Bloom Filter Encryption and Applications to Efficient Forward-Secret 0-RTT Key Exchange

Forward secrecy is considered an essential design goal of modern key establishment (KE) protocols, such as TLS 1.3, for example. Furthermore, efficiency considerations such as zero round-trip time (0-RTT), where a client is able to send cryptographically protected payload data along with the very fi...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of cryptology Ročník 34; číslo 2
Hlavní autoři: Derler, David, Gellert, Kai, Jager, Tibor, Slamanig, Daniel, Striecks, Christoph
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.04.2021
Springer Nature B.V
Témata:
ISSN:0933-2790, 1432-1378
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Forward secrecy is considered an essential design goal of modern key establishment (KE) protocols, such as TLS 1.3, for example. Furthermore, efficiency considerations such as zero round-trip time (0-RTT), where a client is able to send cryptographically protected payload data along with the very first KE message, are motivated by the practical demand for secure low-latency communication. For a long time, it was unclear whether protocols that simultaneously achieve 0-RTT and full forward secrecy exist. Only recently, the first forward-secret 0-RTT protocol was described by Günther et al. ( Eurocrypt , 2017). It is based on puncturable encryption. Forward secrecy is achieved by “puncturing” the secret key after each decryption operation, such that a given ciphertext can only be decrypted once (cf. also Green and Miers, S&P 2015). Unfortunately, their scheme is completely impractical, since one puncturing operation takes between 30 s and several minutes for reasonable security and deployment parameters, such that this solution is only a first feasibility result, but not efficient enough to be deployed in practice. In this paper, we introduce a new primitive that we term Bloom filter encryption (BFE), which is derived from the probabilistic Bloom filter data structure. We describe different constructions of BFE schemes and show how these yield new puncturable encryption mechanisms with extremely efficient puncturing. Most importantly, a puncturing operation only involves a small number of very efficient computations, plus the deletion of certain parts of the secret key, which outperforms previous constructions by orders of magnitude. This gives rise to the first forward-secret 0-RTT protocols that are efficient enough to be deployed in practice. We believe that BFE will find applications beyond forward-secret 0-RTT protocols.
AbstractList Forward secrecy is considered an essential design goal of modern key establishment (KE) protocols, such as TLS 1.3, for example. Furthermore, efficiency considerations such as zero round-trip time (0-RTT), where a client is able to send cryptographically protected payload data along with the very first KE message, are motivated by the practical demand for secure low-latency communication. For a long time, it was unclear whether protocols that simultaneously achieve 0-RTT and full forward secrecy exist. Only recently, the first forward-secret 0-RTT protocol was described by Günther et al. ( Eurocrypt , 2017). It is based on puncturable encryption. Forward secrecy is achieved by “puncturing” the secret key after each decryption operation, such that a given ciphertext can only be decrypted once (cf. also Green and Miers, S&P 2015). Unfortunately, their scheme is completely impractical, since one puncturing operation takes between 30 s and several minutes for reasonable security and deployment parameters, such that this solution is only a first feasibility result, but not efficient enough to be deployed in practice. In this paper, we introduce a new primitive that we term Bloom filter encryption (BFE), which is derived from the probabilistic Bloom filter data structure. We describe different constructions of BFE schemes and show how these yield new puncturable encryption mechanisms with extremely efficient puncturing. Most importantly, a puncturing operation only involves a small number of very efficient computations, plus the deletion of certain parts of the secret key, which outperforms previous constructions by orders of magnitude. This gives rise to the first forward-secret 0-RTT protocols that are efficient enough to be deployed in practice. We believe that BFE will find applications beyond forward-secret 0-RTT protocols.
Forward secrecy is considered an essential design goal of modern key establishment (KE) protocols, such as TLS 1.3, for example. Furthermore, efficiency considerations such as zero round-trip time (0-RTT), where a client is able to send cryptographically protected payload data along with the very first KE message, are motivated by the practical demand for secure low-latency communication. For a long time, it was unclear whether protocols that simultaneously achieve 0-RTT and full forward secrecy exist. Only recently, the first forward-secret 0-RTT protocol was described by Günther et al. (Eurocrypt, 2017). It is based on puncturable encryption. Forward secrecy is achieved by “puncturing” the secret key after each decryption operation, such that a given ciphertext can only be decrypted once (cf. also Green and Miers, S&P 2015). Unfortunately, their scheme is completely impractical, since one puncturing operation takes between 30 s and several minutes for reasonable security and deployment parameters, such that this solution is only a first feasibility result, but not efficient enough to be deployed in practice. In this paper, we introduce a new primitive that we term Bloom filter encryption (BFE), which is derived from the probabilistic Bloom filter data structure. We describe different constructions of BFE schemes and show how these yield new puncturable encryption mechanisms with extremely efficient puncturing. Most importantly, a puncturing operation only involves a small number of very efficient computations, plus the deletion of certain parts of the secret key, which outperforms previous constructions by orders of magnitude. This gives rise to the first forward-secret 0-RTT protocols that are efficient enough to be deployed in practice. We believe that BFE will find applications beyond forward-secret 0-RTT protocols.
