Prediction modeling of cigarette ventilation rate based on genetic algorithm backpropagation (GABP) neural network
The ventilation rate of cigarettes is an important indicator that affects the internal quality of cigarettes. When producing cigarettes, the unit may experience unstable ventilation rates, which can lead to a decrease in cigarette quality and pose certain risks to smokers. By establishing the ventil...
Saved in:
| Published in: | EURASIP journal on advances in signal processing Vol. 2024; no. 1; pp. 25 - 14 |
|---|---|
| Main Authors: | , , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Cham
Springer International Publishing
22.02.2024
Springer Nature B.V SpringerOpen |
| Subjects: | |
| ISSN: | 1687-6180, 1687-6172, 1687-6180 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The ventilation rate of cigarettes is an important indicator that affects the internal quality of cigarettes. When producing cigarettes, the unit may experience unstable ventilation rates, which can lead to a decrease in cigarette quality and pose certain risks to smokers. By establishing the ventilation rate prediction model, guide the design of unit parameters in advance, to achieve the goal of stabilizing unit ventilation rate, improve the stability of cigarette ventilation rate, and enhance the quality of cigarettes. This paper used multiple linear regression networks (MLR), backpropagation neural networks (BPNN), and genetic algorithm-optimized backpropagation (GABP) to construct a model for the prediction of cigarette ventilation rate. The model results indicated that the total ventilation rate was significantly positively correlated with weight (
P
< 0.01), circumference, hardness, filter air permeability, and open resistance. The results showed that the MLR models' (RMSE = 0.652,
R
2
= 0.841) and the BPNN models’ (RMSE = 0.640,
R
2
= 0.847) prediction ability were limited. Optimization by genetic algorithm, GABP models were generated and exhibited a little better prediction performance (RMSE = 0.606,
R
2
= 0.873). The results indicated that the GABP model has the highest accuracy in the prediction of predicting ventilation rate and can accurately predict cigarette ventilation rate. This method can provide theoretical guidance and technical support for the stability study of the ventilation rate of the unit, improve the design and manufacturing capabilities and product quality of short cigarette products, and help to improve the quality of cigarettes. |
|---|---|
| AbstractList | The ventilation rate of cigarettes is an important indicator that affects the internal quality of cigarettes. When producing cigarettes, the unit may experience unstable ventilation rates, which can lead to a decrease in cigarette quality and pose certain risks to smokers. By establishing the ventilation rate prediction model, guide the design of unit parameters in advance, to achieve the goal of stabilizing unit ventilation rate, improve the stability of cigarette ventilation rate, and enhance the quality of cigarettes. This paper used multiple linear regression networks (MLR), backpropagation neural networks (BPNN), and genetic algorithm-optimized backpropagation (GABP) to construct a model for the prediction of cigarette ventilation rate. The model results indicated that the total ventilation rate was significantly positively correlated with weight (
P
< 0.01), circumference, hardness, filter air permeability, and open resistance. The results showed that the MLR models' (RMSE = 0.652,
R
2
= 0.841) and the BPNN models’ (RMSE = 0.640,
R
2
