Review on model predictive control: an engineering perspective
Model-based predictive control (MPC) describes a set of advanced control methods, which make use of a process model to predict the future behavior of the controlled system. By solving a—potentially constrained—optimization problem, MPC determines the control law implicitly. This shifts the effort fo...
Saved in:
| Published in: | International journal of advanced manufacturing technology Vol. 117; no. 5-6; pp. 1327 - 1349 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
London
Springer London
01.11.2021
Springer Nature B.V |
| Subjects: | |
| ISSN: | 0268-3768, 1433-3015 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Model-based predictive control (MPC) describes a set of advanced control methods, which make use of a process model to predict the future behavior of the controlled system. By solving a—potentially constrained—optimization problem, MPC determines the control law implicitly. This shifts the effort for the design of a controller towards modeling of the to-be-controlled process. Since such models are available in many fields of engineering, the initial hurdle for applying control is deceased with MPC. Its implicit formulation maintains the physical understanding of the system parameters facilitating the tuning of the controller. Model-based predictive control (MPC) can even control systems, which cannot be controlled by conventional feedback controllers. With most of the theory laid out, it is time for a concise summary of it and an application-driven survey. This review article should serve as such. While in the beginnings of MPC, several widely noticed review paper have been published, a comprehensive overview on the latest developments, and on applications, is missing today. This article reviews the current state of the art including theory, historic evolution, and practical considerations to create intuitive understanding. We lay special attention on applications in order to demonstrate what is already possible today. Furthermore, we provide detailed discussion on implantation details in general and strategies to cope with the computational burden—still a major factor in the design of MPC. Besides key methods in the development of MPC, this review points to the future trends emphasizing why they are the next logical steps in MPC. |
|---|---|
| AbstractList | Model-based predictive control (MPC) describes a set of advanced control methods, which make use of a process model to predict the future behavior of the controlled system. By solving a—potentially constrained—optimization problem, MPC determines the control law implicitly. This shifts the effort for the design of a controller towards modeling of the to-be-controlled process. Since such models are available in many fields of engineering, the initial hurdle for applying control is deceased with MPC. Its implicit formulation maintains the physical understanding of the system parameters facilitating the tuning of the controller. Model-based predictive control (MPC) can even control systems, which cannot be controlled by conventional feedback controllers. With most of the theory laid out, it is time for a concise summary of it and an application-driven survey. This review article should serve as such. While in the beginnings of MPC, several widely noticed review paper have been published, a comprehensive overview on the latest developments, and on applications, is missing today. This article reviews the current state of the art including theory, historic evolution, and practical considerations to create intuitive understanding. We lay special attention on applications in order to demonstrate what is already possible today. Furthermore, we provide detailed discussion on implantation details in general and strategies to cope with the computational burden—still a major factor in the design of MPC. Besides key methods in the development of MPC, this review points to the future trends emphasizing why they are the next logical steps in MPC. |
| Author | Schwenzer, Max Ay, Muzaffer Abel, Dirk Bergs, Thomas |
