, Warrick J, Stuckey, Bronwyn G A, Yeap, Bu B, Ghasem-Zadeh, Ali, Robledo, Kristy P, Jesudason, David, Zajac, Jeffrey D, Wittert, Gary A, Grossmann, Mathis
Format: Journal Article
Sprache:Englisch
Veröffentlicht: US Oxford University Press 01.08.2021
Schlagworte:
ISSN:0021-972X, 1945-7197, 1945-7197
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Abstract Context Testosterone treatment increases bone mineral density (BMD) in hypogonadal men. Effects on bone microarchitecture, a determinant of fracture risk, are unknown. Objective We aimed to determine the effect of testosterone treatment on bone microarchitecture using high resolution–peripheral quantitative computed tomography (HR-pQCT). Methods Men ≥ 50 years of age were recruited from 6 Australian centers and were randomized to receive injectable testosterone undecanoate or placebo over 2 years on the background of a community-based lifestyle program. The primary endpoint was cortical volumetric BMD (vBMD) at the distal tibia, measured using HR-pQCT in 177 men (1 center). Secondary endpoints included other HR-pQCT parameters and bone remodeling markers. Areal BMD (aBMD) was measured by dual-energy x-ray absorptiometry (DXA) in 601 men (5 centers). Using a linear mixed model for repeated measures, the mean adjusted differences (95% CI) at 12 and 24 months between groups are reported as treatment effect. Results Over 24 months, testosterone treatment, versus placebo, increased tibial cortical vBMD, 9.33 mg hydroxyapatite (HA)/cm3) (3.96, 14.71), P < 0.001 or 3.1% (1.2, 5.0); radial cortical vBMD, 8.96 mg HA/cm3 (3.30, 14.62), P = 0.005 or 2.9% (1.0, 4.9); total tibial vBMD, 4.16 mg HA/cm3 (2.14, 6.19), P < 0.001 or 1.3% (0.6, 1.9); and total radial vBMD, 4.42 mg HA/cm3 (1.67, 7.16), P = 0.002 or 1.8% (0.4, 2.0). Testosterone also significantly increased cortical area and thickness at both sites. Effects on trabecular architecture were minor. Testosterone reduced bone remodeling markers CTX, −48.1 ng/L [−81.1, −15.1], P < 0.001 and P1NP, −6.8 μg/L[−10.9, −2.7], P < 0.001. Testosterone significantly increased aBMD at the lumbar spine, 0.04 g/cm2 (0.03, 0.05), P < 0.001 and the total hip, 0.01 g/cm2 (0.01, 0.02), P < 0.001. Conclusion In men ≥ 50 years of age, testosterone treatment for 2 years increased volumetric bone density, predominantly via effects on cortical bone. Implications for fracture risk reduction require further study.
AbstractList Testosterone treatment increases bone mineral density (BMD) in hypogonadal men. Effects on bone microarchitecture, a determinant of fracture risk, are unknown.CONTEXTTestosterone treatment increases bone mineral density (BMD) in hypogonadal men. Effects on bone microarchitecture, a determinant of fracture risk, are unknown.We aimed to determine the effect of testosterone treatment on bone microarchitecture using high resolution-peripheral quantitative computed tomography (HR-pQCT).OBJECTIVEWe aimed to determine the effect of testosterone treatment on bone microarchitecture using high resolution-peripheral quantitative computed tomography (HR-pQCT).Men ≥ 50 years of age were recruited from 6 Australian centers and were randomized to receive injectable testosterone undecanoate or placebo over 2 years on the background of a community-based lifestyle program. The primary endpoint was cortical volumetric BMD (vBMD) at the distal tibia, measured using HR-pQCT in 177 men (1 center). Secondary endpoints included other HR-pQCT parameters and bone remodeling markers. Areal BMD (aBMD) was measured by dual-energy x-ray absorptiometry (DXA) in 601 men (5 centers). Using a linear mixed model for repeated measures, the mean adjusted differences (95% CI) at 12 and 24 months between groups are reported as treatment effect.METHODSMen ≥ 50 years of age were recruited from 6 Australian centers and were randomized to receive injectable testosterone undecanoate or placebo over 2 years on the background of a community-based lifestyle program. The primary endpoint was cortical volumetric BMD (vBMD) at the distal tibia, measured using HR-pQCT in 177 men (1 center). Secondary endpoints included other HR-pQCT parameters and bone remodeling markers. Areal BMD (aBMD) was measured by dual-energy x-ray absorptiometry (DXA) in 601 men (5 centers). Using a linear mixed model for repeated measures, the mean adjusted differences (95% CI) at 12 and 24 months between groups are reported as treatment effect.Over 24 months, testosterone treatment, versus placebo, increased tibial cortical vBMD, 9.33 mg hydroxyapatite (HA)/cm3) (3.96, 14.71), P < 0.001 or 3.1% (1.2, 5.0); radial cortical vBMD, 8.96 mg HA/cm3 (3.30, 14.62), P = 0.005 or 2.9% (1.0, 4.9); total tibial vBMD, 4.16 mg HA/cm3 (2.14, 6.19), P < 0.001 or 1.3% (0.6, 1.9); and total radial vBMD, 4.42 mg HA/cm3 (1.67, 7.16), P = 0.002 or 1.8% (0.4, 2.0). Testosterone also significantly increased cortical area and thickness at both sites. Effects on trabecular architecture were minor. Testosterone reduced bone remodeling markers CTX, -48.1 ng/L [-81.1, -15.1], P < 0.001 and P1NP, -6.8 μg/L[-10.9, -2.7], P < 0.001. Testosterone significantly increased aBMD at the lumbar spine, 0.04 g/cm2 (0.03, 0.05), P < 0.001 and the total hip, 0.01 g/cm2 (0.01, 0.02), P < 0.001.RESULTSOver 24 months, testosterone treatment, versus placebo, increased tibial cortical vBMD, 9.33 mg hydroxyapatite (HA)/cm3) (3.96, 14.71), P < 0.001 or 3.1% (1.2, 5.0); radial cortical vBMD, 8.96 mg HA/cm3 (3.30, 14.62), P = 0.005 or 2.9% (1.0, 4.9); total tibial vBMD, 4.16 mg HA/cm3 (2.14, 6.19), P < 0.001 or 1.3% (0.6, 1.9); and total radial vBMD, 4.42 mg HA/cm3 (1.67, 7.16), P = 0.002 or 1.8% (0.4, 2.0). Testosterone also significantly increased cortical area and thickness at both sites. Effects on trabecular architecture were minor. Testosterone reduced bone remodeling markers CTX, -48.1 ng/L [-81.1, -15.1], P < 0.001 and P1NP, -6.8 μg/L[-10.9, -2.7], P < 0.001. Testosterone significantly increased aBMD at the lumbar spine, 0.04 g/cm2 (0.03, 0.05), P < 0.001 and the total hip, 0.01 g/cm2 (0.01, 0.02), P < 0.001.In men ≥ 50 years of age, testosterone treatment for 2 years increased volumetric bone density, predominantly via effects on cortical bone. Implications for fracture risk reduction require further study.CONCLUSIONIn men ≥ 50 years of age, testosterone treatment for 2 years increased volumetric bone density, predominantly via effects on cortical bone. Implications for fracture risk reduction require further study.