= 0.847) prediction ability were limited. Optimization by genetic algorithm, GABP models were generated and exhibited a little better prediction performance (RMSE = 0.606,
R
2
= 0.873). The results indicated that the GABP model has the highest accuracy in the prediction of predicting ventilation rate and can accurately predict cigarette ventilation rate. This method can provide theoretical guidance and technical support for the stability study of the ventilation rate of the unit, improve the design and manufacturing capabilities and product quality of short cigarette products, and help to improve the quality of cigarettes. The ventilation rate of cigarettes is an important indicator that affects the internal quality of cigarettes. When producing cigarettes, the unit may experience unstable ventilation rates, which can lead to a decrease in cigarette quality and pose certain risks to smokers. By establishing the ventilation rate prediction model, guide the design of unit parameters in advance, to achieve the goal of stabilizing unit ventilation rate, improve the stability of cigarette ventilation rate, and enhance the quality of cigarettes. This paper used multiple linear regression networks (MLR), backpropagation neural networks (BPNN), and genetic algorithm-optimized backpropagation (GABP) to construct a model for the prediction of cigarette ventilation rate. The model results indicated that the total ventilation rate was significantly positively correlated with weight (P < 0.01), circumference, hardness, filter air permeability, and open resistance. The results showed that the MLR models' (RMSE = 0.652, R2 = 0.841) and the BPNN models’ (RMSE = 0.640, R2 = 0.847) prediction ability were limited. Optimization by genetic algorithm, GABP models were generated and exhibited a little better prediction performance (RMSE = 0.606, R2 = 0.873). The results indicated that the GABP model has the highest accuracy in the prediction of predicting ventilation rate and can accurately predict cigarette ventilation rate. This method can provide theoretical guidance and technical support for the stability study of the ventilation rate of the unit, improve the design and manufacturing capabilities and product quality of short cigarette products, and help to improve the quality of cigarettes. Abstract The ventilation rate of cigarettes is an important indicator that affects the internal quality of cigarettes. When producing cigarettes, the unit may experience unstable ventilation rates, which can lead to a decrease in cigarette quality and pose certain risks to smokers. By establishing the ventilation rate prediction model, guide the design of unit parameters in advance, to achieve the goal of stabilizing unit ventilation rate, improve the stability of cigarette ventilation rate, and enhance the quality of cigarettes. This paper used multiple linear regression networks (MLR), backpropagation neural networks (BPNN), and genetic algorithm-optimized backpropagation (GABP) to construct a model for the prediction of cigarette ventilation rate. The model results indicated that the total ventilation rate was significantly positively correlated with weight (P < 0.01), circumference, hardness, filter air permeability, and open resistance. The results showed that the MLR models' (RMSE = 0.652, R 2 = 0.841) and the BPNN models’ (RMSE = 0.640, R 2 = 0.847) prediction ability were limited. Optimization by genetic algorithm, GABP models were generated and exhibited a little better prediction performance (RMSE = 0.606, R 2 = 0.873). The results indicated that the GABP model has the highest accuracy in the prediction of predicting ventilation rate and can accurately predict cigarette ventilation rate. This method can provide theoretical guidance and technical support for the stability study of the ventilation rate of the unit, improve the design and manufacturing capabilities and product quality of short cigarette products, and help to improve the quality of cigarettes. |