| Author_xml | – sequence: 1 givenname: Max orcidid: 0000-0002-3422-8631 surname: Schwenzer fullname: Schwenzer, Max email: max.schwenzer@rwth-aachen.de organization: Laboratory for Machine Tools and Production Engineering (WZL), RWTH Aachen University – sequence: 2 givenname: Muzaffer surname: Ay fullname: Ay, Muzaffer organization: Institute of Automatic Control (IRT), RWTH Aachen University – sequence: 3 givenname: Thomas surname: Bergs fullname: Bergs, Thomas organization: Laboratory for Machine Tools and Production Engineering (WZL), RWTH Aachen University, Fraunhofer Institute for Production Technology IPT – sequence: 4 givenname: Dirk surname: Abel fullname: Abel, Dirk organization: Institute of Automatic Control (IRT), RWTH Aachen University |
| BookMark | eNp9kF1LwzAUhoNMcJv-Aa8KXldPkrZJvRBk-AUDQfQ6pOnpyOiSmnQT_73dKghe7Coc8j7n45mRifMOCbmkcE0BxE0EoAJSYDQFUUiW8hMypRnnKQeaT8gUWCFTPnydkVmM6yFe0EJOyd0b7ix-Jd4lG19jm3QBa2t6u8PEeNcH394m2iXoVtYhButWSYchdnjInJPTRrcRL37fOfl4fHhfPKfL16eXxf0yNRkr-7QquZBMZk0GsqmynPOqqUsoyqZmQy1BmLzWpipBQMmaGkooea25ELUGg8jn5Grs2wX_ucXYq7XfBjeMVCyXrMilkHJIsTFlgo8xYKO6YDc6fCsKau9JjZ7U4EkdPCk-QPIfZGyve7s_Xtv2OMpHNHZ7MRj-tjpC_QAkoX5n |
| CitedBy_id | crossref_primary_10_3390_computation13020036 crossref_primary_10_1080_00207721_2024_2420257 crossref_primary_10_4018_JOEUC_355191 crossref_primary_10_1016_j_jocs_2024_102421 crossref_primary_10_1049_cth2_70051 crossref_primary_10_1109_TSMC_2025_3540059 crossref_primary_10_1016_j_apenergy_2023_121455 crossref_primary_10_1016_j_compag_2024_109496 crossref_primary_10_1007_s12257_024_00174_7 crossref_primary_10_1109_COMST_2024_3442149 crossref_primary_10_1109_ACCESS_2025_3563300 crossref_primary_10_3390_brainsci14040350 crossref_primary_10_1049_cth2_70045 crossref_primary_10_1177_10775463231167251 crossref_primary_10_1038_s41598_024_69365_9 crossref_primary_10_1016_j_ces_2025_122268 crossref_primary_10_1016_j_ejcon_2025_101217 crossref_primary_10_3390_pr11072216 crossref_primary_10_1109_ACCESS_2024_3466229 crossref_primary_10_1109_TASE_2024_3400598 crossref_primary_10_1515_ijcre_2025_0024 crossref_primary_10_1177_17568293251349733 crossref_primary_10_1016_j_ijepes_2025_111101 crossref_primary_10_4271_10_09_01_0007 crossref_primary_10_1016_j_jsv_2024_118415 crossref_primary_10_3390_en17215307 crossref_primary_10_1002_cjce_25244 crossref_primary_10_1016_j_conengprac_2023_105498 crossref_primary_10_1016_j_apenergy_2025_125355 crossref_primary_10_3389_fenrg_2021_757507 crossref_primary_10_1016_j_compind_2025_104256 crossref_primary_10_1109_TIE_2025_3546352 crossref_primary_10_1109_TSTE_2023_3336536 crossref_primary_10_3390_bioengineering9110664 crossref_primary_10_1016_j_apenergy_2025_125478 crossref_primary_10_1080_02286203_2024_2371680 crossref_primary_10_1016_j_ceja_2025_100753 crossref_primary_10_1080_00051144_2023_2170022 crossref_primary_10_3390_a16080387 crossref_primary_10_1016_j_compchemeng_2024_108917 crossref_primary_10_3390_fi16120435 crossref_primary_10_1002_tal_1941 crossref_primary_10_3390_info15020094 crossref_primary_10_3390_act14040191 crossref_primary_10_1007_s00500_024_09699_8 crossref_primary_10_3390_en16083499 crossref_primary_10_1016_j_energy_2025_135217 crossref_primary_10_1016_j_jfranklin_2023_05_009 crossref_primary_10_1016_j_cose_2024_104186 crossref_primary_10_1109_LCSYS_2024_3405823 crossref_primary_10_3390_app14146025 crossref_primary_10_3390_math10132324 crossref_primary_10_1016_j_compchemeng_2025_109359 crossref_primary_10_1007_s10957_023_02241_0 crossref_primary_10_1088_1742_5468_ad292b crossref_primary_10_1109_JESTPE_2022_3172138 crossref_primary_10_1109_TCYB_2025_3565580 crossref_primary_10_1109_TII_2025_3528556 crossref_primary_10_1016_j_energy_2025_135462 crossref_primary_10_1016_j_apenergy_2024_122917 crossref_primary_10_1177_19322968231206798 crossref_primary_10_1520_SSMS20220037 crossref_primary_10_17979_ja_cea_2025_46_12034 crossref_primary_10_1016_j_apenergy_2025_126662 crossref_primary_10_1016_j_ijhydene_2025_150949 crossref_primary_10_1016_j_applthermaleng_2024_124558 crossref_primary_10_1016_j_apenergy_2025_126664 crossref_primary_10_1016_j_isatra_2023_06_025 crossref_primary_10_1016_j_neucom_2025_129712 crossref_primary_10_1016_j_trc_2023_104268 crossref_primary_10_1109_ACCESS_2024_3391511 crossref_primary_10_3390_electronics14183710 crossref_primary_10_1007_s11071_024_09615_7 crossref_primary_10_1016_j_asej_2025_103743 crossref_primary_10_3390_buildings15183298 crossref_primary_10_1051_e3sconf_202560100050 crossref_primary_10_1016_j_jwpe_2024_104885 crossref_primary_10_1038_s41598_025_03957_x crossref_primary_10_1007_s40435_024_01533_1 crossref_primary_10_1016_j_asoc_2025_112829 crossref_primary_10_3390_pr10081649 crossref_primary_10_1016_j_ifacol_2023_10_869 crossref_primary_10_1016_j_arcontrol_2024_100973 crossref_primary_10_3390_s24227313 