Prediction modeling of cigarette ventilation rate based on genetic algorithm backpropagation (GABP) neural network

The ventilation rate of cigarettes is an important indicator that affects the internal quality of cigarettes. When producing cigarettes, the unit may experience unstable ventilation rates, which can lead to a decrease in cigarette quality and pose certain risks to smokers. By establishing the ventil...

Full description

Saved in:
Bibliographic Details
Published in:EURASIP journal on advances in signal processing Vol. 2024; no. 1; pp. 25 - 14
Main Authors: Wei, Jiaxin, Wang, Zhengwei, Li, Shufang, Wang, Xiaoming, Xu, Huan, Wang, Xiushan, Yao, Sen, Song, Weimin, Wang, Youwei, Mei, Chao
Format: Journal Article
Language:English
Published: Cham Springer International Publishing 22.02.2024
Springer Nature B.V
SpringerOpen
Subjects:
ISSN:1687-6180, 1687-6172, 1687-6180
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The ventilation rate of cigarettes is an important indicator that affects the internal quality of cigarettes. When producing cigarettes, the unit may experience unstable ventilation rates, which can lead to a decrease in cigarette quality and pose certain risks to smokers. By establishing the ventilation rate prediction model, guide the design of unit parameters in advance, to achieve the goal of stabilizing unit ventilation rate, improve the stability of cigarette ventilation rate, and enhance the quality of cigarettes. This paper used multiple linear regression networks (MLR), backpropagation neural networks (BPNN), and genetic algorithm-optimized backpropagation (GABP) to construct a model for the prediction of cigarette ventilation rate. The model results indicated that the total ventilation rate was significantly positively correlated with weight ( P  < 0.01), circumference, hardness, filter air permeability, and open resistance. The results showed that the MLR models' (RMSE = 0.652, R 2  = 0.841) and the BPNN models’ (RMSE = 0.640, R 2  = 0.847) prediction ability were limited. Optimization by genetic algorithm, GABP models were generated and exhibited a little better prediction performance (RMSE = 0.606, R 2  = 0.873). The results indicated that the GABP model has the highest accuracy in the prediction of predicting ventilation rate and can accurately predict cigarette ventilation rate. This method can provide theoretical guidance and technical support for the stability study of the ventilation rate of the unit, improve the design and manufacturing capabilities and product quality of short cigarette products, and help to improve the quality of cigarettes.
AbstractList The ventilation rate of cigarettes is an important indicator that affects the internal quality of cigarettes. When producing cigarettes, the unit may experience unstable ventilation rates, which can lead to a decrease in cigarette quality and pose certain risks to smokers. By establishing the ventilation rate prediction model, guide the design of unit parameters in advance, to achieve the goal of stabilizing unit ventilation rate, improve the stability of cigarette ventilation rate, and enhance the quality of cigarettes. This paper used multiple linear regression networks (MLR), backpropagation neural networks (BPNN), and genetic algorithm-optimized backpropagation (GABP) to construct a model for the prediction of cigarette ventilation rate. The model results indicated that the total ventilation rate was significantly positively correlated with weight ( P  < 0.01), circumference, hardness, filter air permeability, and open resistance. The results showed that the MLR models' (RMSE = 0.652, R 2  = 0.841) and the BPNN models’ (RMSE = 0.640, R 2  = 0.847) prediction ability were limited. Optimization by genetic algorithm, GABP models were generated and exhibited a little better prediction performance (RMSE = 0.606, R 2  = 0.873). The results indicated that the GABP model has the highest accuracy in the prediction of predicting ventilation rate and can accurately predict cigarette ventilation rate. This method can provide theoretical guidance and technical support for the stability study of the ventilation rate of the unit, improve the design and manufacturing capabilities and product quality of short cigarette products, and help to improve the quality of cigarettes.