| ArticleNumber | 25 |
| Author | Xu, Huan Wei, Jiaxin Wang, Zhengwei Wang, Xiushan Wang, Youwei Li, Shufang Song, Weimin Mei, Chao Yao, Sen Wang, Xiaoming |
| Author_xml | – sequence: 1 givenname: Jiaxin surname: Wei fullname: Wei, Jiaxin organization: Xuchang Cigarette Factory of Henan Zhongyan Industry Co., Ltd – sequence: 2 givenname: Zhengwei surname: Wang fullname: Wang, Zhengwei organization: Xuchang Cigarette Factory of Henan Zhongyan Industry Co., Ltd – sequence: 3 givenname: Shufang surname: Li fullname: Li, Shufang organization: Xuchang Cigarette Factory of Henan Zhongyan Industry Co., Ltd – sequence: 4 givenname: Xiaoming surname: Wang fullname: Wang, Xiaoming organization: Xuchang Cigarette Factory of Henan Zhongyan Industry Co., Ltd – sequence: 5 givenname: Huan orcidid: 0009-0003-1002-0785 surname: Xu fullname: Xu, Huan email: xh990321@163.com organization: College of Mechanical and Electrical Engineering, Henan Agricultural University – sequence: 6 givenname: Xiushan surname: Wang fullname: Wang, Xiushan organization: College of Mechanical and Electrical Engineering, Henan Agricultural University – sequence: 7 givenname: Sen surname: Yao fullname: Yao, Sen organization: College of Mechanical and Electrical Engineering, Henan Agricultural University – sequence: 8 givenname: Weimin surname: Song fullname: Song, Weimin organization: Technology Center, China Tobacco Henan Industrial Co., Ltd – sequence: 9 givenname: Youwei surname: Wang fullname: Wang, Youwei organization: College of Mechanical and Electrical Engineering, Henan Agricultural University – sequence: 10 givenname: Chao surname: Mei fullname: Mei, Chao organization: College of Mechanical and Electrical Engineering, Henan Agricultural University |
| BookMark | eNp9UU9PHSEcJMYmVdsv0NMmXuxhW_4tC0drrJqY6EHPhIXfrjz3wRN4bfz2xbdtbDx4ID8YZiYDc4j2QwyA0BeCvxEixfdMmGC8xbQuQohqyR46IEL2rSAS7_-3_4gOc15h3AmK6QFKtwmct8XH0Kyjg9mHqYljY_1kEpQCzS8Ixc9mx0imAoPJ4Jp6miBA8bYx8xSTLw_remUfNyluzLTwTy5Of9x-bQJsk5nrKL9jevyEPoxmzvD57zxC9z_P784u2-ubi6uz0-vWcqpKO1jqeit72TM2gmNOUgxWCdcZAYNzw9APVnE-SC4EGyvSOapGsG7kmGBgR-hq8XXRrPQm-bVJzzoar3dATJM2qeafQSsiHHAlmeqBOzMOuMPVjQvSOyWNq17Hi1d93dMWctGruE2hxtdUMUyxxKKrLLmwbIo5Jxi19WX3EyUZP2uC9UtbemlL17b0ri1NqpS-kf4L_K6ILaJcyWGC9JrqHdUfXmmrgQ |
| CitedBy_id | crossref_primary_10_1016_j_infrared_2024_105374 crossref_primary_10_1016_j_jwpe_2025_107973 crossref_primary_10_1080_10589759_2024_2377737 |
| Cites_doi | 10.1016/j.psep.2023.06.047 10.1016/j.scitotenv.2023.161976 10.1007/s11042-018-7092-0 10.1016/j.jprocont.2018.03.005 10.1016/j.buildenv.2021.107744 10.1016/j.biortech.2021.126083 10.1016/j.conbuildmat.2023.132127 10.1016/j.apenergy.2021.117567 10.1016/j.renene.2021.06.079 10.1016/j.cscee.2023.100552 10.1016/j.foodcont.2021.108599 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2024 The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2024 – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION 3V. 7SC 7SP 7XB 8AL 8FD 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L7M L~C L~D M0N P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI Q9U DOA |
| DOI | 10.1186/s13634-024-01119-1 |
| DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Electronics & Communications Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central Basic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1687-6180 |
| EndPage | 14 |
| ExternalDocumentID | oai_doaj_org_article_916de498397e4dafb0505d24617d98ad 10_1186_s13634_024_01119_1 |
| GrantInformation_xml | – fundername: China Tobacco Henan Industrial Co., Ltd. grantid: No. A2020040; No. 202102110120; No. AW2022025 |
| GroupedDBID | -A0 .4S .DC 0R~ 29G 2WC 3V. 4.4 40G 5GY 5VS 6OB 8FE 8FG 8R4 8R5 AAFWJ AAJSJ AAKKN AAKPC ABEEZ ABUWG ACACY ACGFO ACGFS ACULB ADBBV ADINQ ADMLS AEGXH AENEX AFGXO AFKRA AFPKN AHBYD AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH ARAPS ARCSS AZQEC BAPOH BCNDV BENPR BGLVJ BPHCQ C24 C6C CCPQU DU5 DWQXO E3Z EBLON EBS EDO F5P GNUQQ GROUPED_DOAJ HCIFZ IAO ITC K6V K7- KQ8 M0N M~E OK1 P62 PIMPY PQQKQ PROAC Q2X RHU RHW RNS RSV SEG SOJ TUS U2A AASML AAYXX CITATION OVT 7SC 7SP 7XB 8AL 8FD 8FK JQ2 L7M L~C L~D PHGZM PHGZT PKEHL PQEST PQGLB PQUKI Q9U |
| ID | FETCH-LOGICAL-c429t-bc2d7c878733fed3d820ec96d5a6ebddbb7bc944b84663fbdd5d29fecdf4010e3 |
| IEDL.DBID | C24 |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001171959800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1687-6180 1687-6172 |
| IngestDate | Tue Oct 14 19:03:13 EDT 2025 Sat Oct 11 06:11:59 EDT 2025 Sat Nov 29 03:12:13 EST 2025 Tue Nov 18 22:12:53 EST 2025 Fri Feb 21 02:42:01 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Tobacco BP neural network Genetics algorithm Multiple linear regression Ventilation rate |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c429t-bc2d7c878733fed3d820ec96d5a6ebddbb7bc944b84663fbdd5d29fecdf4010e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0009-0003-1002-0785 |
| OpenAccessLink | https://link.springer.com/10.1186/s13634-024-01119-1 |
| PQID | 2930208065 |
| PQPubID | 237299 |
| PageCount | 14 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_916de498397e4dafb0505d24617d98ad proquest_journals_2930208065 crossref_citationtrail_10_1186_s13634_024_01119_1 crossref_primary_10_1186_s13634_024_01119_1 springer_journals_10_1186_s13634_024_01119_1 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-02-22 |
| PublicationDateYYYYMMDD | 2024-02-22 |
| PublicationDate_xml | – month: 02 year: 2024 text: 2024-02-22 day: 22 |
| PublicationDecade | 2020 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham – name: New York |
| PublicationTitle | EURASIP journal on advances in signal processing |
| PublicationTitleAbbrev | EURASIP J. Adv. Signal Process |
| PublicationYear | 2024 |
| Publisher | Springer International Publishing Springer Nature B.V SpringerOpen |
| Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V – name: SpringerOpen |
| References | Hayati, Munawar, Lukitaningsih (CR18) 2024; 9 Wu, Li, Lei (CR12) 2023; 176 Zhao, Zhang, Wang (CR20) 2022; 133 CR16 Wang, Zhao, Zhao (CR4) 2022; 43 Ramadhan, Heatubun, Tan (CR7) 2021; 178 Xi, Chai, Yun (CR13) 1996; 06 Wang, Deng, Wu (CR6) 2022; 55 Liu, Lin, Zhong (CR14) 2023; 870 Wang, You, Cui (CR2) 2017; 50 CR22 He, Zhang (CR11) 2018; 66 Kargbo, Zhang, Phan (CR23) 2021; 302 Chen, Song, Xu (CR15) 2023; 394 Zhang (CR5) 2019; 35 Huang, Li (CR17) 2019; 40 Hu, Yuan, Li (CR21) 2022; 343 Fei, Zhou, Yang (CR10) 2014; 47 Dong, Zhang, Wang (CR1) 2022; 55 Zhu, Wu, Wang (CR19) 2020; 79 Qu, Zhang, Jiang (CR3) 2020; 32 Lin (CR9) 2010; 09 Park, Park (CR8) 2021; 195 LL Zhao (1119_CR20) 2022; 133 X Qu (1119_CR3) 2020; 32 H Fei (1119_CR10) 2014; 47 1119_CR22 ZZ Hu (1119_CR21) 2022; 343 R Hayati (1119_CR18) 2024; 9 1119_CR16 J Zhu (1119_CR19) 2020; 79 H Wang (1119_CR4) 2022; 43 Z Zhang (1119_CR5) 2019; 35 F He (1119_CR11) 2018; 66 K Liu (1119_CR14) 2023; 870 R Chen (1119_CR15) 2023; 394 B Lin (1119_CR9) 2010; 09 L Wang (1119_CR2) 2017; 50 Y Wu (1119_CR12) 2023; 176 W Huang (1119_CR17) 2019; 40 Y Xi (1119_CR13) 1996; 06 RAA Ramadhan (1119_CR7) 2021; 178 H Dong (1119_CR1) 2022; 55 HO Kargbo (1119_CR23) 2021; 302 L Wang (1119_CR6) 2022; 55 H Park (1119_CR8) 2021; 195 |