crossref_primary_10_1016_j_plrev_2023_08_016 crossref_primary_10_1177_00202940241302672 crossref_primary_10_1002_rnc_70083 crossref_primary_10_1109_TAES_2024_3437329 crossref_primary_10_3390_pr13061791 crossref_primary_10_1109_JIOT_2024_3367350 crossref_primary_10_3390_e27090992 crossref_primary_10_1080_19401493_2025_2496659 crossref_primary_10_5194_npg_32_293_2025 crossref_primary_10_3390_en18123027 crossref_primary_10_3233_JIFS_212322 crossref_primary_10_1016_j_ijepes_2025_110668 crossref_primary_10_1109_ACCESS_2025_3583103 crossref_primary_10_3390_pr13072314 crossref_primary_10_1007_s40998_025_00867_6 crossref_primary_10_1115_1_4067654 crossref_primary_10_1016_j_oceaneng_2025_121840 crossref_primary_10_1109_LCSYS_2022_3178785 crossref_primary_10_3390_math10071157 crossref_primary_10_1016_j_enbuild_2024_115205 crossref_primary_10_1016_j_ifacol_2024_08_379 crossref_primary_10_1016_j_oceaneng_2024_119345 crossref_primary_10_1016_j_cobeha_2025_101509 crossref_primary_10_1016_j_pnucene_2022_104527 crossref_primary_10_1016_j_ejcon_2022_100695 crossref_primary_10_1016_j_jestch_2025_101982 crossref_primary_10_1109_TIV_2024_3376797 crossref_primary_10_1016_j_cie_2022_108113 crossref_primary_10_1109_TIE_2024_3508078 crossref_primary_10_4316_AECE_2025_02005 crossref_primary_10_5194_npg_31_319_2024 crossref_primary_10_1109_ACCESS_2025_3542337 crossref_primary_10_1016_j_fusengdes_2024_114153 crossref_primary_10_1093_ijlct_ctae236 crossref_primary_10_1007_s11071_023_08996_5 crossref_primary_10_1109_JESTPE_2022_3179286 crossref_primary_10_1016_j_ifacol_2024_10_139 crossref_primary_10_1080_07373937_2024_2400225 crossref_primary_10_3390_agriculture15121297 crossref_primary_10_1016_j_ijpharm_2025_125204 crossref_primary_10_3390_robotics12060170 crossref_primary_10_1016_j_anucene_2025_111643 crossref_primary_10_1016_j_compchemeng_2024_108970 crossref_primary_10_1088_1748_3190_ad8e25 crossref_primary_10_1016_j_chroma_2023_463931 crossref_primary_10_1016_j_ijepes_2024_110248 crossref_primary_10_1109_LRA_2025_3535185 crossref_primary_10_1016_j_energy_2025_137011 crossref_primary_10_1364_OL_565049 crossref_primary_10_1016_j_tibtech_2022_10_010 crossref_primary_10_1016_j_isatra_2024_05_016 crossref_primary_10_1109_TIM_2025_3561376 crossref_primary_10_1016_j_mex_2025_103470 crossref_primary_10_1016_j_heliyon_2024_e38095 crossref_primary_10_3390_math12050709 crossref_primary_10_3390_su16177650 crossref_primary_10_1038_s41598_024_62416_1 crossref_primary_10_1007_s11740_023_01254_y crossref_primary_10_1016_j_ifacol_2024_10_237 crossref_primary_10_64289_iej_25_01B05_6395787 crossref_primary_10_3390_app12041995 crossref_primary_10_3390_machines13090756 crossref_primary_10_1002_rob_22514 crossref_primary_10_1007_s00158_022_03425_4 crossref_primary_10_1007_s40435_025_01759_7 crossref_primary_10_3389_fenrg_2022_996206 crossref_primary_10_1016_j_compag_2025_110028 crossref_primary_10_1016_j_physleta_2024_130180 crossref_primary_10_1515_nleng_2025_0099 crossref_primary_10_1007_s11831_024_10207_2 crossref_primary_10_3390_technologies13090402 crossref_primary_10_1109_LRA_2024_3350372 crossref_primary_10_3390_modelling5030040 crossref_primary_10_3390_electronics14101954 crossref_primary_10_1049_cth2_12599 crossref_primary_10_1371_journal_pcbi_1013426 crossref_primary_10_3390_drones9010071 crossref_primary_10_1177_14727978251380837 crossref_primary_10_1016_j_ifacol_2023_10_566 crossref_primary_10_1109_LRA_2023_3300251 crossref_primary_10_1007_s40313_025_01150_z crossref_primary_10_1109_ACCESS_2025_3557961 crossref_primary_10_3390_fermentation9040394 crossref_primary_10_1016_j_conengprac_2024_105841 crossref_primary_10_1016_j_cherd_2024_09_014 crossref_primary_10_1109_LCSYS_2023_3252162 crossref_primary_10_1016_j_anucene_2025_111416 crossref_primary_10_1016_j_isatra_2023_03_036 crossref_primary_10_1080_0305215X_2024_2434201 crossref_primary_10_1016_j_bprint_2024_e00331 crossref_primary_10_1016_j_ijrefrig_2024_05_018 crossref_primary_10_1002_asjc_3549 crossref_primary_10_3390_wevj15120557 crossref_primary_10_1016_j_neucom_2025_131073 crossref_primary_10_1177_14750902241227301 crossref_primary_10_1007_s11432_023_4115_1 crossref_primary_10_1016_j_oceaneng_2024_120067 crossref_primary_10_1016_j_jmsy_2024_08_024 crossref_primary_10_1007_s00170_024_14960_3 crossref_primary_10_3390_act14030134 crossref_primary_10_1007_s11044_023_09884_x crossref_primary_10_1007_s40435_023_01311_5 crossref_primary_10_1016_j_prime_2025_101029 