The ventilation rate of cigarettes is an important indicator that affects the internal quality of cigarettes. When producing cigarettes, the unit may experience unstable ventilation rates, which can lead to a decrease in cigarette quality and pose certain risks to smokers. By establishing the ventilation rate prediction model, guide the design of unit parameters in advance, to achieve the goal of stabilizing unit ventilation rate, improve the stability of cigarette ventilation rate, and enhance the quality of cigarettes. This paper used multiple linear regression networks (MLR), backpropagation neural networks (BPNN), and genetic algorithm-optimized backpropagation (GABP) to construct a model for the prediction of cigarette ventilation rate. The model results indicated that the total ventilation rate was significantly positively correlated with weight (P < 0.01), circumference, hardness, filter air permeability, and open resistance. The results showed that the MLR models' (RMSE = 0.652, R2 = 0.841) and the BPNN models’ (RMSE = 0.640, R2 = 0.847) prediction ability were limited. Optimization by genetic algorithm, GABP models were generated and exhibited a little better prediction performance (RMSE = 0.606, R2 = 0.873). The results indicated that the GABP model has the highest accuracy in the prediction of predicting ventilation rate and can accurately predict cigarette ventilation rate. This method can provide theoretical guidance and technical support for the stability study of the ventilation rate of the unit, improve the design and manufacturing capabilities and product quality of short cigarette products, and help to improve the quality of cigarettes.
Abstract The ventilation rate of cigarettes is an important indicator that affects the internal quality of cigarettes. When producing cigarettes, the unit may experience unstable ventilation rates, which can lead to a decrease in cigarette quality and pose certain risks to smokers. By establishing the ventilation rate prediction model, guide the design of unit parameters in advance, to achieve the goal of stabilizing unit ventilation rate, improve the stability of cigarette ventilation rate, and enhance the quality of cigarettes. This paper used multiple linear regression networks (MLR), backpropagation neural networks (BPNN), and genetic algorithm-optimized backpropagation (GABP) to construct a model for the prediction of cigarette ventilation rate. The model results indicated that the total ventilation rate was significantly positively correlated with weight (P < 0.01), circumference, hardness, filter air permeability, and open resistance. The results showed that the MLR models' (RMSE = 0.652, R 2 = 0.841) and the BPNN models’ (RMSE = 0.640, R 2 = 0.847) prediction ability were limited. Optimization by genetic algorithm, GABP models were generated and exhibited a little better prediction performance (RMSE = 0.606, R 2 = 0.873). The results indicated that the GABP model has the highest accuracy in the prediction of predicting ventilation rate and can accurately predict cigarette ventilation rate. This method can provide theoretical guidance and technical support for the stability study of the ventilation rate of the unit, improve the design and manufacturing capabilities and product quality of short cigarette products, and help to improve the quality of cigarettes.
ArticleNumber 25
Author Xu, Huan
Wei, Jiaxin
Wang, Zhengwei
Wang, Xiushan
Wang, Youwei
Li, Shufang
Song, Weimin
Mei, Chao
Yao, Sen
Wang, Xiaoming
Author_xml – sequence: 1
  givenname: Jiaxin
  surname: Wei
  fullname: Wei, Jiaxin
  organization: Xuchang Cigarette Factory of Henan Zhongyan Industry Co., Ltd
– sequence: 2
  givenname: Zhengwei
  surname: Wang
  fullname: Wang, Zhengwei
  organization: Xuchang Cigarette Factory of Henan Zhongyan Industry Co., Ltd
– sequence: 3
  givenname: Shufang
  surname: Li