| References_xml | – volume: 35 start-page: 117 issue: 09 year: 2019 end-page: 119 ident: CR5 article-title: Explore the impact of various physical indicators on the total ventilation rate of cigarettes publication-title: Light Ind. Sci. Technol. – ident: CR22 – volume: 176 start-page: 653 year: 2023 end-page: 661 ident: CR12 article-title: Prediction of pyrolysis product yield of medical waste based on BP neural network publication-title: Process. Saf. Environ. Prot. doi: 10.1016/j.psep.2023.06.047 – volume: 870 start-page: 161976 year: 2023 ident: CR14 article-title: New methods based on a genetic algorithm back propagation (GABP) neural network and general regression neural network (GRNN) for predicting the occurrence of trihalomethanes in tap water publication-title: Sci. Total. Environ. doi: 10.1016/j.scitotenv.2023.161976 – volume: 79 start-page: 14539 year: 2020 end-page: 14551 ident: CR19 article-title: Identification of grape diseases using image analysis and BP neural networks publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-018-7092-0 – ident: CR16 – volume: 66 start-page: 51 year: 2018 end-page: 58 ident: CR11 article-title: Prediction model of end-point phosphorus content in BOF steelmaking process based on PCA and BP neural network publication-title: J. Process. Control. doi: 10.1016/j.jprocont.2018.03.005 – volume: 195 start-page: 107744 year: 2021 ident: CR8 article-title: Comparative analysis on predictability of natural ventilation rate based on machine learning algorithms publication-title: Build. Environ. doi: 10.1016/j.buildenv.2021.107744 – volume: 343 start-page: 126083 year: 2022 ident: CR21 article-title: Yield prediction of “Thermal-dissolution based carbon enrichment” treatment on biomass wastes through coupled model of artificial neural network and AdaBoost publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2021.126083 – volume: 394 start-page: 132127 year: 2023 ident: CR15 article-title: Prediction of the corrosion depth of oil well cement corroded by carbon dioxide using GA-BP neural network publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2023.132127 – volume: 55 start-page: 83 issue: 07 year: 2022 end-page: 89+112 ident: CR1 article-title: Design and application of quality monitoring samples for main physical indicators of cigarettes publication-title: Tob. Sci. Technol. – volume: 302 start-page: 117567 year: 2021 ident: CR23 article-title: Optimisation of two-stage biomass gasification for hydrogen production via artificial neural network publication-title: Appl. Energy doi: 10.1016/j.apenergy.2021.117567 – volume: 178 start-page: 1006 year: 2021 end-page: 1019 ident: CR7 article-title: Comparison of physical and machine learning models for estimating solar irradiance and photovoltaic power publication-title: Renew. Energy doi: 10.1016/j.renene.2021.06.079 – volume: 32 start-page: 64 issue: 04 year: 2020 end-page: 68 ident: CR3 article-title: Correlation analysis of physical indicators of thin cigarettes publication-title: J. Hunan Univ. Arts Sci. (Natl. Sci. Edit.) – volume: 09 start-page: 60 year: 2010 end-page: 61 ident: