On generalized fractional integral inequalities for the monotone weighted Chebyshev functionals
In this paper, we establish the generalized Riemann–Liouville (RL) fractional integrals in the sense of another increasing, positive, monotone, and measurable function Ψ . We determine certain new double-weighted type fractional integral inequalities by utilizing the said integrals. We also give som...
Uloženo v:
| Vydáno v: | Advances in difference equations Ročník 2020; číslo 1; s. 1 - 19 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Cham
Springer International Publishing
18.07.2020
Springer Nature B.V SpringerOpen |
| Témata: | |
| ISSN: | 1687-1847, 1687-1839, 1687-1847 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this paper, we establish the generalized Riemann–Liouville (RL) fractional integrals in the sense of another increasing, positive, monotone, and measurable function
Ψ
. We determine certain new double-weighted type fractional integral inequalities by utilizing the said integrals. We also give some of the new particular inequalities of the main result. Note that we can form various types of new inequalities of fractional integrals by employing conditions on the function
Ψ
given in the paper. We present some corollaries as particular cases of the main results. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1687-1847 1687-1839 1687-1847 |
| DOI: | 10.1186/s13662-020-02830-7 |