crossref_primary_10_1016_j_conengprac_2022_105101 crossref_primary_10_1016_j_fbp_2023_02_004 crossref_primary_10_1016_j_compchemeng_2024_108790 crossref_primary_10_1155_2024_9967121 crossref_primary_10_3390_en16237724 crossref_primary_10_3390_s24216926 crossref_primary_10_1016_j_ymssp_2025_113128 crossref_primary_10_1016_j_chaos_2025_117108 crossref_primary_10_1016_j_cherd_2025_04_035 crossref_primary_10_1002_advs_202413153 crossref_primary_10_1016_j_ifacol_2025_08_143 crossref_primary_10_1080_21642583_2023_2188401 crossref_primary_10_1109_LRA_2025_3536297 crossref_primary_10_3390_designs9010024 crossref_primary_10_1016_j_coche_2024_101038 crossref_primary_10_1016_j_conengprac_2023_105737 crossref_primary_10_1038_s41598_024_66104_y crossref_primary_10_1080_00207721_2025_2475361 crossref_primary_10_1177_15485129251346806 crossref_primary_10_3390_app15168966 crossref_primary_10_3390_s25123805 crossref_primary_10_3390_electronics14163296 crossref_primary_10_1016_j_rineng_2024_102678 crossref_primary_10_1016_j_est_2025_117565 crossref_primary_10_1016_j_isatra_2025_08_052 crossref_primary_10_3390_batteries11050179 crossref_primary_10_3390_electronics11203383 crossref_primary_10_1016_j_isatra_2025_08_051 crossref_primary_10_1109_TCSI_2023_3323454 crossref_primary_10_1186_s10033_025_01191_0 crossref_primary_10_1016_j_compchemeng_2023_108386 crossref_primary_10_1016_j_compchemeng_2024_108689 crossref_primary_10_3390_math13121952 crossref_primary_10_1109_TIM_2023_3338722 crossref_primary_10_1371_journal_pwat_0000361 crossref_primary_10_1109_JAS_2025_125222 crossref_primary_10_1049_cth2_12786 crossref_primary_10_1109_TAC_2024_3466869 crossref_primary_10_1016_j_conengprac_2025_106246 crossref_primary_10_1016_j_apenergy_2024_124680 crossref_primary_10_1080_00207721_2025_2469821 crossref_primary_10_1177_01423312241241361 crossref_primary_10_1109_LCSYS_2024_3514977 crossref_primary_10_3390_pr13030672 crossref_primary_10_3390_pr13030792 crossref_primary_10_1016_j_addma_2024_104592 crossref_primary_10_1016_j_mechmachtheory_2023_105258 crossref_primary_10_1080_23307706_2023_2288639 crossref_primary_10_3390_computers14030104 crossref_primary_10_1016_j_conengprac_2025_106480 crossref_primary_10_1016_j_ijthermalsci_2024_109654 crossref_primary_10_3390_pr13051498 crossref_primary_10_1049_cth2_12611 crossref_primary_10_1109_TASE_2024_3490620 crossref_primary_10_1016_j_engappai_2024_109360 crossref_primary_10_1016_j_ifacol_2024_12_032 crossref_primary_10_1109_ACCESS_2025_3555245 crossref_primary_10_1007_s10489_025_06704_x crossref_primary_10_1109_ACCESS_2025_3577056 crossref_primary_10_1002_oca_3318 crossref_primary_10_1007_s40435_023_01118_4 crossref_primary_10_3390_math11132844 crossref_primary_10_1109_ACCESS_2025_3582523 crossref_primary_10_3390_jmse13010132 crossref_primary_10_1109_ACCESS_2022_3227864 crossref_primary_10_1360_SSPMA_2024_0285 crossref_primary_10_2166_hydro_2025_019 crossref_primary_10_1016_j_jhydrol_2024_132204 crossref_primary_10_3390_s25020515 crossref_primary_10_1109_ACCESS_2023_3342024 crossref_primary_10_1016_j_jprocont_2025_103542 crossref_primary_10_1016_j_jfranklin_2025_108037 crossref_primary_10_1016_j_jprocont_2023_103067 crossref_primary_10_1016_j_ifacol_2025_06_003 crossref_primary_10_1088_1741_2552_ad731f crossref_primary_10_3390_computation12100196 crossref_primary_10_1109_ACCESS_2025_3591697 crossref_primary_10_1016_j_apenergy_2022_120302 crossref_primary_10_3390_s25041206 crossref_primary_10_1016_j_ces_2024_120000 crossref_primary_10_1109_JESTPE_2024_3507798 crossref_primary_10_1109_ACCESS_2022_3191343 crossref_primary_10_1007_s12555_024_0784_5 crossref_primary_10_1038_s41598_025_89205_8 crossref_primary_10_3389_fphy_2023_1253642 crossref_primary_10_3390_electricity5030031 crossref_primary_10_1016_j_ifacol_2025_07_167 crossref_primary_10_1016_j_arcontrol_2023_03_013 crossref_primary_10_1016_j_jprocont_2025_103413 crossref_primary_10_1109_ACCESS_2025_3537859 crossref_primary_10_1016_j_prime_2025_101098 crossref_primary_10_1007_s00202_024_02346_3 crossref_primary_10_1051_itmconf_20257803028 crossref_primary_10_1016_j_ijrefrig_2024_07_023 crossref_primary_10_3390_en16165909 crossref_primary_10_1109_LRA_2025_3589162 crossref_primary_10_3390_a18060322 crossref_primary_10_1016_j_ecmx_2025_100939 crossref_primary_10_1016_j_actaastro_2025_08_034 crossref_primary_10_3390_fractalfract9010021 crossref_primary_10_1007_s10845_022_01931_2 crossref_primary_10_1177_03611981241279305 crossref_primary_10_1038_s41598_025_17141_8 