CR9 article-title: Multiple linear regression analysis and its application publication-title: China Sci. Technol. Inf. – volume: 06 start-page: 697 year: 1996 end-page: 708 ident: CR13 article-title: Overview of genetic algorithms publication-title: Control Theory Appl. – volume: 43 start-page: 60 issue: 05 year: 2022 end-page: 64 ident: CR4 article-title: Mathematical model and application of cigarette smoking resistance based on multiple regression publication-title: Food Ind. – volume: 40 start-page: 144 issue: 01 year: 2019 end-page: 149 ident: CR17 article-title: Analysis of main factors affecting the development of tourism areas based on SPSS data analysis publication-title: Software – volume: 9 start-page: 100552 year: 2024 ident: CR18 article-title: Combination of PCA with LDA and SVM classifiers: a model for determining the geographical origin of coconut in the coastal plantation, Aceh Province, Indonesia publication-title: Case Stud. Chem. Environ. Eng. doi: 10.1016/j.cscee.2023.100552 – volume: 133 start-page: 108599 year: 2022 ident: CR20 article-title: Monitoring of free fatty acid content in mixed frying oils by means of LF NMR and NIR combined with BP-ANN publication-title: Food Control doi: 10.1016/j.foodcont.2021.108599 – volume: 55 start-page: 66 issue: 5 year: 2022 end-page: 72 ident: CR6 article-title: The relationship between bite-by-mouth dynamic absorption resistance and dynamic ventilation rate of cigarettes based on linear network model publication-title: Tob. Technol. – volume: 50 start-page: 85 issue: 12 year: 2017 end-page: 89 ident: CR2 article-title: Prediction method of cigarette suction resistance and ventilation characteristics based on linear network model publication-title: Tob. Technol. – volume: 47 start-page: 49 issue: 6 year: 2014 end-page: 53 ident: CR10 article-title: Prediction model of potassium chloride ratio of flue-cured tobacco based on particle swarm optimization BP neural network publication-title: Tob. Technol. – volume: 47 start-page: 49 issue: 6 year: 2014 ident: 1119_CR10 publication-title: Tob. Technol. – volume: 176 start-page: 653 year: 2023 ident: 1119_CR12 publication-title: Process. Saf. Environ. Prot. doi: 10.1016/j.psep.2023.06.047 – ident: 1119_CR22 – volume: 133 start-page: 108599 year: 2022 ident: 1119_CR20 publication-title: Food Control doi: 10.1016/j.foodcont.2021.108599 – volume: 55 start-page: 66 issue: 5 year: 2022 ident: 1119_CR6 publication-title: Tob. Technol. – volume: 40 start-page: 144 issue: 01 year: 2019 ident: 1119_CR17 publication-title: Software – ident: 1119_CR16 – volume: 870 start-page: 161976 year: 2023 ident: 1119_CR14 publication-title: Sci. Total. Environ. doi: 10.1016/j.scitotenv.2023.161976 – volume: 35 start-page: 117 issue: 09 year: 2019 ident: 1119_CR5 publication-title: Light Ind. Sci. Technol. – volume: 66 start-page: 51 year: 2018 ident: 1119_CR11 publication-title: J. Process. Control. doi: 10.1016/j.jprocont.2018.03.005 – volume: 178 start-page: 1006 year: 2021 ident: 1119_CR7 publication-title: Renew. Energy doi: 10.1016/j.renene.2021.06.079 – volume: 50 start-page: 85 issue: 12 year: 2017 ident: 1119_CR2 publication-title: Tob. Technol. – volume: 06 start-page: 697 year: 1996 ident: 1119_CR13 publication-title: Control Theory Appl. – volume: 55 start-page: 83 issue: 07 year: 2022 ident: 1119_CR1 publication-title: Tob. Sci. Technol. – volume: 43 start-page: 60 issue: 05 year: 2022 ident: 1119_CR4 publication-title: Food Ind. – volume: 394 start-page: 132127 year: 2023 ident: 1119_CR15 publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2023.132127 – volume: 343 start-page: 126083 year: 2022 ident: 1119_CR21 publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2021.126083 – volume: 9 start-page: 100552 year: 2024 ident: 1119_CR18 publication-title: Case Stud. Chem. Environ. Eng. doi: 10.1016/j.cscee.2023.100552 – volume: 32 start-page: 64 issue: 04 year: 2020 ident: 1119_CR3 publication-title: J. Hunan Univ. Arts Sci. (Natl. Sci. Edit.) – volume: 09 start-page: 60 year: 2010 ident: 1119_CR9 publication-title: China Sci. Technol. Inf. – volume: 79 start-page: 14539 year: 2020 ident: 1119_CR19 publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-018-7092-0 – volume: 195 start-page: 107744 year: 2021 ident: 1119_CR8 publication-title: Build. Environ. doi: 10.1016/j.buildenv.2021.107744 – volume: 302 start-page: 117567 year: 2021 ident: 1119_CR23 publication-title: Appl. Energy doi: 10.1016/j.apenergy.2021.117567 |
| SSID | ssj0056202 |
| Score | 2.3961415 |
| Snippet | The ventilation rate of cigarettes is an important indicator that affects the internal quality of cigarettes. When producing cigarettes, the unit may... Abstract The ventilation rate of cigarettes is an important indicator that affects the internal quality of cigarettes. When producing cigarettes, the unit may... |
| SourceID | doaj proquest crossref springer |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 25 |
| SubjectTerms | Artificial neural networks Back propagation Back propagation networks BP neural network Cigarettes Design improvements Design parameters Engineering Genetic algorithms Genetics algorithm Multiple linear regression Neural networks Prediction models Predictions Quantum Information Technology Signal Processing and Machine Learning in Autonomous Systems Signal,Image and Speech Processing Spintronics Stability Technical services Tobacco Ventilation Ventilation rate |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZQxQEOq-WlDRTkAwdWYLWxXSc5tojCqeqBlXqz_IRqd9tVGvj9O2OnpUUCLhzjONJoZjwzjsffR8hbaTj3UdUsRi6ZVMIw01jJuJAhwnoaT4xNZBPVYlGvVs3yiOoLe8IyPHBW3AjKFx9kA3m8CtKbaJF6zSMKWuWb2niMvlD17DdTOQZDUse-nXxFplajXSmUkAzyEUNu9YaVJ2koofWflJi_nYqmZDM_J2d9lUinWbon5EHYPCWPj7ADn5F22eIZC-qVJjobGKXbSN06Edd2gaZOxtzqRhEQgmLG8hSewGnw7iI1N9-27br7fguv3DXIBdElz3_3eTpbXlJEuwQ5NrlX_Dm5mn_6-vEL6wkUmIM00zHruK9cDWtSiBi88JDug2uUnxgVrPfWVtY1UlooQpSIMAKabWJwPsK2axzECzLYbDfhglBECvPcqbHHH0URyhwwBcQmEyZ4IYoXpNzrU7seXRxJLm502mXUSmcbaLCBTjbQZUHeH765y9gaf509QzMdZiIudhoAb9G9t-h_eUtBhnsj636x7jRUPEhVCsVYQT7sDf_r9Z9Fevk_RHpFHvHkmJxxPiSDrv0RXpOH7me33rVvklvfA_EA-to priority: 102 providerName: Directory of Open Access Journals – databaseName: Computer Science Database dbid: K7- link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB1B4QAHvhELBfnAAQRWN7bXSU6oRRQkpGoPIPVm2R67rSi7JRv4_cw4SUuR6IVjbCcZacYzY3v8HsBL45XCbBuZszLSWO2lb4ORSpuUaT7NFz4Uson64KA5PGyX44bbZiyrnHxicdS4jrxHvkNhifkkKWK-O_shmTWKT1dHCo3rcKNSqmI7_1zLyRNTaB9qDm1TrsKp6dJMY3c2lbbaSIpQktnWW1ldCkwFv_9S0vnXOWkJP_t3_1fwe3BnTDzF7mAp9-FaWj2A23_AET6EbtnxsQ2rShSGHGoV6yziSeHC7ZMoxZFD9ZxgjAnBQRAFPZEd8nVI4U-P6Of98Xfqit9IVHJYw_hXH3f3lq8FA2iSHKuh_PwRfN3_8OX9JzlyMshIkauXISqsY0PTXOucUCNlECm2FhfepoAYQh1ia0ygvMbqTC0LVG1OETOt5OZJP4at1XqVnoBg8DFU0c6R954yZU4-B3J3Pi34jpWaQTUpxMURsJx5M05dWbg01g1KdKREV5Toqhm8OX_nbIDruHL0Huv5fCRDbZeGdXfkxpnrKH_GZFpKJOtkkERk7j9kGL4a28bjDLYnvbtx_m_chdJn8HaynIvuf4v09OqvPYNbqtiskkptw1bf_UzP4Wb81Z9suhfF-n8DX8EKqA priority: 102 providerName: ProQuest |
| Title | Prediction modeling of cigarette ventilation rate based on genetic algorithm backpropagation (GABP) neural network |