Context: Testosterone treatment increases bone mineral density (BMD) in hypogonadal men. Effects on bone microarchitecture, a determinant of fracture risk, are unknown. Objective: We aimed to determine the effect of testosterone treatment on bone microarchitecture using high resolution-peripheral quantitative computed tomography (HR-pQCT). Methods: Men [greater than or equal to] 50 years of age were recruited from 6 Australian centers and were randomized to receive injectable testosterone undecanoate or placebo over 2 years on the background of a community-based lifestyle program. The primary endpoint was cortical volumetric BMD (vBMD) at the distal tibia, measured using HR-pQCT in 177 men (1 center). Secondary endpoints included other HR-pQCT parameters and bone remodeling markers. Areal BMD (aBMD) was measured by dual-energy x-ray absorptiometry (DXA) in 601 men (5 centers). Using a linear mixed model for repeated measures, the mean adjusted differences (95% CI) at 12 and 24 months between groups are reported as treatment effect. Results: Over 24 months, testosterone treatment, versus placebo, increased tibial cortical vBMD, 9.33 mg hydroxyapatite (HA)/[cm.sup.3]) (3.96, 14.71), P < 0.001 or 3.1% (1.2, 5.0); radial cortical vBMD, 8.96 mg HA/[cm.sup.3] (3.30, 14.62), P = 0.005 or 2.9% (1.0, 4.9); total tibial vBMD, 4.16 mg HA/[cm.sup.3] (2.14, 6.19), P < 0.001 or 1.3% (0.6, 1.9); and total radial vBMD, 4.42 mg HA/[cm.sup.3] (1.67, 7.16), P = 0.002 or 1.8% (0.4, 2.0). Testosterone also significantly increased cortical area and thickness at both sites. Effects on trabecular architecture were minor. Testosterone reduced bone remodeling markers CTX, -48.1 ng/L [-81.1, -15.1], P < 0.001 and P1NP, -6.8 [micro]g/L[-10.9, -2.7], P < 0.001. Testosterone significantly increased aBMD at the lumbar spine, 0.04 g/[cm.sup.2] (0.03, 0.05), P < 0.001 and the total hip, 0.01 g/[cm.sup.2] (0.01, 0.02), P < 0.001. Conclusion: In men [greater than or equal to] 50 years of age, testosterone treatment for 2 years increased volumetric bone density, predominantly via effects on cortical bone. Implications for fracture risk reduction require further study. Key Words: testosterone, bone, microarchitecture, T4DM
Context Testosterone treatment increases bone mineral density (BMD) in hypogonadal men. Effects on bone microarchitecture, a determinant of fracture risk, are unknown. Objective We aimed to determine the effect of testosterone treatment on bone microarchitecture using high resolution–peripheral quantitative computed tomography (HR-pQCT). Methods Men ≥ 50 years of age were recruited from 6 Australian centers and were randomized to receive injectable testosterone undecanoate or placebo over 2 years on the background of a community-based lifestyle program. The primary endpoint was cortical volumetric BMD (vBMD) at the distal tibia, measured using HR-pQCT in 177 men (1 center). Secondary endpoints included other HR-pQCT parameters and bone remodeling markers. Areal BMD (aBMD) was measured by dual-energy x-ray absorptiometry (DXA) in 601 men (5 centers). Using a linear mixed model for repeated measures, the mean adjusted differences (95% CI) at 12 and 24 months between groups are reported as treatment effect. Results Over 24 months, testosterone treatment, versus placebo, increased tibial cortical vBMD, 9.33 mg hydroxyapatite (HA)/cm3) (3.96, 14.71), P < 0.001 or 3.1% (1.2, 5.0); radial cortical vBMD, 8.96 mg HA/cm3 (3.30, 14.62), P = 0.005 or 2.9% (1.0, 4.9); total tibial vBMD, 4.16 mg HA/cm3 (2.14, 6.19), P < 0.001 or 1.3% (0.6, 1.9); and total radial vBMD, 4.42 mg HA/cm3 (1.67, 7.16), P = 0.002 or 1.8% (0.4, 2.0). Testosterone also significantly increased cortical area and thickness at both sites. Effects on trabecular architecture were minor. Testosterone reduced bone remodeling markers CTX, −48.1 ng/L [−81.1, −15.1], P < 0.001 and P1NP, −6.8 μg/L[−10.9, −2.7], P < 0.001. Testosterone significantly increased aBMD at the lumbar spine, 0.04 g/cm2 (0.03, 0.05), P < 0.001 and the total hip, 0.01 g/cm2 (0.01, 0.02), P < 0.001. Conclusion In men ≥ 50 years of age, testosterone treatment for 2 years increased volumetric bone density, predominantly via effects on cortical bone. Implications for fracture risk reduction require further study.
Abstract Context Testosterone treatment increases bone mineral density (BMD) in hypogonadal men. Effects on bone microarchitecture, a determinant of fracture risk, are unknown. Objective We aimed to determine the effect of testosterone treatment on bone microarchitecture using high resolution–peripheral quantitative computed tomography (HR-pQCT). Methods Men ≥ 50 years of age were recruited from 6 Australian centers and were randomized to receive injectable testosterone undecanoate or placebo over 2 years on the background of a community-based lifestyle program. The primary endpoint was cortical volumetric BMD (vBMD) at the distal tibia, measured using HR-pQCT in 177 men (1 center). Secondary endpoints included other HR-pQCT parameters and bone remodeling markers. Areal BMD (aBMD) was measured by dual-energy x-ray absorptiometry (DXA) in 601 men (5 centers). Using a linear mixed model for repeated measures, the mean adjusted differences (95% CI) at 12 and 24 months between groups are reported as treatment effect. Results Over 24 months, testosterone treatment, versus placebo, increased tibial cortical vBMD, 9.33 mg hydroxyapatite (HA)/cm3) (3.96, 14.71), P < 0.001 or 3.1% (1.2, 5.0); radial cortical vBMD, 8.96 mg HA/cm3 (3.30, 14.62), P = 0.005 or 2.9% (1.0, 4.9); total tibial vBMD, 4.16 mg HA/cm3 (2.14, 6.19), P < 0.001 or 1.3% (0.6, 1.9); and total radial vBMD, 4.42 mg HA/cm3 (1.67, 7.16), P = 0.002 or 1.8% (0.4, 2.0). Testosterone also significantly increased cortical area and thickness at both sites. Effects on trabecular architecture were minor. Testosterone reduced bone remodeling markers CTX, −48.1 ng/L [−81.1, −15.1], P < 0.001 and P1NP, −6.8 μg/L[−10.9, −2.7], P < 0.001. Testosterone significantly increased aBMD at the lumbar spine, 0.04 g/cm2 (0.03, 0.05), P < 0.001 and the total hip, 0.01 g/cm2 (0.01, 0.02), P < 0.001. Conclusion In men ≥ 50 years of age, testosterone treatment for 2 years increased volumetric bone density, predominantly via effects on cortical bone. Implications for fracture risk reduction require further study.
