Adaptive Experimental Design Using the Propensity Score

Many social experiments are run in multiple waves or replicate earlier social experiments. In principle, the sampling design can be modified in later stages or replications to allow for more efficient estimation of causal effects. We consider the design of a two-stage experiment for estimating an av...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of business & economic statistics Ročník 29; číslo 1; s. 96 - 108
Hlavní autoři: Hahn, Jinyong, Hirano, Keisuke, Karlan, Dean
Médium: Journal Article
Jazyk:angličtina
Vydáno: Alexandria Taylor & Francis 01.01.2011
American Statistical Association
Taylor & Francis Ltd
Témata:
ISSN:0735-0015, 1537-2707
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Many social experiments are run in multiple waves or replicate earlier social experiments. In principle, the sampling design can be modified in later stages or replications to allow for more efficient estimation of causal effects. We consider the design of a two-stage experiment for estimating an average treatment effect when covariate information is available for experimental subjects. We use data from the first stage to choose a conditional treatment assignment rule for units in the second stage of the experiment. This amounts to choosing the propensity score, the conditional probability of treatment given covariates. We propose to select the propensity score to minimize the asymptotic variance bound for estimating the average treatment effect. Our procedure can be implemented simply using standard statistical software and has attractive large-sample properties.
Bibliografie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ISSN:0735-0015
1537-2707
DOI:10.1198/jbes.2009.08161