  fullname: Li, Shufang
  organization: Xuchang Cigarette Factory of Henan Zhongyan Industry Co., Ltd
– sequence: 4
  givenname: Xiaoming
  surname: Wang
  fullname: Wang, Xiaoming
  organization: Xuchang Cigarette Factory of Henan Zhongyan Industry Co., Ltd
– sequence: 5
  givenname: Huan
  orcidid: 0009-0003-1002-0785
  surname: Xu
  fullname: Xu, Huan
  email: xh990321@163.com
  organization: College of Mechanical and Electrical Engineering, Henan Agricultural University
– sequence: 6
  givenname: Xiushan
  surname: Wang
  fullname: Wang, Xiushan
  organization: College of Mechanical and Electrical Engineering, Henan Agricultural University
– sequence: 7
  givenname: Sen
  surname: Yao
  fullname: Yao, Sen
  organization: College of Mechanical and Electrical Engineering, Henan Agricultural University
– sequence: 8
  givenname: Weimin
  surname: Song
  fullname: Song, Weimin
  organization: Technology Center, China Tobacco Henan Industrial Co., Ltd
– sequence: 9
  givenname: Youwei
  surname: Wang
  fullname: Wang, Youwei
  organization: College of Mechanical and Electrical Engineering, Henan Agricultural University
– sequence: 10
  givenname: Chao
  surname: Mei
  fullname: Mei, Chao
  organization: College of Mechanical and Electrical Engineering, Henan Agricultural University
BookMark eNp9UU9PHSEcJMYmVdsv0NMmXuxhW_4tC0drrJqY6EHPhIXfrjz3wRN4bfz2xbdtbDx4ID8YZiYDc4j2QwyA0BeCvxEixfdMmGC8xbQuQohqyR46IEL2rSAS7_-3_4gOc15h3AmK6QFKtwmct8XH0Kyjg9mHqYljY_1kEpQCzS8Ixc9mx0imAoPJ4Jp6miBA8bYx8xSTLw_remUfNyluzLTwTy5Of9x-bQJsk5nrKL9jevyEPoxmzvD57zxC9z_P784u2-ubi6uz0-vWcqpKO1jqeit72TM2gmNOUgxWCdcZAYNzw9APVnE-SC4EGyvSOapGsG7kmGBgR-hq8XXRrPQm-bVJzzoar3dATJM2qeafQSsiHHAlmeqBOzMOuMPVjQvSOyWNq17Hi1d93dMWctGruE2hxtdUMUyxxKKrLLmwbIo5Jxi19WX3EyUZP2uC9UtbemlL17b0ri1NqpS-kf4L_K6ILaJcyWGC9JrqHdUfXmmrgQ
CitedBy_id crossref_primary_10_1016_j_infrared_2024_105374
crossref_primary_10_1016_j_jwpe_2025_107973
crossref_primary_10_1080_10589759_2024_2377737
Cites_doi 10.1016/j.psep.2023.06.047
10.1016/j.scitotenv.2023.161976
10.1007/s11042-018-7092-0
10.1016/j.jprocont.2018.03.005
10.1016/j.buildenv.2021.107744
10.1016/j.biortech.2021.126083
10.1016/j.conbuildmat.2023.132127
10.1016/j.apenergy.2021.117567
10.1016/j.renene.2021.06.079
10.1016/j.cscee.2023.100552
10.1016/j.foodcont.2021.108599
ContentType Journal Article
Copyright The Author(s) 2024
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
3V.
7SC
7SP
7XB
8AL
8FD
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M0N
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOA
DOI 10.1186/s13634-024-01119-1
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList CrossRef
Publicly Available Content Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1687-6180
EndPage 14
ExternalDocumentID oai_doaj_org_article_916de498397e4dafb0505d24617d98ad
10_1186_s13634_024_01119_1
GrantInformation_xml – fundername: China Tobacco Henan Industrial Co., Ltd.
  grantid: No. A2020040; No. 202102110120; No. AW2022025
GroupedDBID -A0
.4S
.DC
0R~
29G
2WC
3V.
4.4
40G
5GY
5VS
6OB
8FE
8FG
8R4
8R5
AAFWJ
AAJSJ
AAKKN
AAKPC
ABEEZ
ABUWG
ACACY
ACGFO
ACGFS
ACULB
ADBBV
ADINQ
ADMLS
AEGXH
AENEX
AFGXO
AFKRA
AFPKN
AHBYD
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
ARAPS
ARCSS
AZQEC
BAPOH
BCNDV
BENPR
BGLVJ
BPHCQ
C24
C6C
CCPQU
DU5
DWQXO
E3Z
EBLON
EBS
EDO
F5P
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ITC
K6V
K7-
KQ8
M0N
M~E
OK1
P62
PIMPY
PQQKQ
PROAC
Q2X
RHU
RHW
RNS
RSV
SEG
SOJ
TUS
U2A
AASML
AAYXX
CITATION
OVT
7SC
7SP
7XB
8AL
8FD
8FK
JQ2
L7M
L~C
L~D
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQUKI
Q9U
ID FETCH-LOGICAL-c429t-bc2d7c878733fed3d820ec96d5a6ebddbb7bc944b84663fbdd5d29fecdf4010e3
IEDL.DBID C24
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001171959800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1687-6180
1687-6172
IngestDate Tue Oct 14 19:03:13 EDT 2025
Sat Oct 11 06:11:59 EDT 2025