Audience Academic
Author Zajac, Jeffrey D
Handelsman, David J
Jesudason, David
Hoermann, Rudolf
Wittert, Gary A
Yeap, Bu B
Ng Tang Fui, Mark
Inder, Warrick J
Ghasem-Zadeh, Ali
Stuckey, Bronwyn G A
Robledo, Kristy P
Bracken, Karen
Grossmann, Mathis
Author_xml – sequence: 1
  givenname: Mark
  surname: Ng Tang Fui
  fullname: Ng Tang Fui, Mark
  organization: Department of Medicine (Austin Health), The University of Melbourne, Victoria, 3084, Australia
– sequence: 2
  givenname: Rudolf
  surname: Hoermann
  fullname: Hoermann, Rudolf
  organization: Department of Medicine (Austin Health), The University of Melbourne, Victoria, 3084, Australia
– sequence: 3
  givenname: Karen
  surname: Bracken
  fullname: Bracken, Karen
  organization: NHMRC Clinical Trials Centre, University of Sydney, New South Wales, 2050, Australia
– sequence: 4
  givenname: David J
  orcidid: 0000-0002-4200-7476
  surname: Handelsman
  fullname: Handelsman, David J
  organization: ANZAC Research Institute, University of Sydney and Department of Andrology, Concord Hospital, Sydney New South Wales, 2139, Australia
– sequence: 5
  givenname: Warrick J
  surname: Inder
  fullname: Inder, Warrick J
  organization: Princess Alexandra Hospital and the University of Queensland, Queensland, 4102, Australia
– sequence: 6
  givenname: Bronwyn G A
  surname: Stuckey
  fullname: Stuckey, Bronwyn G A
  organization: Keogh Institute for Medical Research, Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital and University of Western Australia, Western Australia, 6009, Australia
– sequence: 7
  givenname: Bu B
  surname: Yeap
  fullname: Yeap, Bu B
  organization: Medical School, University of Western Australia and Department of Endocrinology and Diabetes, Freemantle & Fiona Stanley Hospital, Perth, Western Australia, 6150, Australia
– sequence: 8
  givenname: Ali
  surname: Ghasem-Zadeh
  fullname: Ghasem-Zadeh, Ali
  organization: Department of Medicine (Austin Health), The University of Melbourne, Victoria, 3084, Australia
– sequence: 9
  givenname: Kristy P
  surname: Robledo
  fullname: Robledo, Kristy P
  organization: NHMRC Clinical Trials Centre, University of Sydney, New South Wales, 2050, Australia
– sequence: 10
  givenname: David
  surname: Jesudason
  fullname: Jesudason, David
  organization: Freemasons Foundation Centre for Men’s Health, University of Adelaide, Adelaide, South Australia, Australia, and The Queen Elizabeth Hospital, South Australia, 5000, Australia
– sequence: 11
  givenname: Jeffrey D
  surname: Zajac
  fullname: Zajac, Jeffrey D
  organization: Department of Medicine (Austin Health), The University of Melbourne, Victoria, 3084, Australia
– sequence: 12
  givenname: Gary A
  orcidid: 0000-0001-6818-6065
  surname: Wittert
  fullname: Wittert, Gary A
  organization: Freemasons Foundation Centre for Men’s Health, University of Adelaide, Adelaide, South Australia, Australia, and The Queen Elizabeth Hospital, South Australia, 5000, Australia
– sequence: 13
  givenname: Mathis
  orcidid: 0000-0001-8261-3457
  surname: Grossmann
  fullname: Grossmann, Mathis
  email: mathisg@unimelb.edu.au
  organization: Department of Medicine (Austin Health), The University of Melbourne, Victoria, 3084, Australia
BookMark eNqFkcFrFDEUxoNUcFu9eg540cO0L5nMZOJtXasVWgRZQU8hk3lpU2aSNZM59L83y1YKpSo5BN77fe9L3ndMjkIMSMhrBqeMMzizow84nQ3XpmdCPSMrpkRTSabkEVkBcFYpyX-8IMfzfAvAhGjqFbk5dw5tptHRLc45zhlTGUu3CU2eMJROoB_2lStvUzTJ3vhcBEtCasLwpxUwmZF-xDD7fEd9oFcY3tM15dVPNIl-22xfkufOjDO-ur9PyPdP59vNRXX59fOXzfqysoKrXFmQEpxtuMSuHXpRi95ZxRzUjEkHQ9f2A0NmemN7ZVTbK65gUNjZbsBWuPqEvD3M3aX4aylf0pOfLY6jCRiXWfMGoJa8kV1B3zxCb-OSQnmdrpkEkC2T6l8UV03LaoBGPFDXZkTtg4s5Gbu31msJvDiqri7U6RNUOQNO3pZVOl_qTwnK7uc5odO75CeT7jQDvU9dH1LX96kXgXgksD6b7GMoTn78u-zdQRaX3f8sfgO5rMFp
CitedBy_id crossref_primary_10_1111_cen_15153
crossref_primary_10_1007_s00120_024_02455_8
crossref_primary_10_1093_ejendo_lvad015
crossref_primary_10_1007_s11154_022_09746_5
crossref_primary_10_1080_13685538_2022_2134338
crossref_primary_10_1210_clinem_dgae703
crossref_primary_10_1007_s00223_024_01207_2
crossref_primary_10_1016_j_jcte_2024_100365
crossref_primary_10_1016_j_metabol_2023_155638
crossref_primary_10_3390_ijms231911952
crossref_primary_10_1016_j_beem_2021_101598
crossref_primary_10_1016_j_maturitas_2023_107854
crossref_primary_10_1080_17512433_2024_2366505
crossref_primary_10_1007_s11154_022_09728_7
crossref_primary_10_1097_MED_0000000000000884
crossref_primary_10_1210_jendso_bvaf074
crossref_primary_10_1097_MED_0000000000000886
crossref_primary_10_1007_s00108_024_01824_x
crossref_primary_10_3389_fphys_2022_838526
crossref_primary_10_5435_JAAOSGlobal_D_24_00248