ArticleNumber 13
Author Slamanig, Daniel
Gellert, Kai
Jager, Tibor
Derler, David
Striecks, Christoph
Author_xml – sequence: 1
  givenname: David
  surname: Derler
  fullname: Derler, David
  organization: DFINITY
– sequence: 2
  givenname: Kai
  surname: Gellert
  fullname: Gellert, Kai
  email: kai.gellert@uni-wuppertal.de
  organization: University of Wuppertal
– sequence: 3
  givenname: Tibor
  surname: Jager
  fullname: Jager, Tibor
  organization: University of Wuppertal
– sequence: 4
  givenname: Daniel
  surname: Slamanig
  fullname: Slamanig, Daniel
  organization: AIT Austrian Institute of Technology
– sequence: 5
  givenname: Christoph
  surname: Striecks
  fullname: Striecks, Christoph
  organization: AIT Austrian Institute of Technology
BookMark eNp9kE1LwzAYgINMcJv-AU8Bz9E0H01znKNTcSDoxGNIs1Q7uqYmGbp_b7YJgoedwhueJx_PCAw611kALjN8nWEsbgLGGeMIkwxhSQVD9AQMM0YJyqgoBmCYdikiQuIzMAphlXDBBR2Ct9vWuTWcNW20Hpad8ds-Nq6DulvCSd-3jdG7OcDoYFnXjWlsF-HM-S_tl-jFGm8jxOh5sYCPdgvLb_Ohu3d7Dk5r3QZ78buOweusXEzv0fzp7mE6mSPDiIyosjVnnFtWLbWUBa9oGnJbLSvChTC8sjwjhlrBbJ5ziZnBROOE5rgSpmZ0DK4O5_befW5siGrlNr5LVyrCpGSYyqJIVHGgjHcheFsr08T9v6LXTasyrHYZ1SGjShnVPqOiSSX_1N43a-23xyV6kEKCUw3_96oj1g_PvoY2
CitedBy_id crossref_primary_10_1007_s10623_022_01143_y
crossref_primary_10_1155_2022_3907721
crossref_primary_10_1109_TIFS_2023_3301734
crossref_primary_10_1016_j_ins_2023_01_052
crossref_primary_10_1080_02522667_2021_1968579
crossref_primary_10_1109_TIFS_2023_3315067
crossref_primary_10_1016_j_jksuci_2023_101797
crossref_primary_10_1109_TDSC_2022_3188740
crossref_primary_10_1109_TP_2025_3596033
Cites_doi 10.1007/3-540-44647-8_13
10.1145/1811039.1811056
10.1007/11426639_26
10.1007/978-3-319-45741-3_16
10.17487/RFC8446
10.1007/978-3-319-61204-1_2
10.1007/978-3-319-76578-5_8
10.1137/120867044
10.1007/978-3-540-76900-2_12
10.1109/SP.2015.26
10.1007/11935230_29
10.1007/978-3-030-17656-3_5
10.1007/3-540-45682-1_30
10.1007/978-3-319-56617-7_18
10.1007/978-3-540-24676-3_13
10.1145/362686.362692
10.1007/978-3-642-03356-8_36
10.1007/978-3-642-19379-8_20
10.1007/978-3-662-53018-4_20
10.1007/s00145-018-9280-5
10.1007/11693383_22
10.1007/978-3-642-13190-5_28
10.1007/978-3-030-45374-9_11
10.1093/comjnl/bxaa104
10.1145/1315245.1315270
10.1109/SP.2007.11
10.1007/3-540-39200-9_16
10.1007/978-3-642-40084-1_25
10.1007/978-3-662-48000-7_28
10.1007/3-540-36413-7_19
10.1007/978-3-662-48797-6_24
10.1007/978-3-662-44371-2_23
10.1007/978-3-319-78372-7_14
10.1007/978-3-319-70500-2_12
10.1145/168588.168596
10.1007/978-3-642-36095-4_4
10.1007/3-540-36178-2_34
10.1145/2897518.2897651
10.1007/3-540-48405-1_34
ContentType Journal Article
Copyright The Author(s) 2021
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
JQ2
DOI 10.1007/s00145-021-09374-3
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList CrossRef

ProQuest Computer Science Collection
DeliveryMethod fulltext_linktorsrc
Discipline Education
Computer Science
EISSN 1432-1378
ExternalDocumentID 10_1007_s00145_021_09374_3
GrantInformation_xml – fundername: Bergische Universität Wuppertal (3089)
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
203
28-
29K
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
3-Y
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
C6C
CAG
COF
CS3
CSCUP
D-I
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EDO
EIOEI
EIS
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VXZ
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z81
Z83
Z88
Z8M
Z8R
Z8U
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
AYFIA
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
K7-
M7S
PHGZM
PHGZT
PQGLB
PTHSS
JQ2
ID FETCH-LOGICAL-c429t-bef5455e4bda9985b355e6ebdb2577c5be512c3e74e665904c02a0a9960b7cf43
IEDL.DBID RSV
ISICitedReferencesCount 19
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000626856200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0933-2790
IngestDate Wed Sep 17 23:55:20 EDT 2025
Sat Nov 29 06:12:31 EST 2025
Tue Nov 18 22:18:18 EST 2025
Fri Feb 21 02:48:24 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Bloom filter encryption
Bloom filter
Puncturable encryption
Forward secrecy
Key exchange
0-RTT
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c429t-bef5455e4bda9985b355e6ebdb2577c5be512c3e74e665904c02a0a9960b7cf43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://link.springer.com/10.1007/s00145-021-09374-3
PQID 2499403988
PQPubID 2043756
ParticipantIDs proquest_journals_2499403988
crossref_citationtrail_10_1007_s00145_021_09374_3
crossref_primary_10_1007_s00145_021_09374_3
springer_journals_10_1007_s00145_021_09374_3
PublicationCentury 2000
PublicationDate 2021-04-01
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-04-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of cryptology
PublicationTitleAbbrev J Cryptol
PublicationYear 2021