Sat Nov 29 03:12:13 EST 2025
Tue Nov 18 22:12:53 EST 2025
Fri Feb 21 02:42:01 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Tobacco
BP neural network
Genetics algorithm
Multiple linear regression
Ventilation rate
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c429t-bc2d7c878733fed3d820ec96d5a6ebddbb7bc944b84663fbdd5d29fecdf4010e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0003-1002-0785
OpenAccessLink https://link.springer.com/10.1186/s13634-024-01119-1
PQID 2930208065
PQPubID 237299
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_916de498397e4dafb0505d24617d98ad
proquest_journals_2930208065
crossref_citationtrail_10_1186_s13634_024_01119_1
crossref_primary_10_1186_s13634_024_01119_1
springer_journals_10_1186_s13634_024_01119_1
PublicationCentury 2000
PublicationDate 2024-02-22
PublicationDateYYYYMMDD 2024-02-22
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-22
  day: 22
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: New York
PublicationTitle EURASIP journal on advances in signal processing
PublicationTitleAbbrev EURASIP J. Adv. Signal Process
PublicationYear 2024
Publisher Springer International Publishing
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
– name: SpringerOpen
References Hayati, Munawar, Lukitaningsih (CR18) 2024; 9
Wu, Li, Lei (CR12) 2023; 176
Zhao, Zhang, Wang (CR20) 2022; 133
CR16
Wang, Zhao, Zhao (CR4) 2022; 43
Ramadhan, Heatubun, Tan (CR7) 2021; 178
Xi, Chai, Yun (CR13) 1996; 06
Wang, Deng, Wu (CR6) 2022; 55
Liu, Lin, Zhong (CR14) 2023; 870
Wang, You, Cui (CR2) 2017; 50
CR22
He, Zhang (CR11) 2018; 66
Kargbo, Zhang, Phan (CR23) 2021; 302
Chen, Song, Xu (CR15) 2023; 394
Zhang (CR5) 2019; 35
Huang, Li (CR17) 2019; 40
Hu, Yuan, Li (CR21) 2022; 343
Fei, Zhou, Yang (CR10) 2014; 47
Dong, Zhang, Wang (CR1) 2022; 55
Zhu, Wu, Wang (CR19) 2020; 79
Qu, Zhang, Jiang (CR3) 2020; 32
Lin (CR9) 2010; 09
Park, Park (CR8) 2021; 195
LL Zhao (1119_CR20) 2022; 133
X Qu (1119_CR3) 2020; 32
H Fei (1119_CR10) 2014; 47
1119_CR22
ZZ Hu (1119_CR21) 2022; 343
R Hayati (1119_CR18) 2024; 9
1119_CR16
J Zhu (1119_CR19) 2020; 79
H Wang (1119_CR4) 2022; 43
Z Zhang (1119_CR5) 2019; 35
F He (1119_CR11) 2018; 66
K Liu (1119_CR14) 2023; 870
R Chen (1119_CR15) 2023; 394
B Lin (1119_CR9) 2010; 09
L Wang (1119_CR2) 2017; 50
Y Wu (1119_CR12) 2023; 176
W Huang (1119_CR17) 2019; 40
Y Xi (1119_CR13) 1996; 06
RAA Ramadhan (1119_CR7) 2021; 178
H Dong (1119_CR1) 2022; 55
HO Kargbo (1119_CR23) 2021; 302
L Wang (1119_CR6) 2022; 55
H Park (1119_CR8) 2021; 195
References_xml – volume: 35
  start-page: 117
  issue: 09
  year: 2019
  end-page: 119
  ident: CR5
  article-title: Explore the impact of various physical indicators on the total ventilation rate of cigarettes
  publication-title: Light Ind. Sci. Technol.
– ident: CR22
– volume: 176
  start-page: 653
  year: 2023
  end-page: 661
  ident: CR12
  article-title: Prediction of pyrolysis product yield of medical waste based on BP neural network
  publication-title: Process. Saf. Environ. Prot.
  doi: 10.1016/j.psep.2023.06.047
– volume: 870
  start-page: 161976
  year: 2023
  ident: CR14
  article-title: New methods based on a genetic algorithm back propagation (GABP) neural network and general regression neural network (GRNN) for predicting the occurrence of trihalomethanes in tap water
  publication-title: Sci. Total. Environ.
  doi: 10.1016/j.scitotenv.2023.161976
– volume: 79
  start-page: 14539
  year: 2020
  end-page: 14551
  ident: CR19
  article-title: Identification of grape diseases using image analysis and BP neural networks
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-018-7092-0
– ident: CR16
– volume: 66
  start-page: 51
  year: 2018
  end-page: 58
  ident: CR11
  article-title: Prediction model of end-point phosphorus content in BOF steelmaking process based on PCA and BP neural network
  publication-title: J. Process. Control.
