Bifurcations, chaotic behavior, sensitivity analysis, and various soliton solutions for the extended nonlinear Schrödinger equation

In this manuscript, our primary objective is to delve into the intricacies of an extended nonlinear Schrödinger equation. To achieve this, we commence by deriving a dynamical system tightly linked to the equation through the Galilean transformation. We then employ principles from planar dynamical sy...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Boundary value problems Ročník 2024; číslo 1; s. 15
Hlavní autoři: ur Rahman, Mati, Sun, Mei, Boulaaras, Salah, Baleanu, Dumitru
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cham Springer International Publishing 19.01.2024
Hindawi Limited
SpringerOpen
Témata:
ISSN:1687-2770, 1687-2762, 1687-2770
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this manuscript, our primary objective is to delve into the intricacies of an extended nonlinear Schrödinger equation. To achieve this, we commence by deriving a dynamical system tightly linked to the equation through the Galilean transformation. We then employ principles from planar dynamical systems theory to explore the bifurcation phenomena exhibited within this derived system. To investigate the potential presence of chaotic behaviors, we introduce a perturbed term into the dynamical system and systematically analyze the extended nonlinear Schrödinger equation. This investigation is further enriched by the presentation of comprehensive two- and 3D phase portraits. Moreover, we conduct a meticulous sensitivity analysis of the dynamical system using the Runge–Kutta method. Through this analytical process, we confirm that minor fluctuations in initial conditions have only minimal effects on solution stability. Additionally, we utilize the complete discrimination system of the polynomial method to systematically construct single traveling wave solutions for the governing model.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1687-2770
1687-2762
1687-2770
DOI:10.1186/s13661-024-01825-7