crossref_primary_10_1080_13685538_2023_2223712
crossref_primary_10_1210_clinem_dgaf191
crossref_primary_10_1080_13685538_2023_2223699
crossref_primary_10_3389_fendo_2023_1168687
crossref_primary_10_1007_s40618_021_01702_5
crossref_primary_10_1056_NEJMe2313787
crossref_primary_10_1007_s11154_022_09738_5
crossref_primary_10_1016_j_beem_2022_101624
crossref_primary_10_1016_j_tips_2025_01_007
crossref_primary_10_1016_j_cger_2025_01_002
crossref_primary_10_3390_biomedicines12081830
crossref_primary_10_1016_j_eprac_2022_07_011
crossref_primary_10_1093_ejendo_lvae071
crossref_primary_10_1056_NEJMra2404637
crossref_primary_10_3390_biom15010079
crossref_primary_10_1007_s40618_022_01859_7
crossref_primary_10_1210_clinem_dgad180
crossref_primary_10_1007_s40266_025_01209_1
crossref_primary_10_1080_13685538_2023_2296460
crossref_primary_10_3389_fendo_2022_939897
crossref_primary_10_5534_wjmh_240266
crossref_primary_10_1210_clinem_dgaf066
crossref_primary_10_1038_s41584_024_01094_9
crossref_primary_10_1093_ejendo_lvad100
Cites_doi 10.1001/jamainternmed.2016.9539
10.1210/jcem-69-4-776
10.1016/j.bone.2017.05.010
10.1007/s00198-009-1062-3
10.1056/NEJMcp0707217
10.1210/clinem/dgaa318
10.1172/JCI84137
10.1210/jc.2003-031110
10.1016/j.bone.2020.115778
10.1056/NEJMoa1000485
10.1002/jbmr.319
10.1016/0021-9290(88)90186-8
10.1359/jbmr.080518
10.1016/S0140-6736(10)60320-0
10.1002/jbmr.3433
10.1016/j.bone.2018.05.005
10.1111/dom.13601
10.1359/JBMR.050606
10.1002/jbmr.3451
10.1359/jbmr.1997.12.9.1463
10.1210/jc.2012-2246
10.1210/jc.2006-0173
10.1210/jc.2013-3665
10.1002/jbmr.81
10.1056/NEJMoa1206168
10.1016/S2213-8587(20)30367-3
10.1210/jc.2004-1184
10.1016/S2213-8587(18)30308-5
10.1007/s00198-016-3621-8
10.1002/jbmr.157
10.1210/jc.2016-1160
10.18637/jss.v087.i09
10.18637/jss.v056.i06
10.1002/jbmr.1784
10.1210/jc.2002-021691
10.1002/jbmr.3746
10.1210/jc.2013-3233
10.1007/s00198-020-05438-5
10.1016/j.cca.2009.09.003
10.1210/jc.2010-0902
10.1210/jc.2006-0036
10.18637/jss.v067.i01
ContentType Journal Article
Copyright The Author(s) 2021. Published by Oxford University Press on behalf of the Endocrine Society. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2021
COPYRIGHT 2021 Oxford University Press
The Author(s) 2021. Published by Oxford University Press on behalf of the Endocrine Society. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com
The Author(s) 2021. Published by Oxford University Press on behalf of the Endocrine Society. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Copyright_xml – notice: The Author(s) 2021. Published by Oxford University Press on behalf of the Endocrine Society. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2021
– notice: COPYRIGHT 2021 Oxford University Press
– notice: The Author(s) 2021. Published by Oxford University Press on behalf of the Endocrine Society. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com
– notice: The Author(s) 2021. Published by Oxford University Press on behalf of the Endocrine Society. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
DBID AAYXX
CITATION
7QP
7T5
7TM
H94
K9.
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
BENPR
CCPQU
FYUFA
GHDGH
M0S
M1P
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
DOI 10.1210/clinem/dgab149
DatabaseName CrossRef
Calcium & Calcified Tissue Abstracts
Immunology Abstracts
Nucleic Acids Abstracts
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central
ProQuest One Community College
Health Research Premium Collection
Health Research Premium Collection (Alumni)
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
DatabaseTitle CrossRef
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Immunology Abstracts
Calcium & Calcified Tissue Abstracts
Nucleic Acids Abstracts
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

ProQuest One Academic Middle East (New)
AIDS and Cancer Research Abstracts

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1945-7197
EndPage e3158
ExternalDocumentID A702372983
10_1210_clinem_dgab149
10.1210/clinem/dgab149
GeographicLocations Australia
Germany
GeographicLocations_xml – name: Germany
– name: Australia
GroupedDBID ---
-~X
.55
.GJ
.XZ
08P
0R~
18M
1TH
29K
2WC
34G
354
39C
3O-
3V.
4.4
48X
53G
5GY
5RS
5YH
7X7
88E
8F7
8FI
8FJ
AABZA
AACZT
AAIMJ
AAJQQ
AAKAS
AAPGJ
AAPQZ
AAPXW
AAQQT
AARHZ
AAUAY
AAUQX
AAVAP
AAWDT
AAWTL
AAYJJ
ABBLC
ABDFA
ABDPE
ABEJV
ABGNP
ABJNI
ABLJU
ABMNT
ABNHQ
ABOCM
ABPMR
ABPPZ
ABPQP
ABPTD
ABQNK
ABUWG
ABVGC
ABWST
ABXVV
ACFRR
ACGFO
ACGFS
ACPRK
ACUTJ
ACYHN
ACZBC
ADBBV
ADGKP
ADGZP
ADHKW
ADQBN
ADRTK
ADVEK
ADZCM
AELWJ
AEMDU
AENEX
AENZO
AERZD
AETBJ
AEWNT
AFCHL
AFFNX
AFFQV
AFFZL
AFGWE
AFKRA
AFOFC
AFRAH
AFXAL
AFYAG
AGINJ
AGKRT
AGMDO
AGQXC
AGUTN
AHMBA
AHMMS
AI.