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References C. Chen, J. Chen, H.W. Lim, Z. Zhang, D. Feng, S. Ling, H. Wang, Fully secure attribute-based systems with short ciphertexts/signatures and threshold access structures, in E. Dawson (ed.) CT-RSA 2013. LNCS, vol. 7779 (Springer, Heidelberg, Germany, San Francisco, CA, USA, Feb 25–Mar 1, 2013), pp. 50–67
F. Günther, B. Hale, T. Jager, S. Lauer, 0-RTT key exchange with full forward secrecy, in: J. Coron, J.B. Nielsen (eds.) EUROCRYPT 2017, Part III. LNCS, vol. 10212 (Springer, Heidelberg, Germany, Paris, France, Apr 30–May 4, 2017), pp. 519–548
B. Hale, T. Jager, S. Lauer, J. Schwenk, Simple security definitions for and constructions of 0-RTT key exchange, in D. Gollmann, A. Miyaji, H. Kikuchi (eds.) ACNS 17. LNCS, vol. 10355 (Springer, Heidelberg, Germany, Kanazawa, Japan, Jul 10–12, 2017), pp. 20–38
D. Boneh, M.K. Franklin, Identity-based encryption from the Weil pairing, in J. Kilian (ed.) CRYPTO 2001. LNCS, vol. 2139 (Springer, Heidelberg, Germany, Santa Barbara, CA, USA, Aug 19–23, 2001), pp. 213–229
C. Gentry, A. Silverberg, Hierarchical ID-based cryptography, in Y. Zheng (ed.) ASIACRYPT 2002. LNCS, vol. 2501 (Springer, Heidelberg, Germany, Queenstown, New Zealand, Dec 1–5, 2002), pp. 548–566
N. Aviram, K. Gellert, T. Jager, Session resumption protocols and efficient forward security for TLS 1.3 0-RTT, in Y. Ishai, V. Rijmen (eds.) EUROCRYPT 2019, Part II. LNCS, vol. 11477 (Springer, Heidelberg, Germany, Darmstadt, Germany, May 19–23, 2019), pp. 117–150
S.F. Sun, A. Sakzad, R. Steinfeld, J.K. Liu, D. Gu, Public-key puncturable encryption: Modular and compact constructions, in A. Kiayias, M. Kohlweiss, P. Wallden, V. Zikas (eds.) Public-Key Cryptography—PKC 2020 (Springer International Publishing, Cham, 2020), pp. 309–338
J. Groth, Simulation-sound NIZK proofs for a practical language and constant size group signatures, in X. Lai, K. Chen (eds.) ASIACRYPT 2006. LNCS, vol. 4284 (Springer, Heidelberg, Germany, Shanghai, China, Dec 3–7, 2006), pp. 444–459
B. Waters, Dual system encryption: realizing fully secure IBE and HIBE under simple assumptions, in S. Halevi (ed.) CRYPTO 2009. LNCS, vol. 5677 (Springer, Heidelberg, Germany, Santa Barbara, CA, USA, Aug 16–20, 2009), pp. 619–636
D.J. Wu, A. Taly, A.D. Shankar, Boneh, Privacy, discovery, and authentication for the internet of things, in I.G. Askoxylakis, S. Ioannidis, S.K. Katsikas, C.A. Meadows (eds.) ESORICS 2016, Part II. LNCS, vol. 9879 (Springer, Heidelberg, Germany, Heraklion, Greece, Sep 26–30, 2016), pp. 301–319
A. Goel, P. Gupta, Small subset queries and bloom filters using ternary associative memories, with applications, in V. Misra, P. Barford, M.S. Squillante (eds.) SIGMETRICS 2010, Proceedings of the 2010 ACM SIGMETRICS International Conference on Measurement and Modeling of Computer Systems, New York, New York, USA, 14–18 June 2010 (ACM, 2010), pp. 143–154. https://doi.org/10.1145/1811039.1811056
R. Canetti, S. Raghuraman, S. Richelson, V. Vaikuntanathan, Chosen-ciphertext secure fully homomorphic encryption, in Public-Key Cryptography—PKC 2017 (2017), pp. 213–240
R. Ostrovsky, A. Sahai, B. Waters, Attribute-based encryption with non-monotonic access structures, in P. Ning, S. De Capitani di Vimercati, P.F. Syverson (eds.) ACM CCS 2007. (ACM Press, Alexandria, Virginia, USA, Oct 28–31, 2007), pp. 195–203
S. Lauer, K. Gellert, R. Merget, T. Handirk, J. Schwenk, T0RTT: non-interactive immediate forward-secret single-pass circuit construction, in Proceedings on Privacy Enhancing Technologies, vol. 2020, no. 2 (2020), pp. 336–357
D. Giampaolo, Practical File System Design with the Be File System. Morgan Kaufmann Publishers Inc., 1st edn (1998)
S. Halevi, H. Krawczyk, One-pass HMQV and asymmetric key-wrapping, in D. Catalano, N. Fazio, R. Gennaro, A. Nicolosi (eds.) PKC 2011. LNCS, vol. 6571 (Springer, Heidelberg, Germany, Taormina, Italy, Mar 6–9, 2011), pp. 317–334
M. Thomson, J. Iyengar, QUIC: a UDP-based multiplexed and secure transport. Internet-Draft draft-ietf-quic-transport-02, Internet Engineering Task Force (Mar 2017), https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-02, work in Progress
N. Attrapadung, G. Hanaoka, S. Yamada, Conversions among several classes of predicate encryption and applications to ABE with various compactness tradeoffs, in T. Iwata, J.H. Cheon (eds.) ASIACRYPT 2015, Part I. LNCS, vol. 9452 (Springer, Heidelberg, Germany, Auckland, New Zealand, Nov 30–Dec 3, 2015), pp. 575–601
F. Günther, B. Hale, T. Jager, S. Lauer, 0-RTT key exchange with full forward secrecy. Cryptology ePrint Archive, Report 2017/223 (2017), http://eprint.iacr.org/2017/223
A. Cohen, J. Holmgren, R. Nishimaki, V. Vaikuntanathan, D. Wichs, Watermarking cryptographic capabilities, in D. Wichs, Y. Mansour (eds.) 48th ACM STOC. (ACM Press, Cambridge, MA, USA, Jun 18–21, 2016), pp. 1115–1127
BloomBHSpace/time trade-offs in hash coding with allowable errorsCommun. ACM197013742242610.1145/362686.362692
C. Boyd, K. Gellert, A modern view on forward security. Comput. J. (2020), to appear