  doi: 10.1016/j.jprocont.2018.03.005
– volume: 195
  start-page: 107744
  year: 2021
  ident: CR8
  article-title: Comparative analysis on predictability of natural ventilation rate based on machine learning algorithms
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2021.107744
– volume: 343
  start-page: 126083
  year: 2022
  ident: CR21
  article-title: Yield prediction of “Thermal-dissolution based carbon enrichment” treatment on biomass wastes through coupled model of artificial neural network and AdaBoost
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2021.126083
– volume: 394
  start-page: 132127
  year: 2023
  ident: CR15
  article-title: Prediction of the corrosion depth of oil well cement corroded by carbon dioxide using GA-BP neural network
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2023.132127
– volume: 55
  start-page: 83
  issue: 07
  year: 2022
  end-page: 89+112
  ident: CR1
  article-title: Design and application of quality monitoring samples for main physical indicators of cigarettes
  publication-title: Tob. Sci. Technol.
– volume: 302
  start-page: 117567
  year: 2021
  ident: CR23
  article-title: Optimisation of two-stage biomass gasification for hydrogen production via artificial neural network
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2021.117567
– volume: 178
  start-page: 1006
  year: 2021
  end-page: 1019
  ident: CR7
  article-title: Comparison of physical and machine learning models for estimating solar irradiance and photovoltaic power
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2021.06.079
– volume: 32
  start-page: 64
  issue: 04
  year: 2020
  end-page: 68
  ident: CR3
  article-title: Correlation analysis of physical indicators of thin cigarettes
  publication-title: J. Hunan Univ. Arts Sci. (Natl. Sci. Edit.)
– volume: 09
  start-page: 60
  year: 2010
  end-page: 61
  ident: CR9
  article-title: Multiple linear regression analysis and its application
  publication-title: China Sci. Technol. Inf.
– volume: 06
  start-page: 697
  year: 1996
  end-page: 708
  ident: CR13
  article-title: Overview of genetic algorithms
  publication-title: Control Theory Appl.
– volume: 43
  start-page: 60
  issue: 05
  year: 2022
  end-page: 64
  ident: CR4
  article-title: Mathematical model and application of cigarette smoking resistance based on multiple regression
  publication-title: Food Ind.
– volume: 40
  start-page: 144
  issue: 01
  year: 2019
  end-page: 149
  ident: CR17
  article-title: Analysis of main factors affecting the development of tourism areas based on SPSS data analysis
  publication-title: Software
– volume: 9
  start-page: 100552
  year: 2024
  ident: CR18
  article-title: Combination of PCA with LDA and SVM classifiers: a model for determining the geographical origin of coconut in the coastal plantation, Aceh Province, Indonesia
  publication-title: Case Stud. Chem. Environ. Eng.
  doi: 10.1016/j.cscee.2023.100552
– volume: 133
  start-page: 108599
  year: 2022
  ident: CR20
  article-title: Monitoring of free fatty acid content in mixed frying oils by means of LF NMR and NIR combined with BP-ANN
  publication-title: Food Control
  doi: 10.1016/j.foodcont.2021.108599
– volume: 55
  start-page: 66
  issue: 5
  year: 2022
  end-page: 72
  ident: CR6
  article-title: The relationship between bite-by-mouth dynamic absorption resistance and dynamic ventilation rate of cigarettes based on linear network model
  publication-title: Tob. Technol.
– volume: 50
  start-page: 85
  issue: 12
  year: 2017
  end-page: 89
  ident: CR2
  article-title: Prediction method of cigarette suction resistance and ventilation characteristics based on linear network model
  publication-title: Tob. Technol.
– volume: 47
  start-page: 49
  issue: 6
  year: 2014
  end-page: 53
  ident: CR10
  article-title: Prediction model of potassium chloride ratio of flue-cured tobacco based on particle swarm optimization BP neural network
  publication-title: Tob. Technol.
– volume: 47
  start-page: 49
  issue: 6
  year: 2014
  ident: 1119_CR10
  publication-title: Tob. Technol.