| URI | https://link.springer.com/article/10.1186/s13634-024-01119-1 https://www.proquest.com/docview/2930208065 https://doaj.org/article/916de498397e4dafb0505d24617d98ad |
| Volume | 2024 |
| WOSCitedRecordID | wos001171959800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Open Access Full Text customDbUrl: eissn: 1687-6180 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0056202 issn: 1687-6180 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVAVX databaseName: SpringerOpen customDbUrl: eissn: 1687-6180 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0056202 issn: 1687-6180 databaseCode: C24 dateStart: 20070101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NaxQxFA_SetCDH63i1rrk4KHSBneTTGZy7JZWRboMRaH2EvJZF-uuzI7-_b6XmalWqKCXwOQDMsl7eb8kL79HyEtpOQ9JVSwlLplUwjKrnWRcyJhAnyaFdTnYRDmfV-fnuu4fha0Hb_fhSjKv1FmtK_V6PRVKSAY2hWF8dM1gz7NZTCuNcn2Ebxy69RcMOvrs7Nze7oYJykz9N-DlHzei2dCcPPy_Lj4iD3pgSQ87SXhM7sTlFrn_G93gNmnqBq9lcCpojoADuXSVqF_kWLdtpNn5sfOOo8ghQdHIBQpfIGf43JHaq8tVs2g_f4Ui_wV-Bxakrv7em8NZ_YoiQSb0Y9m5lz8hH0-OPxy9ZX3MBebBMrXMeR5KX4EaC5FiEAEQQvRahcKq6EJwrnReS-kAtyiRIKcIXKfoQ4Kd2iSKp2RjuVrGZ4QiuVjgXk0Cni0lQEY2OVjObCzwDRUfkekwDcb3hOQYF-PK5I1JpUw3ngbG0-TxNNMR2b9u862j4_hr7RnO7nVNpNLOGavm0vSaaQAfhyg1AMUyygBdxNh-AWn2yqArG0Zkd5AN0-v32gBIwuimgN9G5GCQhV_Ft3dp59-qPyf3eBYnzjjfJRtt8z2-IHf9j3axbsZkc3Y8r8_GWf7H-TgB0vclg7QuLqC8fndaf_oJMz0Elg |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggQcylssLeADSCCwumt7neSAUAuUVltWeyhSb278KhVlt2RDK_4Uv5EZJ2kpEr31wDGOYznONw_HM_MBPFOlED7qnMcoFFdalrwsrOJCqhBRnvrD0iayiWw8znd3i8kC_OpyYSisstOJSVH7maN_5KtolohPEi3m26PvnFij6HS1o9BoYDEKP09wyzZ_s_Uev-9zITY-7Lzb5C2rAHeoe2tunfCZyxGoUsbgpUcbGFyh_bDUwXpvbWZdoZRFy6xlxJahF0UMzkfci_SDxHGvwFUl84xq9Y8y3ml-dCWaGEedp9Q70SXp5Hp1PpBaKo4WkRO7e8EH5wxh4gs45-T-dS6bzN3Grf9toW7DUutYs7VGEu7AQpjehZt_lFu8B9WkomMpgiJLDEDYymaRuYPE9VsHloI_m-hARjU0GBl5z_AK5YzSPVl5uI8vW3_5hrfcV1waVMhN_xcf19YnLxkVCMV5TJvw-vvw-VJe-gEsTmfT8BAYFVfzwum-p39rET3DMlpU52UYUg6Z6MGgA4BxbUF24gU5NGljlmvTgMYgaEwCjRn04NXpM0dNOZILe68Trk57Uinx1DCr9k2rmQzuD3xQBTrKWVAep0jchp7KDGa-yEvfg5UOZ6bVb3NzBrIevO6Qenb731N6dPFoT-H65s6nbbO9NR4tww2R5EVwIVZgsa5-hMdwzR3XB_PqSZI8BnuXjeDfveRsBQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VghAc-EYsFPABJBBYu2s7TnJAqKUsVItWewCpN-P4o1SU3ZINIP4av44ZJ2kpEr31wDGOEznJm3l2PDMP4JGyQvioCx6jUFxpabktK8WFVCGiPY0yWyWxiXw2K3Z3y_ka_OpzYSissveJyVH7paN_5EOkJdKTRMYcxi4sYr49eXn4lZOCFO209nIaLUSm4ecPXL6tXuxs47d-LMTk9ftXb3mnMMAd-uGGV0743BUIWilj8NIjHwZXap9ZHSrvqyqvXKlUhSytZcSWzIsyBucjrktGQeJ9z8F5ZOGMbGya854FcFrRxjvqIqXhiT5hp9DD1VhqqTiyIyel95KPT5Bi0g44MeH9a482Ud_k6v_80q7BlW7CzTZbC7kOa2FxAy7_UYbxJtTzmrarCKIsKQNhK1tG5vaTBnATWAoKbaMGGdXWYET-nuER2h-lgTJ7sIcP23z6gqfcZ3xN6Kjb_k_ebG7NnzIqHIrjWLRh97fgw5k89G1YXywX4Q4wKrrmhdMjT__cIs4YbazQzduQUW6ZGMC4B4NxXaF20gs5MGnBVmjTAsgggEwCkBkP4NnRNYdtmZJTe28Rxo56Uonx1LCs90znsQyuG3xQJU6g86A8DpE0Dz2VH8x9WVg_gI0ec6bzeytzDLgBPO9Re3z630O6e_rdHsJFBK55tzOb3oNLIpmO4EJswHpTfwv34YL73uyv6gfJCBl8PGsA_wYianS_ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+modeling+of+cigarette+ventilation+rate+based+on+genetic+algorithm+backpropagation+%28GABP%29+neural+network&rft.jtitle=EURASIP+journal+on+advances+in+signal+processing&rft.au=Wei%2C+Jiaxin&rft.au=Wang%2C+Zhengwei&rft.au=Li%2C+Shufang&rft.au=Wang%2C+Xiaoming&rft.date=2024-02-22&rft.issn=1687-6180&rft.eissn=1687-6180&rft.volume=2024&rft.issue=1&rft_id=info:doi/10.1186%2Fs13634-024-01119-1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s13634_024_01119_1 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-6180&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-6180&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-6180&client=summon |