LovettSPoratEA space lower bound for dynamic approximate membership data structuresSIAM J. Comput.201342621822196313811910.1137/120867044
M.D. Green, I. Miers, Forward secure asynchronous messaging from puncturable encryption, in 2015 IEEE Symposium on Security and Privacy (IEEE Computer Society Press, San Jose, CA, USA, May 17–21, 2015), pp. 305–320
T. Kim, R. Barbulescu, Extended tower number field sieve: A new complexity for the medium prime case, in M. Robshaw, J. Katz (eds.) CRYPTO 2016, Part I. LNCS, vol. 9814 (Springer, Heidelberg, Germany, Santa Barbara, CA, USA, Aug 14–18, 2016), pp. 543–571
R. Canetti, S. Halevi, J. Katz, Chosen-ciphertext security from identity-based encryption, in C. Cachin, J. Camenisch (eds.) EUROCRYPT 2004. LNCS, vol. 3027 (Springer, Heidelberg, Germany, Interlaken, Switzerland, May 2–6, 2004), pp. 207–222
V. Goyal, O. Pandey, A. Sahai, B. Waters, Attribute-based encryption for fine-grained access control of encrypted data, in A. Juels, R.N. Wright, S. De Capitani di Vimercati (eds.) ACM CCS 2006 (ACM Press, Alexandria, Virginia, USA, Oct 30–Nov 3, 2006), pp. 89–98, available as Cryptology ePrint Archive Report 2006/309
M. Bellare, P. Rogaway, Random oracles are practical: a paradigm for designing efficient protocols, in D.E. Denning, R. Pyle, R. Ganesan, R.S. Sandhu, V. Ashby (eds.) ACM CCS 93. (ACM Press, Fairfax, Virginia, USA, Nov 3–5, 1993), pp. 62–73
D. Hofheinz, K. Hövelmanns, E. Kiltz, A modular analysis of the Fujisaki-Okamoto transformation. In: Y. Kalai, L. Reyzin (eds.) TCC 2017, Part I. LNCS, vol. 10677 (Springer, Heidelberg, Germany, Baltimore, MD, USA, Nov 12–15, 2017), pp. 341–371
D. Boneh, X. Boyen, E.J. Goh, Hierarchical identity based encryption with constant size ciphertext, in R. Cramer (ed.) EUROCRYPT 2005. LNCS, vol. 3494 (Springer, Heidelberg, Germany, Aarhus, Denmark, May 22–26, 2005), pp. 440–456
D. Boneh, B. Lynn, H. Shacham, Short signatures from the Weil pairing, in: C. Boyd (ed.) ASIACRYPT 2001. LNCS, vol. 2248 (Springer, Heidelberg, Germany, Gold Coast, Australia, Dec 9–13, 2001), pp. 514–532
E. Fujisaki, T. Okamoto, Secure integration of asymmetric and symmetric encryption schemes, in M.J. Wiener (ed.) CRYPTO’99. LNCS, vol. 1666 (Springer, Heidelberg, Germany, Santa Barbara, CA, USA, Aug 15–19, 1999), pp. 537–554
P.S.L.M. Barreto, M. Naehrig, Pairing-friendly elliptic curves of prime order, in B. Preneel, S. Tavares (eds.) SAC 2005. LNCS, vol. 3897 (Springer, Heidelberg, Germany, Kingston, Ontario, Canada, Aug 11–12, 2006), pp. 319–331
J. Bethencourt, A. Sahai, B. Waters, Ciphertext-policy attribute-based encryption, in 2007 IEEE Symposium on Security and Privacy. (IEEE Computer Society Press, Oakland, CA, USA, May 20–23, 2007), pp. 321–334
A. Menezes, P. Sarkar, S. Singh, Challenges with assessing the impact of NFS advances on the security of pairing-based cryptography. IACR Cryptology ePrint Archive 2016, 1102 (2016), http://eprint.iacr.org/2016/1102
D. Derler, T. Jager, D. Slamanig, C. Striecks, Bloom filter encryption and applications to efficient forward-secret 0-RTT key exchange, in J.B. Nielsen, V. Rijmen (eds.) EUROCRYPT 2018, Part III. LNCS, vol. 10822 (Springer, Heidelberg, Germany, Tel Aviv, Israel, Apr 29–May 3, 2018), pp. 425–455
F. Dallmeier, J.P. Drees, K. Gellert, T. Handirk, T. Jager, J. Klauke, S. Nachtigall, T. Renzelmann, R. Wolf, Forward-secure 0-RTT goes live: implementation and performance analysis in QUIC. Cryptology ePrint Archive, Report 2020/824 (2020), https://eprint.iacr.org/2020/824
E. Rescorla, The Transport Layer Security (TLS) Protocol Version 1.3. RFC 8446 (2018), https://rfc-editor.org/rfc/rfc8446.txt
C. Delerablée, Identity-based broadcast encryption with constant size ciphertexts and private keys, in K. Kurosawa (ed.) ASIACRYPT 2007. LNCS, vol. 4833 (Springer, Heidelberg, Germany, Kuching, Malaysia, Dec 2–6, 2007), pp. 200–215
D. Derler, S. Krenn, T. Lorünser, S. Ramacher, D. Slamanig, C. Striecks, Revisiting proxy re-encryption: forward secrecy, improved security, and applications, in M. Abdalla (ed.) PKC 2018. LNCS, Springer (2018)
P.S.L.M. Barreto, B. Lynn, M. Scott, Constructing elliptic curves with prescribed embedding degrees, in S. Cimato, C. Galdi, G. Persiano (eds.) SCN 02. LNCS, vol. 2576 (Springer, Heidelberg, Germany, Amalfi, Italy, Sep 12–13, 2003), pp. 257–267
J. Chen, H. Wee, Fully, (almost) tightly secure IBE and dual system groups, in: R. Canetti, J.A. Garay (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043 (Springer, Heidelberg, Germany, Santa Barbara, CA, USA, Aug 18–22, 2013), pp. 435–460
R. Canetti, S. Halevi, J. Katz, A forward-secure public-key encryption scheme, in E. Biham (ed.) EUROCRYPT 2003. LNCS, vol. 2656 (Springer, Heidelberg, Germany, Warsaw, Poland, May 4–8, 2003), pp. 255–271
K. Gellert, Construction and security analysis of 0-RTT protocols. PhD thesis (2020)