– volume: 176
  start-page: 653
  year: 2023
  ident: 1119_CR12
  publication-title: Process. Saf. Environ. Prot.
  doi: 10.1016/j.psep.2023.06.047
– ident: 1119_CR22
– volume: 133
  start-page: 108599
  year: 2022
  ident: 1119_CR20
  publication-title: Food Control
  doi: 10.1016/j.foodcont.2021.108599
– volume: 55
  start-page: 66
  issue: 5
  year: 2022
  ident: 1119_CR6
  publication-title: Tob. Technol.
– volume: 40
  start-page: 144
  issue: 01
  year: 2019
  ident: 1119_CR17
  publication-title: Software
– ident: 1119_CR16
– volume: 870
  start-page: 161976
  year: 2023
  ident: 1119_CR14
  publication-title: Sci. Total. Environ.
  doi: 10.1016/j.scitotenv.2023.161976
– volume: 35
  start-page: 117
  issue: 09
  year: 2019
  ident: 1119_CR5
  publication-title: Light Ind. Sci. Technol.
– volume: 66
  start-page: 51
  year: 2018
  ident: 1119_CR11
  publication-title: J. Process. Control.
  doi: 10.1016/j.jprocont.2018.03.005
– volume: 178
  start-page: 1006
  year: 2021
  ident: 1119_CR7
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2021.06.079
– volume: 50
  start-page: 85
  issue: 12
  year: 2017
  ident: 1119_CR2
  publication-title: Tob. Technol.
– volume: 06
  start-page: 697
  year: 1996
  ident: 1119_CR13
  publication-title: Control Theory Appl.
– volume: 55
  start-page: 83
  issue: 07
  year: 2022
  ident: 1119_CR1
  publication-title: Tob. Sci. Technol.
– volume: 43
  start-page: 60
  issue: 05
  year: 2022
  ident: 1119_CR4
  publication-title: Food Ind.
– volume: 394
  start-page: 132127
  year: 2023
  ident: 1119_CR15
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2023.132127
– volume: 343
  start-page: 126083
  year: 2022
  ident: 1119_CR21
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2021.126083
– volume: 9
  start-page: 100552
  year: 2024
  ident: 1119_CR18
  publication-title: Case Stud. Chem. Environ. Eng.
  doi: 10.1016/j.cscee.2023.100552
– volume: 32
  start-page: 64
  issue: 04
  year: 2020
  ident: 1119_CR3
  publication-title: J. Hunan Univ. Arts Sci. (Natl. Sci. Edit.)
– volume: 09
  start-page: 60
  year: 2010
  ident: 1119_CR9
  publication-title: China Sci. Technol. Inf.
– volume: 79
  start-page: 14539
  year: 2020
  ident: 1119_CR19
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-018-7092-0
– volume: 195
  start-page: 107744
  year: 2021
  ident: 1119_CR8
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2021.107744
– volume: 302
  start-page: 117567
  year: 2021
  ident: 1119_CR23
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2021.117567
SSID ssj0056202
Score 2.3961415
Snippet The ventilation rate of cigarettes is an important indicator that affects the internal quality of cigarettes. When producing cigarettes, the unit may...
Abstract The ventilation rate of cigarettes is an important indicator that affects the internal quality of cigarettes. When producing cigarettes, the unit may...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 25