crossref_primary_10_1007_s00170_023_12059_9 crossref_primary_10_1016_j_dche_2025_100249 crossref_primary_10_1016_j_eswa_2024_125946 crossref_primary_10_1016_j_tra_2025_104380 crossref_primary_10_1007_s00202_023_01924_1 crossref_primary_10_1007_s40192_025_00401_w crossref_primary_10_1016_j_mineng_2025_109278 crossref_primary_10_1007_s10462_025_11278_8 crossref_primary_10_1109_JIOT_2025_3573692 crossref_primary_10_3390_info16060511 crossref_primary_10_1007_s11044_025_10095_9 crossref_primary_10_1080_21642583_2024_2364035 crossref_primary_10_1016_j_apenergy_2024_123429 crossref_primary_10_1016_j_energy_2022_126177 crossref_primary_10_1016_j_seta_2024_103952 crossref_primary_10_3390_aerospace9120798 crossref_primary_10_1016_j_gloei_2024_12_003 crossref_primary_10_3390_machines13020165 crossref_primary_10_1007_s10489_025_06243_5 crossref_primary_10_1021_acs_iecr_5c01048 crossref_primary_10_1134_S0005117924700085 crossref_primary_10_1016_j_cherd_2025_01_024 crossref_primary_10_1016_j_conengprac_2024_106179 crossref_primary_10_1016_j_apenergy_2025_126091 crossref_primary_10_1016_j_rineng_2025_106813 crossref_primary_10_1038_s41597_023_02808_6 crossref_primary_10_3390_en15176238 crossref_primary_10_1016_j_oceaneng_2025_122137 crossref_primary_10_1016_j_nucengdes_2025_114163 crossref_primary_10_1016_j_cjche_2025_07_011 crossref_primary_10_1109_LCSYS_2024_3359068 crossref_primary_10_3390_jmse13010034 crossref_primary_10_1007_s11367_024_02390_y crossref_primary_10_1155_er_9088459 crossref_primary_10_1007_s40435_025_01590_0 crossref_primary_10_3390_pr12010229 crossref_primary_10_3390_s22155807 crossref_primary_10_1177_14680874241296932 crossref_primary_10_1016_j_conengprac_2025_106523 crossref_primary_10_1109_LRA_2024_3431912 crossref_primary_10_1016_j_asoc_2025_113674 crossref_primary_10_3390_s25113534 crossref_primary_10_1145_3730848 crossref_primary_10_2478_amns_2023_2_01247 crossref_primary_10_1016_j_renene_2024_121847 crossref_primary_10_3390_en16176279 crossref_primary_10_1109_ACCESS_2025_3571222 crossref_primary_10_1016_j_cherd_2024_06_017 crossref_primary_10_1016_j_cherd_2025_08_023 crossref_primary_10_3390_en16020868 crossref_primary_10_3390_math13020244 crossref_primary_10_1002_cjce_25097 crossref_primary_10_1016_j_conengprac_2024_106114 crossref_primary_10_12677_sea_2025_142014 crossref_primary_10_3390_pr11123293 crossref_primary_10_1007_s11071_024_10080_5 crossref_primary_10_1080_10643389_2025_2557306 crossref_primary_10_1109_ACCESS_2022_3202020 crossref_primary_10_3390_app15126477 crossref_primary_10_1016_j_chroma_2022_463420 crossref_primary_10_1016_j_compind_2024_104131 crossref_primary_10_14232_actacyb_295044 crossref_primary_10_3390_e26080653 crossref_primary_10_1016_j_apenergy_2023_121630 crossref_primary_10_1177_09544070251366344 crossref_primary_10_1038_s41598_025_13899_z crossref_primary_10_3390_aerospace10110951 crossref_primary_10_1016_j_compchemeng_2022_107869 crossref_primary_10_1016_j_ecmx_2025_101129 crossref_primary_10_31857_S0005117924070088 crossref_primary_10_1109_TGCN_2024_3379289 crossref_primary_10_1016_j_ifacol_2024_09_018 crossref_primary_10_3390_asi5060118 crossref_primary_10_1016_j_apenergy_2022_120028 crossref_primary_10_1039_D3RE00544E crossref_primary_10_3390_app12105016 crossref_primary_10_1016_j_conengprac_2025_106438 crossref_primary_10_1109_TASE_2025_3546734 crossref_primary_10_3389_fnetp_2025_1521963 crossref_primary_10_1016_j_jfranklin_2024_107171 crossref_primary_10_1016_j_rineng_2025_105374 crossref_primary_10_1109_LRA_2025_3568686 crossref_primary_10_1002_rnc_70102 crossref_primary_10_3390_electronics14173503 crossref_primary_10_1109_ACCESS_2022_3223298 crossref_primary_10_1016_j_rcim_2025_103137 crossref_primary_10_1155_jcse_5062783 crossref_primary_10_1016_j_renene_2025_123954 crossref_primary_10_1016_j_rineng_2025_104567 crossref_primary_10_3390_electricity5040049 crossref_primary_10_1007_s40435_025_01755_x crossref_primary_10_3390_machines12110773 crossref_primary_10_1016_j_procs_2024_09_033 crossref_primary_10_3390_en18112681 crossref_primary_10_1016_j_csbj_2023_07_003 crossref_primary_10_1109_OJCOMS_2025_3564069 crossref_primary_10_1016_j_jclepro_2022_135049 crossref_primary_10_1080_00207543_2022_2120922 crossref_primary_10_1002_bit_28236 crossref_primary_10_3390_act14080369 crossref_primary_10_1002_acs_3737 crossref_primary_10_1002_aic_18909 crossref_primary_10_1007_s40815_025_02085_y crossref_primary_10_1016_j_iswa_2023_200191 