AJEEA
ALMA_UNASSIGNED_HOLDINGS
APIBT
APJGH
AQDSO
AQKUS
ARIXL
ASPBG
ATGXG
AVWKF
AZFZN
BAWUL
BAYMD
BCRHZ
BENPR
BEYMZ
BPHCQ
BSWAC
BTRTY
BVXVI
C45
CCPQU
CDBKE
CS3
D-I
DAKXR
DIK
E3Z
EBS
EIHJH
EJD
EMOBN
ENERS
F5P
FECEO
FEDTE
FHSFR
FLUFQ
FOEOM
FOTVD
FQBLK
FYUFA
GAUVT
GJXCC
GX1
H13
HMCUK
HVGLF
HZ~
H~9
IAO
IHR
INH
ITC
J5H
KBUDW
KOP
KQ8
KSI
KSN
L7B
M1P
M5~
MBLQV
MHKGH
MJL
N4W
N9A
NLBLG
NOMLY
NOYVH
NVLIB
O9-
OAUYM
OBH
OCB
ODMLO
OFXIZ
OGEVE
OHH
OJZSN
OK1
OPAEJ
OVD
OVIDX
P2P
P6G
PQQKQ
PROAC
PSQYO
REU
ROX
ROZ
TEORI
TJX
TLC
TMA
TR2
TWZ
UKHRP
VH1
VVN
W8F
WHG
WOQ
X52
X7M
YBU
YFH
YHG
YOC
YSK
ZGI
ZXP
ZY1
~02
~H1
AAYXX
ABXZS
ADNBA
AEHZK
AEMQT
AEOTA
AFFHD
AHGBF
AJBYB
ALXQX
CITATION
NU-
PHGZM
PHGZT
PJZUB
PPXIY
7QP
7T5
7TM
H94
K9.
7XB
8FK
PKEHL
PQEST
PQUKI
PRINS
7X8
ID FETCH-LOGICAL-c429t-c0770fc527e86db434bfc91f03117f0d86bd1e1abacb9a96b9290d9e8c8de64f3
IEDL.DBID 7X7
ISICitedReferencesCount 40
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000685227300049&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0021-972X
1945-7197
IngestDate Sun Nov 09 12:00:09 EST 2025
Tue Oct 07 07:29:02 EDT 2025
Tue Oct 07 06:52:14 EDT 2025
Tue Nov 11 10:15:12 EST 2025
Tue Nov 04 17:32:40 EST 2025
Tue Nov 18 22:36:10 EST 2025
Sat Nov 29 02:29:28 EST 2025
Fri Feb 07 10:35:44 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords bone
testosterone
microarchitecture
T4DM
Language English
License This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)
https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c429t-c0770fc527e86db434bfc91f03117f0d86bd1e1abacb9a96b9290d9e8c8de64f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Undefined-3
ORCID 0000-0001-6818-6065
0000-0002-4200-7476
0000-0001-8261-3457
PQID 3170076179
PQPubID 2046206
ParticipantIDs proquest_miscellaneous_2500372578
proquest_journals_3170076179
proquest_journals_2956130054
gale_infotracmisc_A702372983
gale_infotracacademiconefile_A702372983
crossref_primary_10_1210_clinem_dgab149
crossref_citationtrail_10_1210_clinem_dgab149
oup_primary_10_1210_clinem_dgab149
PublicationCentury 2000
PublicationDate 2021-08-01
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-01
  day: 01
PublicationDecade 2020
PublicationPlace US
PublicationPlace_xml – name: US
– name: Washington
PublicationTitle The journal of clinical endocrinology and metabolism
PublicationYear 2021
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Bredella (2021122204330164000_OP-B39) 2012; 97
Bates (2021122204330164000_OP-B27) 2015; 67
Finkelstein (2021122204330164000_OP-B45) 2013; 369
Whittier (2021122204330164000_OP-B8) 2020
Burghardt (2021122204330164000_OP-B36) 2010; 25
Amory (2021122204330164000_OP-B6) 2004; 89
Hansen (2021122204330164000_OP-B37) 2013; 28
Schaffler (2021122204330164000_OP-B33) 1988; 21
Piot (2021122204330164000_OP-B13) 2019; 34
Fink (2021122204330164000_OP-B41) 2006; 91
Snyder (2021122204330164000_OP-B5) 1999; 84
Hamilton (2021122204330164000_OP-B12) 2010; 95
Szulc (2021122204330164000_OP-B17) 2011; 26
Basaria (2021122204330164000_OP-B40) 2010; 363
Snyder (2021122204330164000_OP-B7) 2017; 177
Seeman (2021122204330164000_OP-B35) 2010; 25
Benito (2021122204330164000_OP-B31) 2005; 20
Ebeling (2021122204330164000_OP-B1) 2008; 358
R Core team. (2021122204330164000_OP-B29) 2019
Finkelstein (2021122204330164000_OP-B42) 2016; 126
Finkelstein (2021122204330164000_OP-B43) 2020; 105
Wittert (2021122204330164000_OP-B10) 2019; 21
Wittert (2021122204330164000_OP-B11) 2021; 9
Langsetmo (2021122204330164000_OP-B15) 2018; 33
Harwood (2021122204330164000_OP-B19) 2009; 409
Fan (2021122204330164000_OP-B23) 2010; 21
Al Mukaddam (2021122204330164000_OP-B32) 2014; 99
Tsai (2021122204330164000_OP-B38) 2016; 101
Agarwal (2021122204330164000_OP-B46) 2016; 27
Van Pottelbergh (2021122204330164000_OP-B3) 2003; 88
Szulc (2021122204330164000_OP-B34) 2018; 33
Samelson (2021122204330164000_OP-B9) 2019; 7
Fink (2021122204330164000_OP-B16) 2018; 113
Ohlsson (2021122204330164000_OP-B18) 2017; 102
Ghasem-Zadeh (2021122204330164000_OP-B22) 2021; 142
Finkelstein (2021122204330164000_OP-B30) 1989; 69
Jamshidian (2021122204330164000_OP-B26) 2014; 56
Bhasin (2021122204330164000_OP-B44) 2005; 90
Mellstrom (2021122204330164000_OP-B4) 2008; 23
Ghasem-Zadeh (2021122204330164000_OP-B20) 2017; 101
Katznelson (2021122204330164000_OP-B2) 1996; 81
Argoud (2021122204330164000_OP-B14) 2014; 99
Fox (2021122204330164000_OP-B28) 2018; 87
Zebaze (2021122204330164000_OP-B21) 2010; 375
Hui (2021122204330164000_OP-B24) 1997; 12
Tracz (2021122204330164000_OP-B25) 2006; 91
References_xml – volume: 84
  start-page: 1966
  issue: 6
  year: 1999
  ident: 2021122204330164000_OP-B5
  article-title: Effect of testosterone treatment on bone mineral density in men over 65 years of age
  publication-title: J Clin Endocrinol Metab
– volume: 177
  start-page: 471
  issue: 4
  year: 2017
  ident: 2021122204330164000_OP-B7
  article-title: Effect of testosterone treatment on volumetric bone density and strength in older men with low testosterone: a controlled clinical trial
  publication-title: JAMA Intern Med
  doi: 10.1001/jamainternmed.2016.9539
– volume: 69
  start-page: 776
  issue: 4
  year: 1989
  ident: 2021122204330164000_OP-B30
  article-title: Increases in bone density during treatment of men with idiopathic hypogonadotropic hypogonadism
  publication-title: J Clin Endocrinol Metab
  doi: 10.1210/jcem-69-4-776
– volume: 101
  start-page: 206
  year: 2017
  ident: 2021122204330164000_OP-B20
  article-title: Quantifying sex, race, and age specific differences in bone microstructure requires measurement of anatomically equivalent regions
  publication-title: Bone
  doi: 10.1016/j.bone.2017.05.010
– volume: 21
  start-page: 1227
  issue: 7
  year: 2010
  ident: 2021122204330164000_OP-B23
  article-title: Does standardized BMD still remove differences between Hologic and GE-Lunar state-of-the-art DXA systems?