SubjectTerms Artificial neural networks
Back propagation
Back propagation networks
BP neural network
Cigarettes
Design improvements
Design parameters
Engineering
Genetic algorithms
Genetics algorithm
Multiple linear regression
Neural networks
Prediction models
Predictions
Quantum Information Technology
Signal Processing and Machine Learning in Autonomous Systems
Signal,Image and Speech Processing
Spintronics
Stability
Technical services
Tobacco
Ventilation
Ventilation rate
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZQxQEOq-WlDRTkAwdWYLWxXSc5tojCqeqBlXqz_IRqd9tVGvj9O2OnpUUCLhzjONJoZjwzjsffR8hbaTj3UdUsRi6ZVMIw01jJuJAhwnoaT4xNZBPVYlGvVs3yiOoLe8IyPHBW3AjKFx9kA3m8CtKbaJF6zSMKWuWb2niMvlD17DdTOQZDUse-nXxFplajXSmUkAzyEUNu9YaVJ2koofWflJi_nYqmZDM_J2d9lUinWbon5EHYPCWPj7ADn5F22eIZC-qVJjobGKXbSN06Edd2gaZOxtzqRhEQgmLG8hSewGnw7iI1N9-27br7fguv3DXIBdElz3_3eTpbXlJEuwQ5NrlX_Dm5mn_6-vEL6wkUmIM00zHruK9cDWtSiBi88JDug2uUnxgVrPfWVtY1UlooQpSIMAKabWJwPsK2axzECzLYbDfhglBECvPcqbHHH0URyhwwBcQmEyZ4IYoXpNzrU7seXRxJLm502mXUSmcbaLCBTjbQZUHeH765y9gaf509QzMdZiIudhoAb9G9t-h_eUtBhnsj636x7jRUPEhVCsVYQT7sDf_r9Z9Fevk_RHpFHvHkmJxxPiSDrv0RXpOH7me33rVvklvfA_EA-to
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Computer Science Database
  dbid: K7-
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB1B4QAHvhELBfnAAQRWN7bXSU6oRRQkpGoPIPVm2R67rSi7JRv4_cw4SUuR6IVjbCcZacYzY3v8HsBL45XCbBuZszLSWO2lb4ORSpuUaT7NFz4Uson64KA5PGyX44bbZiyrnHxicdS4jrxHvkNhifkkKWK-O_shmTWKT1dHCo3rcKNSqmI7_1zLyRNTaB9qDm1TrsKp6dJMY3c2lbbaSIpQktnWW1ldCkwFv_9S0vnXOWkJP_t3_1fwe3BnTDzF7mAp9-FaWj2A23_AET6EbtnxsQ2rShSGHGoV6yziSeHC7ZMoxZFD9ZxgjAnBQRAFPZEd8nVI4U-P6Of98Xfqit9IVHJYw_hXH3f3lq8FA2iSHKuh_PwRfN3_8OX9JzlyMshIkauXISqsY0PTXOucUCNlECm2FhfepoAYQh1ia0ygvMbqTC0LVG1OETOt5OZJP4at1XqVnoBg8DFU0c6R954yZU4-B3J3Pi34jpWaQTUpxMURsJx5M05dWbg01g1KdKREV5Toqhm8OX_nbIDruHL0Huv5fCRDbZeGdXfkxpnrKH_GZFpKJOtkkERk7j9kGL4a28bjDLYnvbtx_m_chdJn8HaynIvuf4v09OqvPYNbqtiskkptw1bf_UzP4Wb81Z9suhfF-n8DX8EKqA
  priority: 102
  providerName: ProQuest
Title Prediction modeling of cigarette ventilation rate based on genetic algorithm backpropagation (GABP) neural network
URI https://link.springer.com/article/10.1186/s13634-024-01119-1
https://www.proquest.com/docview/2930208065
https://doaj.org/article/916de498397e4dafb0505d24617d98ad
Volume 2024
WOSCitedRecordID wos001171959800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Open Access Full Text
  customDbUrl:
  eissn: 1687-6180
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0056202
  issn: 1687-6180
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVAVX
  databaseName: SpringerOpen
  customDbUrl:
  eissn: 1687-6180
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0056202
  issn: 1687-6180
  databaseCode: C24