D. Hofheinz, K. Hövelmanns, E. Kiltz, A modular analysis of the fujisaki-okamoto transformation. Cryptology ePrint Arc
9374_CR7
9374_CR8
9374_CR9
9374_CR20
9374_CR22
9374_CR21
9374_CR28
9374_CR27
9374_CR29
9374_CR24
9374_CR23
9374_CR26
9374_CR25
9374_CR11
9374_CR3
9374_CR17
9374_CR16
9374_CR5
9374_CR19
9374_CR6
9374_CR18
9374_CR13
9374_CR12
9374_CR1
9374_CR15
9374_CR2
9374_CR14
BH Bloom (9374_CR10) 1970; 13
9374_CR42
R Barbulescu (9374_CR4) 2019; 32
9374_CR44
9374_CR43
9374_CR40
9374_CR49
9374_CR46
9374_CR45
S Lovett (9374_CR41) 2013; 42
9374_CR48
9374_CR47
9374_CR31
9374_CR30
9374_CR33
9374_CR32
9374_CR39
9374_CR38
9374_CR35
9374_CR34
9374_CR37
9374_CR36
References_xml – reference: BarbulescuRDuquesneSUpdating key size estimations for pairingsJ. Cryptol.201932412981336401239910.1007/s00145-018-9280-5
– reference: C. Boyd, K. Gellert, A modern view on forward security. Comput. J. (2020), to appear
– reference: M. Thomson, J. Iyengar, QUIC: a UDP-based multiplexed and secure transport. Internet-Draft draft-ietf-quic-transport-02, Internet Engineering Task Force (Mar 2017), https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-02, work in Progress
– reference: D. Boneh, B. Lynn, H. Shacham, Short signatures from the Weil pairing, in: C. Boyd (ed.) ASIACRYPT 2001. LNCS, vol. 2248 (Springer, Heidelberg, Germany, Gold Coast, Australia, Dec 9–13, 2001), pp. 514–532
– reference: B. Waters, Dual system encryption: realizing fully secure IBE and HIBE under simple assumptions, in S. Halevi (ed.) CRYPTO 2009. LNCS, vol. 5677 (Springer, Heidelberg, Germany, Santa Barbara, CA, USA, Aug 16–20, 2009), pp. 619–636
– reference: J. Chen, H. Wee, Fully, (almost) tightly secure IBE and dual system groups, in: R. Canetti, J.A. Garay (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043 (Springer, Heidelberg, Germany, Santa Barbara, CA, USA, Aug 18–22, 2013), pp. 435–460
– reference: B. Hale, T. Jager, S. Lauer, J. Schwenk, Simple security definitions for and constructions of 0-RTT key exchange, in D. Gollmann, A. Miyaji, H. Kikuchi (eds.) ACNS 17. LNCS, vol. 10355 (Springer, Heidelberg, Germany, Kanazawa, Japan, Jul 10–12, 2017), pp. 20–38
– reference: P.S.L.M. Barreto, M. Naehrig, Pairing-friendly elliptic curves of prime order, in B. Preneel, S. Tavares (eds.) SAC 2005. LNCS, vol. 3897 (Springer, Heidelberg, Germany, Kingston, Ontario, Canada, Aug 11–12, 2006), pp. 319–331
– reference: M. Naor, E. Yogev, Bloom filters in adversarial environments, in R. Gennaro, M.J.B. Robshaw (eds.) CRYPTO 2015, Part II. LNCS, vol. 9216 (Springer, Heidelberg, Germany, Santa Barbara, CA, USA, Aug 16–20, 2015), pp. 565–584
– reference: D. Derler, T. Jager, D. Slamanig, C. Striecks, Bloom filter encryption and applications to efficient forward-secret 0-RTT key exchange, in J.B. Nielsen, V. Rijmen (eds.) EUROCRYPT 2018, Part III. LNCS, vol. 10822 (Springer, Heidelberg, Germany, Tel Aviv, Israel, Apr 29–May 3, 2018), pp. 425–455
– reference: D. Derler, S. Krenn, T. Lorünser, S. Ramacher, D. Slamanig, C. Striecks, Revisiting proxy re-encryption: forward secrecy, improved security, and applications, in M. Abdalla (ed.) PKC 2018. LNCS, Springer (2018)
– reference: C. Gentry, A. Silverberg, Hierarchical ID-based cryptography, in Y. Zheng (ed.) ASIACRYPT 2002. LNCS, vol. 2501 (Springer, Heidelberg, Germany, Queenstown, New Zealand, Dec 1–5, 2002), pp. 548–566
– reference: C. Chen, J. Chen, H.W. Lim, Z. Zhang, D. Feng, S. Ling, H. Wang, Fully secure attribute-based systems with short ciphertexts/signatures and threshold access structures, in E. Dawson (ed.) CT-RSA 2013. LNCS, vol. 7779 (Springer, Heidelberg, Germany, San Francisco, CA, USA, Feb 25–Mar 1, 2013), pp. 50–67
– reference: O. Blazy, E. Kiltz, J. Pan, (Hierarchical) identity-based encryption from affine message authentication, in J.A. Garay, R. Gennaro (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616 (Springer, Heidelberg, Germany, Santa Barbara, CA, USA, Aug 17–21, 2014), pp. 408–425
– reference: D. Boneh, X. Boyen, E.J. Goh, Hierarchical identity based encryption with constant size ciphertext, in R. Cramer (ed.) EUROCRYPT 2005. LNCS, vol. 3494 (Springer, Heidelberg, Germany, Aarhus, Denmark, May 22–26, 2005), pp. 440–456
– reference: D.J. Wu, A. Taly, A.D. Shankar, Boneh, Privacy, discovery, and authentication for the internet of things, in I.G. Askoxylakis, S. Ioannidis, S.K. Katsikas, C.A. Meadows (eds.) ESORICS 2016, Part II. LNCS, vol. 9879 (Springer, Heidelberg, Germany, Heraklion, Greece, Sep 26–30, 2016), pp. 301–319
– reference: J. Groth, Simulation-sound NIZK proofs for a practical language and constant size group signatures, in X. Lai, K. Chen (eds.) ASIACRYPT 2006. LNCS, vol. 4284 (Springer, Heidelberg, Germany, Shanghai, China, Dec 3–7, 2006), pp. 444–459
– reference: S. Lauer, K. Gellert, R. Merget, T. Handirk, J. Schwenk, T0RTT: non-interactive immediate forward-secret single-pass circuit construction, in Proceedings on Privacy Enhancing Technologies, vol. 2020, no. 2 (2020), pp. 336–357