crossref_primary_10_1109_ACCESS_2023_3342034 crossref_primary_10_1061_JAEEEZ_ASENG_5646 crossref_primary_10_1109_TRO_2023_3319895 crossref_primary_10_3390_s23218679 crossref_primary_10_1016_j_enbuild_2024_114650 crossref_primary_10_1016_j_lssr_2025_06_001 crossref_primary_10_1016_j_apm_2024_01_002 crossref_primary_10_1016_j_cep_2023_109548 crossref_primary_10_1109_TIE_2024_3462976 crossref_primary_10_17979_ja_cea_2025_46_12205 crossref_primary_10_1016_j_jclepro_2023_138668 crossref_primary_10_1002_rob_22283 crossref_primary_10_1088_1742_6596_2665_1_012016 crossref_primary_10_3390_inventions8050119 crossref_primary_10_1109_TIA_2024_3427049 crossref_primary_10_1007_s40435_024_01426_3 crossref_primary_10_3390_act12060220 crossref_primary_10_1016_j_actaastro_2024_09_054 crossref_primary_10_3390_robotics12030067 crossref_primary_10_1115_1_4068695 crossref_primary_10_1109_TCYB_2024_3390729 crossref_primary_10_3390_a15050157 crossref_primary_10_1080_23744731_2023_2196910 crossref_primary_10_1016_j_apenergy_2023_121677 crossref_primary_10_3390_electronics14102048 crossref_primary_10_1016_j_cherd_2024_12_028 crossref_primary_10_1016_j_ifacol_2024_08_428 crossref_primary_10_1109_TCST_2025_3561501 crossref_primary_10_1109_JAS_2023_123135 crossref_primary_10_1007_s41660_025_00562_3 crossref_primary_10_1016_j_enconman_2023_117133 crossref_primary_10_1109_TMECH_2024_3452509 crossref_primary_10_1007_s41237_022_00176_w crossref_primary_10_3390_robotics12010007 crossref_primary_10_1016_j_isatra_2023_08_011 crossref_primary_10_1016_j_isatra_2024_01_029 crossref_primary_10_1109_TMECH_2024_3483222 crossref_primary_10_1109_TCYB_2025_3562032 |
| Cites_doi | 10.1109/ACC.2000.876624 10.1109/CCDC.2009.5192458 10.1007/3-540-45802-6 10.23919/ECC.2019.8795871 10.1109/TIE.2016.2625238 10.1109/TSMC.2015.2465352 10.1080/00207178708933912 10.1109/TCST.2011.2124461 10.1109/TIE.2019.2910034 10.1007/s11740-017-0721-z 10.1109/TIE.2017.2779442 10.1109/TVT.2016.2555853 10.3182/20140824-6-ZA-1003.02505 10.1016/j.enbuild.2017.02.012 10.1016/j.rser.2017.09.102 10.1109/ICECE.2018.8636741 10.1016/j.automatica.2014.10.128 10.1109/PESC.2005.1581874 10.1007/BFb0109870 10.1016/S0005-1098(99)00214-9 10.1109/LRA.2020.2964159 10.1109/TII.2019.2953275 10.1016/j.apenergy.2015.10.152 10.1109/TIE.2018.2844836 10.23919/ACC.2019.8814335 10.1016/j.enbuild.2016.09.044 10.1016/0005-1098(93)90049-Y 10.1109/CDC.2018.8619572 10.1109/TII.2012.2223222 10.1016/j.automatica.2015.07.030 10.1115/1.4046278 10.1016/j.apenergy.2018.12.032 10.1007/s00170-019-04335-4 10.1016/j.jprocont.2007.01.001 10.1109/CCDC.2013.6561735 10.1109/MIE.2013.2290138 10.1016/j.jprocont.2016.04.007 10.1109/9.262032 10.1016/S0098-1354(98)00260-9 10.1109/TPEL.2019.2906805 10.1109/TIE.2017.2772154 10.1016/j.compchemeng.2006.05.044 10.1016/j.ifacol.2016.07.542 10.1016/S0005-1098(01)00083-8 10.1109/TPEL.2017.2744986 10.1109/TIE.2008.2008349 10.1007/978-3-0348-8407-5 10.1109/IJCNN.2018.8489446 10.1021/ie900323c 10.1109/ICMICA48462.2020.9242772 10.1016/0005-1098(82)90069-3 10.1016/j.jobe.2020.101692 10.1016/S0005-1098(00)00173-4 10.1145/2785956.2787486 10.1109/LRA.2020.2975727 10.1016/0005-1098(89)90002-2 10.1109/TIE.2008.2007032 10.1016/j.scs.2018.05.035 10.23919/ACC45564.2020.9147625 10.1002/aic.16615 10.1016/0005-1098(87)90087-2 10.1002/aic.690451016 10.1016/S0005-1098(01)00115-7 10.1109/tcst.2005.847331 10.2478/v10006-007-0020-5 10.3390/en11030631 10.3182/20090712-4-TR-2008.00014 10.1016/j.ifacol.2019.11.094 10.1115/1.4038074 10.1016/j.asoc.2015.09.022 10.1016/j.techfore.2006.06.001 10.1109/ACC.2010.5530680 10.1038/530144a 10.1002/(SICI)1099-1239(19991230)9:15<1117::AID-RNC447>3.0.CO;2-I 10.18154/RWTH-2020-02766 10.1080/00207179.2016.1222553 10.23919/ACC45564.2020.9147465 10.1016/j.automatica.2016.12.008 10.1016/S0005-1098(02)00012-2 10.1016/j.jclepro.2020.124124 10.1016/j.buildenv.2014.09.011 10.1016/j.ijmachtools.2015.01.002 10.1109/RTEICT42901.2018.9012517 10.1007/s00170-020-05719-7 10.1016/j.ifacol.2019.11.462 10.23919/ChiCC.2019.8865797 10.1016/j.enbuild.2011.09.022 10.1016/0005-1098(78)90001-8 10.1109/IROS.2009.5354018 10.1111/j.1934-6093.1999.tb00002.x 10.1016/0005-1098(87)90088-4 10.1109/TIE.2008.2007547 10.1109/MED.2018.8442437 10.1109/LCSYS.2018.2843682 10.1109/9.486649 10.1109/ISGT-Asia.2019.8881147 10.1016/j.mineng.2013.07.012 10.1109/TCST.2006.880199 10.1109/JACC.1980.4232010 10.1016/S0098-1354(98)00301-9 10.1016/j.ifacol.2017.08.2336 10.1109/TCST.2010.2049203 10.1021/acs.iecr.6b03275 