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NaxQxFA_SetCDH63i1rrk4KHSBneTTGZy7JZWRboMRaH2EvJZF-uuzI7-_b6XmalWqKCXwOQDMsl7eb8kL79HyEtpOQ9JVSwlLplUwjKrnWRcyJhAnyaFdTnYRDmfV-fnuu4fha0Hb_fhSjKv1FmtK_V6PRVKSAY2hWF8dM1gz7NZTCuNcn2Ebxy69RcMOvrs7Nze7oYJykz9N-DlHzei2dCcPPy_Lj4iD3pgSQ87SXhM7sTlFrn_G93gNmnqBq9lcCpojoADuXSVqF_kWLdtpNn5sfOOo8ghQdHIBQpfIGf43JHaq8tVs2g_f4Ui_wV-Bxakrv7em8NZ_YoiQSb0Y9m5lz8hH0-OPxy9ZX3MBebBMrXMeR5KX4EaC5FiEAEQQvRahcKq6EJwrnReS-kAtyiRIKcIXKfoQ4Kd2iSKp2RjuVrGZ4QiuVjgXk0Cni0lQEY2OVjObCzwDRUfkekwDcb3hOQYF-PK5I1JpUw3ngbG0-TxNNMR2b9u862j4_hr7RnO7nVNpNLOGavm0vSaaQAfhyg1AMUyygBdxNh-AWn2yqArG0Zkd5AN0-v32gBIwuimgN9G5GCQhV_Ft3dp59-qPyf3eBYnzjjfJRtt8z2-IHf9j3axbsZkc3Y8r8_GWf7H-TgB0vclg7QuLqC8fndaf_oJMz0Elg
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggQcylssLeADSCCwumt7neSAUAuUVltWeyhSb278KhVlt2RDK_4Uv5EZJ2kpEr31wDGOYznONw_HM_MBPFOlED7qnMcoFFdalrwsrOJCqhBRnvrD0iayiWw8znd3i8kC_OpyYSisstOJSVH7maN_5KtolohPEi3m26PvnFij6HS1o9BoYDEKP09wyzZ_s_Uev-9zITY-7Lzb5C2rAHeoe2tunfCZyxGoUsbgpUcbGFyh_bDUwXpvbWZdoZRFy6xlxJahF0UMzkfci_SDxHGvwFUl84xq9Y8y3ml-dCWaGEedp9Q70SXp5Hp1PpBaKo4WkRO7e8EH5wxh4gs45-T-dS6bzN3Grf9toW7DUutYs7VGEu7AQpjehZt_lFu8B9WkomMpgiJLDEDYymaRuYPE9VsHloI_m-hARjU0GBl5z_AK5YzSPVl5uI8vW3_5hrfcV1waVMhN_xcf19YnLxkVCMV5TJvw-vvw-VJe-gEsTmfT8BAYFVfzwum-p39rET3DMlpU52UYUg6Z6MGgA4BxbUF24gU5NGljlmvTgMYgaEwCjRn04NXpM0dNOZILe68Trk57Uinx1DCr9k2rmQzuD3xQBTrKWVAep0jchp7KDGa-yEvfg5UOZ6bVb3NzBrIevO6Qenb731N6dPFoT-H65s6nbbO9NR4tww2R5EVwIVZgsa5-hMdwzR3XB_PqSZI8BnuXjeDfveRsBQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VghAc-EYsFPABJBBYu2s7TnJAqKUsVItWewCpN-P4o1SU3ZINIP4av44ZJ2kpEr31wDGOEznJm3l2PDMP4JGyQvioCx6jUFxpabktK8WFVCGiPY0yWyWxiXw2K3Z3y_ka_OpzYSissveJyVH7paN_5EOkJdKTRMYcxi4sYr49eXn4lZOCFO209nIaLUSm4ecPXL6tXuxs47d-LMTk9ftXb3mnMMAd-uGGV0743BUIWilj8NIjHwZXap9ZHSrvqyqvXKlUhSytZcSWzIsyBucjrktGQeJ9z8F5ZOGMbGya854FcFrRxjvqIqXhiT5hp9DD1VhqqTiyIyel95KPT5Bi0g44MeH9a482Ud_k6v_80q7BlW7CzTZbC7kOa2FxAy7_UYbxJtTzmrarCKIsKQNhK1tG5vaTBnATWAoKbaMGGdXWYET-nuER2h-lgTJ7sIcP23z6gqfcZ3xN6Kjb_k_ebG7NnzIqHIrjWLRh97fgw5k89G1YXywX4Q4wKrrmhdMjT__cIs4YbazQzduQUW6ZGMC4B4NxXaF20gs5MGnBVmjTAsgggEwCkBkP4NnRNYdtmZJTe28Rxo56Uonx1LCs90znsQyuG3xQJU6g86A8DpE0Dz2VH8x9WVg_gI0ec6bzeytzDLgBPO9Re3z630O6e_rdHsJFBK55tzOb3oNLIpmO4EJswHpTfwv34YL73uyv6gfJCBl8PGsA_wYianS_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+modeling+of+cigarette+ventilation+rate+based+on+genetic+algorithm+backpropagation+%28GABP%29+neural+network&rft.jtitle=EURASIP+journal+on+advances+in+signal+processing&rft.au=Wei%2C+Jiaxin&rft.au=Wang%2C+Zhengwei&rft.au=Li%2C+Shufang&rft.au=Wang%2C+Xiaoming&rft.date=2024-02-22&rft.issn=1687-6180&rft.eissn=1687-6180&rft.volume=2024&rft.issue=1&rft_id=info:doi/10.1186%2Fs13634-024-01119-1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s13634_024_01119_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-6180&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-6180&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-6180&client=summon