  publication-title: Osteoporos Int
  doi: 10.1007/s00198-009-1062-3
– volume: 358
  start-page: 1474
  issue: 14
  year: 2008
  ident: 2021122204330164000_OP-B1
  article-title: Clinical practice. Osteoporosis in men
  publication-title: N Engl J Med
  doi: 10.1056/NEJMcp0707217
– volume: 105
  start-page: 2779
  issue: 8
  year: 2020
  ident: 2021122204330164000_OP-B43
  article-title: Dose-response relationships between gonadal steroids and bone, body composition, and sexual function in aging men
  publication-title: J Clin Endocrinol Metab
  doi: 10.1210/clinem/dgaa318
– volume: 126
  start-page: 1114
  issue: 3
  year: 2016
  ident: 2021122204330164000_OP-B42
  article-title: Gonadal steroid-dependent effects on bone turnover and bone mineral density in men
  publication-title: J Clin Invest
  doi: 10.1172/JCI84137
– volume: 89
  start-page: 503
  issue: 2
  year: 2004
  ident: 2021122204330164000_OP-B6
  article-title: Exogenous testosterone or testosterone with finasteride increases bone mineral density in older men with low serum testosterone
  publication-title: J Clin Endocrinol Metab
  doi: 10.1210/jc.2003-031110
– volume: 142
  start-page: 115778
  year: 2021
  ident: 2021122204330164000_OP-B22
  article-title: Heterogeneity in microstructural deterioration following spinal cord injury
  publication-title: Bone
  doi: 10.1016/j.bone.2020.115778
– volume: 363
  start-page: 109
  issue: 2
  year: 2010
  ident: 2021122204330164000_OP-B40
  article-title: Adverse events associated with testosterone administration
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1000485
– volume: 26
  start-page: 1358
  issue: 6
  year: 2011
  ident: 2021122204330164000_OP-B17
  article-title: Cross-sectional analysis of the association between fragility fractures and bone microarchitecture in older men: the STRAMBO study
  publication-title: J Bone Miner Res
  doi: 10.1002/jbmr.319
– volume: 21
  start-page: 13
  issue: 1
  year: 1988
  ident: 2021122204330164000_OP-B33
  article-title: Stiffness of compact bone: effects of porosity and density
  publication-title: J Biomech
  doi: 10.1016/0021-9290(88)90186-8
– volume: 23
  start-page: 1552
  issue: 10
  year: 2008
  ident: 2021122204330164000_OP-B4
  article-title: Older men with low serum estradiol and high serum SHBG have an increased risk of fractures
  publication-title: J Bone Miner Res
  doi: 10.1359/jbmr.080518
– volume: 102
  start-page: 516
  issue: 2
  year: 2017
  ident: 2021122204330164000_OP-B18
  article-title: Cortical bone area predicts incident fractures independently of areal bone mineral density in older men
  publication-title: J Clin Endocrinol Metab
– volume: 375
  start-page: 1729
  issue: 9727
  year: 2010
  ident: 2021122204330164000_OP-B21
  article-title: Intracortical remodelling and porosity in the distal radius and post-mortem femurs of women: a cross-sectional study
  publication-title: Lancet
  doi: 10.1016/S0140-6736(10)60320-0
– volume: 33
  start-page: 1302
  issue: 7
  year: 2018
  ident: 2021122204330164000_OP-B15
  article-title: Volumetric bone mineral density and failure load of distal limbs predict incident clinical fracture independent HR-pQCT BMD and failure load predicts incident clinical fracture of FRAX and clinical risk factors among older men
  publication-title: J Bone Miner Res
  doi: 10.1002/jbmr.3433
– volume: 113
  start-page: 49
  year: 2018
  ident: 2021122204330164000_OP-B16
  article-title: Association of High-resolution Peripheral Quantitative Computed Tomography (HR-pQCT) bone microarchitectural parameters with previous clinical fracture in older men: The Osteoporotic Fractures in Men (MrOS) study
  publication-title: Bone
  doi: 10.1016/j.bone.2018.05.005
– volume: 21
  start-page: 772
  issue: 4
  year: 2019
  ident: 2021122204330164000_OP-B10
  article-title: Testosterone therapy to prevent type 2 diabetes mellitus in at-risk men (T4DM): Design and implementation of a double-blind randomized controlled trial
  publication-title: Diabetes Obes Metab
  doi: 10.1111/dom.13601
– volume: 20
  start-page: 1785
  issue: 10
  year: 2005
  ident: 2021122204330164000_OP-B31
  article-title: Effect of testosterone replacement on trabecular architecture in hypogonadal men
  publication-title: J Bone Miner Res
  doi: 10.1359/JBMR.050606
– volume: 33
  start-page: 1470
  issue: 8
  year: 2018
  ident: 2021122204330164000_OP-B34
  article-title: Prediction of fractures in men using bone microarchitectural parameters assessed by high-resolution peripheral quantitative computed tomography-the prospective STRAMBO study
  publication-title: J Bone Miner Res
  doi: 10.1002/jbmr.3451
– volume: 12
  start-page: 1463
  issue: 9
  year: 1997
  ident: 2021122204330164000_OP-B24
  article-title: Universal standardization of bone density measurements: a method with optimal properties for calibration among several instruments
  publication-title: J Bone Miner Res
  doi: 10.1359/jbmr.1997.12.9.1463
– volume: 97
  start-page: 4115
  issue: 11
  year: 2012
  ident: 2021122204330164000_OP-B39
  article-title: Determinants of bone microarchitecture and mechanical properties in obese men
  publication-title: J Clin Endocrinol Metab
  doi: 10.1210/jc.2012-2246
– volume: 91
  start-page: 3908
  issue: 10
  year: 2006
  ident: 2021122204330164000_OP-B41
  article-title: Association of testosterone and estradiol deficiency with osteoporosis and rapid bone loss in older men
  publication-title: J Clin Endocrinol Metab
  doi: 10.1210/jc.2006-0173
– volume: 99
  start-page: 1236
  issue: 4
  year: 2014
  ident: 2021122204330164000_OP-B32
  article-title: Effects of testosterone and growth hormone on the structural and mechanical properties of bone by micro-MRI in the distal tibia of men with hypopituitarism
  publication-title: J Clin Endocrinol Metab
  doi: 10.1210/jc.2013-3665
– volume: 25
  start-page: 1886
  issue: 8
  year: 2010
  ident: 2021122204330164000_OP-B35
  article-title: Microarchitectural deterioration of cortical and trabecular bone: differing effects of denosumab and alendronate
  publication-title: J Bone Miner Res
  doi: 10.1002/jbmr.81