– reference: S. Halevi, H. Krawczyk, One-pass HMQV and asymmetric key-wrapping, in D. Catalano, N. Fazio, R. Gennaro, A. Nicolosi (eds.) PKC 2011. LNCS, vol. 6571 (Springer, Heidelberg, Germany, Taormina, Italy, Mar 6–9, 2011), pp. 317–334
– reference: LovettSPoratEA space lower bound for dynamic approximate membership data structuresSIAM J. Comput.201342621822196313811910.1137/120867044
– reference: C. Delerablée, Identity-based broadcast encryption with constant size ciphertexts and private keys, in K. Kurosawa (ed.) ASIACRYPT 2007. LNCS, vol. 4833 (Springer, Heidelberg, Germany, Kuching, Malaysia, Dec 2–6, 2007), pp. 200–215
– reference: R. Canetti, S. Halevi, J. Katz, Chosen-ciphertext security from identity-based encryption, in C. Cachin, J. Camenisch (eds.) EUROCRYPT 2004. LNCS, vol. 3027 (Springer, Heidelberg, Germany, Interlaken, Switzerland, May 2–6, 2004), pp. 207–222
– reference: M.D. Green, I. Miers, Forward secure asynchronous messaging from puncturable encryption, in 2015 IEEE Symposium on Security and Privacy (IEEE Computer Society Press, San Jose, CA, USA, May 17–21, 2015), pp. 305–320
– reference: F. Günther, B. Hale, T. Jager, S. Lauer, 0-RTT key exchange with full forward secrecy. Cryptology ePrint Archive, Report 2017/223 (2017), http://eprint.iacr.org/2017/223
– reference: N. Aviram, K. Gellert, T. Jager, Session resumption protocols and efficient forward security for TLS 1.3 0-RTT, in Y. Ishai, V. Rijmen (eds.) EUROCRYPT 2019, Part II. LNCS, vol. 11477 (Springer, Heidelberg, Germany, Darmstadt, Germany, May 19–23, 2019), pp. 117–150
– reference: R. Canetti, S. Raghuraman, S. Richelson, V. Vaikuntanathan, Chosen-ciphertext secure fully homomorphic encryption, in Public-Key Cryptography—PKC 2017 (2017), pp. 213–240
– reference: A. Cohen, J. Holmgren, R. Nishimaki, V. Vaikuntanathan, D. Wichs, Watermarking cryptographic capabilities, in D. Wichs, Y. Mansour (eds.) 48th ACM STOC. (ACM Press, Cambridge, MA, USA, Jun 18–21, 2016), pp. 1115–1127
– reference: A. Menezes, P. Sarkar, S. Singh, Challenges with assessing the impact of NFS advances on the security of pairing-based cryptography. IACR Cryptology ePrint Archive 2016, 1102 (2016), http://eprint.iacr.org/2016/1102
– reference: D. Hofheinz, K. Hövelmanns, E. Kiltz, A modular analysis of the fujisaki-okamoto transformation. Cryptology ePrint Archive, Report 2017/604 (2017), http://eprint.iacr.org/2017/604
– reference: N. Attrapadung, G. Hanaoka, S. Yamada, Conversions among several classes of predicate encryption and applications to ABE with various compactness tradeoffs, in T. Iwata, J.H. Cheon (eds.) ASIACRYPT 2015, Part I. LNCS, vol. 9452 (Springer, Heidelberg, Germany, Auckland, New Zealand, Nov 30–Dec 3, 2015), pp. 575–601
– reference: S.F. Sun, A. Sakzad, R. Steinfeld, J.K. Liu, D. Gu, Public-key puncturable encryption: Modular and compact constructions, in A. Kiayias, M. Kohlweiss, P. Wallden, V. Zikas (eds.) Public-Key Cryptography—PKC 2020 (Springer International Publishing, Cham, 2020), pp. 309–338
– reference: J. Bethencourt, A. Sahai, B. Waters, Ciphertext-policy attribute-based encryption, in 2007 IEEE Symposium on Security and Privacy. (IEEE Computer Society Press, Oakland, CA, USA, May 20–23, 2007), pp. 321–334
– reference: P.S.L.M. Barreto, B. Lynn, M. Scott, Constructing elliptic curves with prescribed embedding degrees, in S. Cimato, C. Galdi, G. Persiano (eds.) SCN 02. LNCS, vol. 2576 (Springer, Heidelberg, Germany, Amalfi, Italy, Sep 12–13, 2003), pp. 257–267
– reference: E. Fujisaki, T. Okamoto, Secure integration of asymmetric and symmetric encryption schemes, in M.J. Wiener (ed.) CRYPTO’99. LNCS, vol. 1666 (Springer, Heidelberg, Germany, Santa Barbara, CA, USA, Aug 15–19, 1999), pp. 537–554
– reference: D. Boneh, M.K. Franklin, Identity-based encryption from the Weil pairing, in J. Kilian (ed.) CRYPTO 2001. LNCS, vol. 2139 (Springer, Heidelberg, Germany, Santa Barbara, CA, USA, Aug 19–23, 2001), pp. 213–229
– reference: V. Goyal, O. Pandey, A. Sahai, B. Waters, Attribute-based encryption for fine-grained access control of encrypted data, in A. Juels, R.N. Wright, S. De Capitani di Vimercati (eds.) ACM CCS 2006 (ACM Press, Alexandria, Virginia, USA, Oct 30–Nov 3, 2006), pp. 89–98, available as Cryptology ePrint Archive Report 2006/309
– reference: S. Agrawal, D. Boneh, X. Boyen, Efficient lattice (H)IBE in the standard model, in: H. Gilbert (ed.) EUROCRYPT 2010. LNCS, vol. 6110 (Springer, Heidelberg, Germany, French Riviera, May 30–June 3, 2010), pp. 553–572
– reference: R. Canetti, S. Halevi, J. Katz, A forward-secure public-key encryption scheme, in E. Biham (ed.) EUROCRYPT 2003. LNCS, vol. 2656 (Springer, Heidelberg, Germany, Warsaw, Poland, May 4–8, 2003), pp. 255–271
– reference: K. Gellert, Construction and security analysis of 0-RTT protocols. PhD thesis (2020)
– reference: E. Rescorla, The Transport Layer Security (TLS) Protocol Version 1.3. RFC 8446 (2018), https://rfc-editor.org/rfc/rfc8446.txt