10.1016/s1474-6670(17)57870-2 10.1109/MERCon.2019.8818777 10.1109/TCST.2013.2266662 10.1109/9.467664 10.1016/0005-1098(94)90159-7 10.1016/j.enbuild.2016.07.036 10.1016/j.ifacol.2015.09.022 10.3182/20110828-6-IT-1002.00579 10.1109/TITS.2019.2928217 10.1109/MIE.2016.2615127 10.23919/ACC45564.2020.9147360 10.1016/j.jprocont.2020.03.013 10.1109/TIA.2018.2801838 10.1016/S0167-6911(00)00084-0 10.1016/j.enbuild.2017.04.027 10.1016/j.rser.2015.01.046 10.1109/LRA.2019.2901638 10.1115/MSEC2011-50154 10.1016/S0967-0661(02)00186-7 10.1016/j.ifacol.2020.12.1930 10.1016/j.ifacol.2016.07.242 10.1016/j.mineng.2014.03.029 10.1109/CDC.2006.377490 10.1016/j.ifacol.2020.12.546 10.23919/ECC.2019.8795826 10.1109/TIE.2008.2007030 10.1016/j.ifacol.2019.11.459 10.23919/ChiCC.2018.8483834 10.1021/i200017a016 10.1109/37.845037 10.1109/ICHR.2006.321375 10.1109/37.845038 10.1007/s10845-019-01506-8 10.1109/CCTA.2019.8920461 10.1109/TAC.2000.881002 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2021 The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2021 – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION 8FE 8FG ABJCF AFKRA BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| DOI | 10.1007/s00170-021-07682-3 |
| DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland ProQuest One Academic Technology collection ProQuest One Community College ProQuest Central SciTech Premium Collection ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection (ProQuest) |
| DatabaseTitle | CrossRef Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest One Academic ProQuest Central (New) Engineering Collection ProQuest One Academic (New) |
| DatabaseTitleList | Engineering Database CrossRef |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest One Academic url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1433-3015 |
| EndPage | 1349 |
| ExternalDocumentID | 10_1007_s00170_021_07682_3 |
| GrantInformation_xml | – fundername: German Reserach Foundation (DFG) grantid: 390621612 – fundername: RWTH Aachen University (3131) |
| GroupedDBID | -5B -5G -BR -EM -XW -XX -Y2 -~C .86 .VR 06D 0R~ 0VY 123 1N0 1SB 203 28- 29J 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X 9M8 AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADMLS ADQRH ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCEE ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EAS EBLON EBS EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW L6V LAS LLZTM M4Y M7S MA- ML~ N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P9P PF0 PT4 PT5 PTHSS QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SCV SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z85 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8U Z8V Z8W Z8Z Z92 ZMTXR ZY4 _50 ~8M ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c429t-b9378284f408fb4533bfd9069fd2fb4807c5dacb907092fd09093da377da0cee3 |
| IEDL.DBID | M7S |
| ISICitedReferencesCount | 576 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000684098200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0268-3768 |
| IngestDate | Tue Nov 04 22:27:28 EST 2025 Sat Nov 29 03:17:00 EST 2025 Tue Nov 18 22:33:53 EST 2025 Fri Feb 21 02:47:33 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5-6 |
| Keywords | Model predictive control MPC Stability Computation Robustness Application Optimization |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c429t-b9378284f408fb4533bfd9069fd2fb4807c5dacb907092fd09093da377da0cee3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-3422-8631 |
| OpenAccessLink | https://link.springer.com/10.1007/s00170-021-07682-3 |
| PQID | 2582658788 |
| PQPubID | 2044010 |
| PageCount | 23 |
| ParticipantIDs | proquest_journals_2582658788 crossref_primary_10_1007_s00170_021_07682_3 crossref_citationtrail_10_1007_s00170_021_07682_3 springer_journals_10_1007_s00170_021_07682_3 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-11-01 |
| PublicationDateYYYYMMDD | 2021-11-01 |
| PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: Heidelberg |
| PublicationTitle | International journal of advanced manufacturing technology |
| PublicationTitleAbbrev | Int J Adv Manuf Technol |
| PublicationYear | 2021 |
| Publisher | Springer London Springer Nature B.V |
| Publisher_xml | – name: Springer London – name: Springer Nature B.V |