– volume: 369
  start-page: 1011
  issue: 11
  year: 2013
  ident: 2021122204330164000_OP-B45
  article-title: Gonadal steroids and body composition, strength, and sexual function in men
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1206168
– volume-title: R: A Language and Environment for Statistical Computing
  year: 2019
  ident: 2021122204330164000_OP-B29
– volume: 9
  start-page: 32
  issue: 1
  year: 2021
  ident: 2021122204330164000_OP-B11
  article-title: Testosterone treatment to prevent or revert type 2 diabetes in men enrolled in a lifestyle programme (T4DM): a randomised, double-blind, placebo-controlled, 2-year, phase 3b trial
  publication-title: Lancet Lancet Diabetes Endocrinol
  doi: 10.1016/S2213-8587(20)30367-3
– volume: 90
  start-page: 678
  issue: 2
  year: 2005
  ident: 2021122204330164000_OP-B44
  article-title: Older men are as responsive as young men to the anabolic effects of graded doses of testosterone on the skeletal muscle
  publication-title: J Clin Endocrinol Metab
  doi: 10.1210/jc.2004-1184
– volume: 7
  start-page: 34
  issue: 1
  year: 2019
  ident: 2021122204330164000_OP-B9
  article-title: Cortical and trabecular bone microarchitecture as an independent predictor of incident fracture risk in older women and men in the Bone Microarchitecture International Consortium (BoMIC): a prospective study
  publication-title: Lancet Diabetes Endocrinol
  doi: 10.1016/S2213-8587(18)30308-5
– volume: 27
  start-page: 2955
  issue: 10
  year: 2016
  ident: 2021122204330164000_OP-B46
  article-title: In vivo assessment of bone structure and estimated bone strength by first- and second-generation HR-pQCT
  publication-title: Osteoporos Int
  doi: 10.1007/s00198-016-3621-8
– volume: 25
  start-page: 2558
  issue: 12
  year: 2010
  ident: 2021122204330164000_OP-B36
  article-title: A longitudinal HR-pQCT study of alendronate treatment in postmenopausal women with low bone density: Relations among density, cortical and trabecular microarchitecture, biomechanics, and bone turnover
  publication-title: J Bone Miner Res
  doi: 10.1002/jbmr.157
– volume: 101
  start-page: 2023
  issue: 5
  year: 2016
  ident: 2021122204330164000_OP-B38
  article-title: Effects of two years of teriparatide, denosumab, or both on bone microarchitecture and strength (DATA-HRpQCT study)
  publication-title: J Clin Endocrinol Metab
  doi: 10.1210/jc.2016-1160
– volume: 87
  start-page: 1
  issue: 9
  year: 2018
  ident: 2021122204330164000_OP-B28
  article-title: Visualizing fit and lack of fit in complex regression models with predictor effect plots and partial residuals
  publication-title: J Statist Softw
  doi: 10.18637/jss.v087.i09
– volume: 56
  start-page: 1
  year: 2014
  ident: 2021122204330164000_OP-B26
  article-title: Missmech: An r package for testing homoscedasticity, multivariate normality, and missing completely at random (MCAR)
  publication-title: J Stat Softw
  doi: 10.18637/jss.v056.i06
– volume: 28
  start-page: 736
  issue: 4
  year: 2013
  ident: 2021122204330164000_OP-B37
  article-title: Differing effects of PTH 1–34, PTH 1–84, and zoledronic acid on bone microarchitecture and estimated strength in postmenopausal women with osteoporosis: an 18-month open-labeled observational study using HR-pQCT
  publication-title: J Bone Miner Res
  doi: 10.1002/jbmr.1784
– volume: 88
  start-page: 3075
  issue: 7
  year: 2003
  ident: 2021122204330164000_OP-B3
  article-title: Bioavailable estradiol and an aromatase gene polymorphism are determinants of bone mineral density changes in men over 70 years of age
  publication-title: J Clin Endocrinol Metab
  doi: 10.1210/jc.2002-021691
– volume: 34
  start-page: 1562
  issue: 9
  year: 2019
  ident: 2021122204330164000_OP-B13
  article-title: Relationship between sex steroids and deterioration of bone microarchitecture in older men: the prospective STRAMBO study
  publication-title: J Bone Miner Res
  doi: 10.1002/jbmr.3746
– volume: 81
  start-page: 4358
  issue: 12
  year: 1996
  ident: 2021122204330164000_OP-B2
  article-title: Increase in bone density and lean body mass during testosterone administration in men with acquired hypogonadism
  publication-title: J Clin Endocrinol Metab
– volume: 99
  start-page: 1400
  issue: 4
  year: 2014
  ident: 2021122204330164000_OP-B14
  article-title: Association between sex steroid levels and bone microarchitecture in men: the STRAMBO study
  publication-title: J Clin Endocrinol Metab
  doi: 10.1210/jc.2013-3233
– year: 2020
  ident: 2021122204330164000_OP-B8
  article-title: Guidelines for the assessment of bone density and microarchitecture in vivo using high-resolution peripheral quantitative computed tomography
  publication-title: Osteoporos Int
  doi: 10.1007/s00198-020-05438-5
– volume: 409
  start-page: 78
  issue: 1-2
  year: 2009
  ident: 2021122204330164000_OP-B19
  article-title: Development and validation of a sensitive liquid chromatography-tandem mass spectrometry assay to simultaneously measure androgens and estrogens in serum without derivatization
  publication-title: Clin Chim Acta
  doi: 10.1016/j.cca.2009.09.003
– volume: 95
  start-page: E456
  issue: 12
  year: 2010
  ident: 2021122204330164000_OP-B12
  article-title: Structural decay of bone microarchitecture in men with prostate cancer treated with androgen deprivation therapy
  publication-title: J Clin Endocrinol Metab
  doi: 10.1210/jc.2010-0902
– volume: 91
  start-page: 2011
  issue: 6
  year: 2006
  ident: 2021122204330164000_OP-B25
  article-title: Testosterone use in men and its effects on bone health. A systematic review and meta-analysis of randomized placebo-controlled trials
  publication-title: J Clin Endocrinol Metab
  doi: 10.1210/jc.2006-0036
– volume: 67
  start-page: 1
  year: 2015
  ident: 2021122204330164000_OP-B27
  article-title: Fitting linear mixed-effects models using lme4
  publication-title: J Stat Softw
  doi: 10.18637/jss.v067.i01
SSID ssj0014453
Score 2.5680919
Snippet Abstract Context Testosterone treatment increases bone mineral density (BMD) in hypogonadal men. Effects on bone microarchitecture, a determinant of fracture...