– reference: M. Bellare, P. Rogaway, Random oracles are practical: a paradigm for designing efficient protocols, in D.E. Denning, R. Pyle, R. Ganesan, R.S. Sandhu, V. Ashby (eds.) ACM CCS 93. (ACM Press, Fairfax, Virginia, USA, Nov 3–5, 1993), pp. 62–73
– reference: A. Goel, P. Gupta, Small subset queries and bloom filters using ternary associative memories, with applications, in V. Misra, P. Barford, M.S. Squillante (eds.) SIGMETRICS 2010, Proceedings of the 2010 ACM SIGMETRICS International Conference on Measurement and Modeling of Computer Systems, New York, New York, USA, 14–18 June 2010 (ACM, 2010), pp. 143–154. https://doi.org/10.1145/1811039.1811056
– reference: F. Dallmeier, J.P. Drees, K. Gellert, T. Handirk, T. Jager, J. Klauke, S. Nachtigall, T. Renzelmann, R. Wolf, Forward-secure 0-RTT goes live: implementation and performance analysis in QUIC. Cryptology ePrint Archive, Report 2020/824 (2020), https://eprint.iacr.org/2020/824
– reference: D. Giampaolo, Practical File System Design with the Be File System. Morgan Kaufmann Publishers Inc., 1st edn (1998)
– reference: R. Ostrovsky, A. Sahai, B. Waters, Attribute-based encryption with non-monotonic access structures, in P. Ning, S. De Capitani di Vimercati, P.F. Syverson (eds.) ACM CCS 2007. (ACM Press, Alexandria, Virginia, USA, Oct 28–31, 2007), pp. 195–203
– reference: BloomBHSpace/time trade-offs in hash coding with allowable errorsCommun. ACM197013742242610.1145/362686.362692
– reference: D. Hofheinz, K. Hövelmanns, E. Kiltz, A modular analysis of the Fujisaki-Okamoto transformation. In: Y. Kalai, L. Reyzin (eds.) TCC 2017, Part I. LNCS, vol. 10677 (Springer, Heidelberg, Germany, Baltimore, MD, USA, Nov 12–15, 2017), pp. 341–371
– reference: T. Kim, R. Barbulescu, Extended tower number field sieve: A new complexity for the medium prime case, in M. Robshaw, J. Katz (eds.) CRYPTO 2016, Part I. LNCS, vol. 9814 (Springer, Heidelberg, Germany, Santa Barbara, CA, USA, Aug 14–18, 2016), pp. 543–571
– reference: F. Günther, B. Hale, T. Jager, S. Lauer, 0-RTT key exchange with full forward secrecy, in: J. Coron, J.B. Nielsen (eds.) EUROCRYPT 2017, Part III. LNCS, vol. 10212 (Springer, Heidelberg, Germany, Paris, France, Apr 30–May 4, 2017), pp. 519–548
– ident: 9374_CR12
  doi: 10.1007/3-540-44647-8_13
– ident: 9374_CR29
  doi: 10.1145/1811039.1811056
– ident: 9374_CR11
  doi: 10.1007/11426639_26
– ident: 9374_CR49
  doi: 10.1007/978-3-319-45741-3_16
– ident: 9374_CR21
– ident: 9374_CR45
  doi: 10.17487/RFC8446
– ident: 9374_CR35
  doi: 10.1007/978-3-319-61204-1_2
– ident: 9374_CR24
  doi: 10.1007/978-3-319-76578-5_8
– ident: 9374_CR40
– volume: 42
  start-page: 2182
  issue: 6
  year: 2013
  ident: 9374_CR41
  publication-title: SIAM J. Comput.
  doi: 10.1137/120867044
– ident: 9374_CR22
  doi: 10.1007/978-3-540-76900-2_12
– ident: 9374_CR31
  doi: 10.1109/SP.2015.26
– ident: 9374_CR32
  doi: 10.1007/11935230_29
– ident: 9374_CR26
– ident: 9374_CR3
  doi: 10.1007/978-3-030-17656-3_5
– ident: 9374_CR13
  doi: 10.1007/3-540-45682-1_30
– ident: 9374_CR33
  doi: 10.1007/978-3-319-56617-7_18
– ident: 9374_CR16
  doi: 10.1007/978-3-540-24676-3_13
– volume: 13
  start-page: 422
  issue: 7
  year: 1970
  ident: 9374_CR10
  publication-title: Commun. ACM
  doi: 10.1145/362686.362692
– ident: 9374_CR47
– ident: 9374_CR48
  doi: 10.1007/978-3-642-03356-8_36
– ident: 9374_CR36
  doi: 10.1007/978-3-642-19379-8_20
– ident: 9374_CR39
  doi: 10.1007/978-3-662-53018-4_20
– volume: 32
  start-page: 1298
  issue: 4
  year: 2019
  ident: 9374_CR4
  publication-title: J. Cryptol.
  doi: 10.1007/s00145-018-9280-5
– ident: 9374_CR6
  doi: 10.1007/11693383_22
– ident: 9374_CR1
  doi: 10.1007/978-3-642-13190-5_28
– ident: 9374_CR46
  doi: 10.1007/978-3-030-45374-9_11
– ident: 9374_CR14
  doi: 10.1093/comjnl/bxaa104
– ident: 9374_CR44
  doi: 10.1145/1315245.1315270
– ident: 9374_CR8
  doi: 10.1109/SP.2007.11
– ident: 9374_CR15
  doi: 10.1007/3-540-39200-9_16
– ident: 9374_CR30
– ident: 9374_CR19
  doi: 10.1007/978-3-642-40084-1_25
– ident: 9374_CR43
  doi: 10.1007/978-3-662-48000-7_28
– ident: 9374_CR5
  doi: 10.1007/3-540-36413-7_19
– ident: 9374_CR2
  doi: 10.1007/978-3-662-48797-6_24
– ident: 9374_CR17
– ident: 9374_CR42
– ident: 9374_CR9
  doi: 10.1007/978-3-662-44371-2_23
– ident: 9374_CR23
  doi: 10.1007/978-3-319-78372-7_14
– ident: 9374_CR37
  doi: 10.1007/978-3-319-70500-2_12
– ident: 9374_CR34
– ident: 9374_CR7
  doi: 10.1145/168588.168596
– ident: 9374_CR18
  doi: 10.1007/978-3-642-36095-4_4
– ident: 9374_CR27
  doi: 10.1007/3-540-36178-2_34
– ident: 9374_CR38
– ident: 9374_CR20
  doi: 10.1145/2897518.2897651
– ident: 9374_CR28
– ident: 9374_CR25
  doi: 10.1007/3-540-48405-1_34
SSID ssj0017573
Score 2.3879523
Snippet Forward secrecy is considered an essential design goal of modern key establishment (KE) protocols, such as TLS 1.3, for example. Furthermore, efficiency...