Context: Testosterone treatment increases bone mineral density (BMD) in hypogonadal men. Effects on bone microarchitecture, a determinant of fracture risk, are...
Context Testosterone treatment increases bone mineral density (BMD) in hypogonadal men. Effects on bone microarchitecture, a determinant of fracture risk, are...
Testosterone treatment increases bone mineral density (BMD) in hypogonadal men. Effects on bone microarchitecture, a determinant of fracture risk, are...
SourceID proquest
gale
crossref
oup
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage e3143
SubjectTerms Analysis
Bone density
Bone mineral density
Bone remodeling
Bones
Collagen
Computed tomography
Cortical bone
Density
Dual energy X-ray absorptiometry
Fractures
Hydroxyapatite
Pharmaceutical industry
Placebos
Spine (lumbar)
Testosterone
Tibia
Type 2 diabetes
Title Effect of Testosterone Treatment on Bone Microarchitecture and Bone Mineral Density in Men: A 2-Year RCT
URI https://www.proquest.com/docview/2956130054
https://www.proquest.com/docview/3170076179
https://www.proquest.com/docview/2500372578
Volume 106
WOSCitedRecordID wos000685227300049&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1945-7197
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0014453
  issn: 0021-972X
  databaseCode: 7X7
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1945-7197
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0014453
  issn: 0021-972X
  databaseCode: BENPR
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED9tME28jDFA69YhgybtySKJ0zjey1S-tJdWCBWpe4psx4ZKUwK0TNp_v7vEKVTa4GEvechZFyv34Tv7_DuAzyYfYEodO-6NEjwVVnFtVcyllxiPCJG5gW6aTcjxOJ9O1XnYcJuHssrOJzaOuqwt7ZEfCgKSw5xbqm83t5y6RtHpamih8RLWqW026bmcLhMuzBUCCiWVIchkGkAb6dYK3Tt0yP1Km5hwNB8tSsE1r9x36xx0s-qcbf7vfN_CmxBvsmGrIFvwwlXv4PUonKhvw3ULX8xqzybUZIZwE-rKsUlXgM7qih3RmxGV7j0-d2C6KjtSg13NTqgafvGbzSo2ctVXNmQJ_4GmxC6OJztweXY6Of7OQ_cFbnGNWnAbSRl5O0iky7PSpCI1HqXo0QvE0kdlnpkydrE22hqlVWYw0IpK5XKbly5LvdiFtQrn8B6YSl0ipJBKap9G2uFwGVtn0CEIr2PTA979_sIGaHLqkPGzoBQFxVW04iqCuHrwZTn-pgXl-PdIkmZB1oocrQ6XDnBehHtVDCXGLJhf5KIH_ZWRaGV2hXyA-vDs1_qdLhTBFcyLRDU5GobGfyU_6EkP9pdk-jpVv1WuvkcWA4IJIuf64WkWH2GDLK8tUOzD2uLu3n2CV_bXYja_22uMo3nme7B-dDo-v_gD-x8aWA
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VgoALb8TCAgaBOFkkcTaOkRBaWqpW7a4QCtJyCrZjt5VQUrpbUP8Uv5GZxFm6Eo9TD1xja2InX-YRz3wD8MzkIwypY8e9UYKnwiqurYq59BL9ESEyN9Jtswk5neazmXq_Bj_6WhhKq-x1Yquoq8bSP_KXgojkMOaW6s3RV05do-h0tW-h0cFi151-x5Bt_npnE9_v8yTZeldsbPPQVYBb1L0LbiMpI29HiXR5VplUpMbj6jyiO5Y-qvLMVLGLtdHWKK0ygw5EVCmX27xyWeoFyr0AF1GWpGBPzpYBHsYmgfWS0h5kMgskkVQlQ3WODnezr01MvJ1njGAwBSv1db1BaK3c1vX_7fncgGvBn2bj7gO4CWuuvgWXJyFj4DYcdPTMrPGsoCY6xAvR1I4VfYI9a2r2lq5MKDXx7LkK03XVD7Xc3GyTsv0Xp-ywZhNXv2JjlvBPuGf2YaO4Ax_PZZ93Yb3GNdwDplKXCCmkktqnkXY4XcbWGVR4wuvYDID3r7u0gXqdOoB8KSkEQ3iUHTzKAI8BvFjOP-pIR_48k9BTkjZCiVaHogpcF_F6lWOJPhnGT7kYwHBlJmoRuzL8FPH3z7sNe-yVQdXNy0S1MSi6_r8d_oXLATxZDtPdKbuvds0JihgRDRIZj_t_F_EYrmwXk71yb2e6-wCukpbpkjGHsL44PnEP4ZL9tjicHz9qP0wGn88b6T8B_N923A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+Testosterone+Treatment+on+Bone+Microarchitecture+and+Bone+Mineral+Density+in+Men%3A+A+2-Year+RCT&rft.jtitle=The+journal+of+clinical+endocrinology+and+metabolism&rft.au=Fui%2C+Mark+Ng+Tang&rft.au=Hoermann%2C+Rudolf&rft.au=Bracken%2C+Karen&rft.au=Handelsman%2C+David+J&rft.date=2021-08-01&rft.pub=Oxford+University+Press&rft.issn=0021-972X&rft.volume=106&rft.issue=8&rft.spage=e3143&rft_id=info:doi/10.1210%2Fclinem%2Fdgab149&rft.externalDocID=A702372983
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-972X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-972X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-972X&client=summon