Forward secrecy is considered an essential design goal of modern key establishment (KE) protocols, such as TLS 1.3, for example. Furthermore, efficiency...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Algorithms
Coding and Information Theory
Combinatorics
Communications Engineering
Computational Mathematics and Numerical Analysis
Computer Science
Cryptography
Data structures
Encryption
Networks
Piercing
Probability Theory and Stochastic Processes
Title Bloom Filter Encryption and Applications to Efficient Forward-Secret 0-RTT Key Exchange
URI https://link.springer.com/article/10.1007/s00145-021-09374-3
https://www.proquest.com/docview/2499403988
Volume 34
WOSCitedRecordID wos000626856200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1432-1378
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017573
  issn: 0933-2790
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8MwGA46PXhxOhWnU3LwpoFsTZvmOKVDEIZsU3crzRcMRiddFffvTdKPqaig5yahvG-S5wnvxwPAhZ8QIjVTKAw1QcTrScQ8iRGTNNSYa0W7wolN0OEwnE7ZfVkUtqyy3auQpLup62I3y-ZtNbF5_hpMJcjbBFsG7kIr2DAaP9axA-oXcWVmVcoow2WpzPdrfIajNcf8EhZ1aDNo_u8_98BuyS5hv9gO-2BDpS3QrJQbYHmQW1aruczrOABP13NDnuFgZuPmMEpFtnLXCExSCfsf4tswX8DIdZwwQAUHi8wl3I4t78whRqPJBN6pFYzeimLiQ_AwiCY3t6iUW0DCgFKOuNKGTvmKcJmYR5jPDRVRgeKSm2NNhc-VIQfCU5SoIPAZJgL3EpzY9i6cCk28I9BIF6k6BtDjBvqlMF4XAeGaMq2Z1KKLLUdT2GuDbmX1WJS9yK0kxjyuuyg7K8bGirGzYmzmXNZznotOHL-O7lTOjMtTuYzNU5MR7LEwbIOrynnrzz-vdvK34adgp-f8bxN8OqCRZy_qDGyL13y2zM7dbn0HmnLh2g
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT8IwFG8UTfQiihpR1B68aZPCOroe0UAwIDGAym1ZvxISMsyYRv5727KBGjXR89pmeX2vv9_L-wLgwo8IkZopFASaIOLVJGKexIhJGmjMtaJV4YZN0F4vGI3YfVYUNsuz3fOQpHupl8Vuls3bamLj_hpMJchbBxvEIJbtmN8fPC5jB9RfxJWZnVJGGc5KZb4_4zMcrTjml7CoQ5tW8X__uQt2MnYJGwt12ANrKi6BYj65AWaGXLKzmrO8jn3wdD0x5Bm2xjZuDpuxSObuGYFRLGHjQ3wbplPYdB0nDFDB1jRxCbcDyztTiFF_OIQdNYfNt0Ux8QF4aDWHN22UjVtAwoBSirjShk75inAZGSfM54aKqLrikhuzpsLnypAD4SlKVL3uM0wErkU4su1dOBWaeIegEE9jdQSgxw30S2FuXdQJ15RpzaQWVWw5msJeGVRzqYci60VuR2JMwmUXZSfF0EgxdFIMzZ7L5Z7nRSeOX1dX8ssMM6uchcbVZAR7LAjK4Cq_vNXnn087_tvyc7DVHt51w-5tr3MCtmtOF2yyTwUU0uRFnYJN8ZqOZ8mZ09x3OTjkvg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA86RXzxW5yfefBNw7I1bZrHqSvKZIhO3VtpvmAwOqlV3H9vkrabigric5MQLne933H3uwPg2E8IkZopFIaaIOK1JGKexIhJGmrMtaJN4YZN0F4vHAzYzQcWv6t2r1KSBafBdmlK88aT1I0p8c0ie8ssNqGw8a8EefNggdhCehuv3z1M8wjUL3LMzE4sowyXtJnvz_jsmmZ480uK1HmeaPX_d14DKyXqhO1CTdbBnEo3wGo10QGWBr5hZziX9R6b4PFsZEA1jIY2nw47qcgm7vcCk1TC9oe8N8zHsOM6UZjLwGicuULcO4tHc4jRbb8Pu2oCO28FyXgL3Eed_vklKscwIGGcVY640gZm-YpwmZjgzOcGoqhAccmNuVPhc2VAg_AUJSoIfIaJwK0EJ7btC6dCE28b1NJxqnYA9LiBBFIYbRAB4ZoyrZnUooktdlPYq4Nm9QKxKHuU21EZo3jaXdlJMTZSjJ0UY7PnZLrnqejQ8evq_eph49Jan2MTgjKCPRaGdXBaPeTs88-n7f5t-RFYurmI4uurXncPLLecKtgaoH1Qy7MXdQAWxWs-fM4OnRK_A1TG7aI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bloom+Filter+Encryption+and+Applications+to+Efficient+Forward-Secret+0-RTT+Key+Exchange&rft.jtitle=Journal+of+cryptology&rft.au=Derler%2C+David&rft.au=Gellert%2C+Kai&rft.au=Jager%2C+Tibor&rft.au=Slamanig%2C+Daniel&rft.date=2021-04-01&rft.issn=0933-2790&rft.eissn=1432-1378&rft.volume=34&rft.issue=2&rft_id=info:doi/10.1007%2Fs00145-021-09374-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00145_021_09374_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0933-2790&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0933-2790&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0933-2790&client=summon