| References | Ay M, Stemmler S, Schwenzer M, Abel D, Bergs T (2019) Model predictive control in milling based on support vector machines. IFAC-PapersOnLine 52(13):1797–1802, https://doi.org/10.1016/j.ifacol.2019.11.462 Garnier A, Eynard J, Caussanel M, Grieu S (2015) Predictive control of multizone heating, ventilation and air-conditioning systems in non-residential buildings. Applied Soft Computing 37:847–862, https://doi.org/10.1016/j.asoc.2015.09.022 Li Z, Deng J, Lu R, Xu Y, Bai J, Su CY (2016c) Trajectory-tracking control of mobile robot systems incorporating neural-dynamic optimized model predictive approach. IEEE Transactions on Systems, Man, and Cybernetics: Systems 46(6):740–749, https://doi.org/10.1109/TSMC.2015.2465352 Lee KS, Chin IS, Lee HJ, Lee JH (1999) Model predictive control technique combined with iterative learning for batch processes. AIChE Journal 45(10):2175–2187, https://doi.org/10.1002/aic.690451016 Wu Z, Rincon D, Christofides PD (2020) Process structure-based recurrent neural network modeling for model predictive control of nonlinear processes. Journal of Process Control 89:74–84, https://doi.org/10.1016/j.jprocont.2020.03.013. https://linkinghub.elsevier.com/retrieve/pii/S095915241930825X Magni L, Nicolao G, Magnani L, Scattolini R (2001) A stabilizing model-based predictive control algorithm for nonlinear systems. Automatica 37(9):1351–1362, https://doi.org/10.1016/S0005-1098(01)00083-8 Zhongjun X, Mengxiao W (2009) Time-delay process Multivariable model predictive function control for basis weight & moisture content control system. In: 2009 Chinese Control and Decision Conference, IEEE, Guilin, China, pp 4089–4093, https://doi.org/10.1109/CCDC.2009.5192458. http://ieeexplore.ieee.org/document/5192458 Zhang X, Bujarbaruah M, Borrelli F (2019) Safe and near-optimal policy learning for model predictive control using primal-dual neural networks. arXiv:190608257 [cs, eess, stat] Schwenzer M, Adams O, Klocke F, Stemmler S, Abel D (2017) Model-based predictive force control in milling: determination of reference trajectory. Prod Eng 11(2):107–115, https://doi.org/10.1007/s11740-017-0721-z Wieber Pb (2006) Trajectory free linear model predictive control for stable walking in the presence of strong perturbations. 2006 6th IEEE-RAS Int Conf Humanoid Robots pp 137–142, https://doi.org/10.1109/ICHR.2006.321375 Li D, Xi Y, Lu J, Gao F (2016a) Synthesis of real-time-feedback-based 2d iterative learning control–model predictive control for constrained batch processes with unknown input nonlinearity. Industrial & Engineering Chemistry Research 55(51):13074–13084, https://doi.org/10.1021/acs.iecr.6b03275 Mora A, Cardenas-Dobson R, Aguilera RP, Angulo A, Donoso F, Rodriguez J (2019) Computationally efficient cascaded optimal switching sequence MPC for grid-connected three-Level NPC converters. IEEE Transactions on Power Electronics 34(12):12464–12475, https://doi.org/10.1109/TPEL.2019.2906805. https://ieeexplore.ieee.org/document/8672506 SchwenzerMClosing the loop of model predictive force control in milling with ensemble Kalman filtering. PhD thesis RWTH Aachen University2021GermanyAachen Forbes MG, Patwardhan RS, Hamadah H, Gopaluni RB (2015) Model predictive control in industry: challenges and opportunities. IFAC-PapersOnLine 48(8):531–538, https://doi.org/10.1016/j.ifacol.2015.09.022 Cataldo A, Morescalchi M, Scattolini R (2019) Fault-tolerant model predictive control of a de-manufacturing plant. The International Journal of Advanced Manufacturing Technology 104 (9-12):4803–4812, https://doi.org/10.1007/s00170-019-04335-4. http://link.springer.com/10.1007/s00170-019-04335-4 Allgöwer F, Zheng A (2000) Nonlinear model predictive control. Birkhauser Basel̈, Basel, https://doi.org/10.1007/978-3-0348-8407-5 Rawlings JB (2000) Tutorial overview of model predictive control. IEEE Control Sys 20(3):38–52, https://doi.org/10.1109/37.845037 Morari M, Lee JH (1999) Model predictive control: past, present and future. Comp & Chem Eng 23(4–5):667–682, https://doi.org/10.1016/S0098-1354(98)00301-9 Luis CE, Vukosavljev M, Schoellig AP (2020) Online trajectory generation with distributed model predictive control for multi-robot motion planning. IEEE Robotics and Autom Lett 5(2):604–611, https://doi.org/10.1109/LRA.2020.2964159 Koller T, Berkenkamp F, Turchetta M, Krause A (2018) Learning-based Model Predictive Control for Safe Exploration. arXiv:1803.08287[cs] de Nicolao G, Magni L, Scattolini R (1996) On the robustness of receding-horizon control with terminal constraints. IEEE Trans Autom Control 41(3):451–453, https://doi.org/10.1109/9.486649 Stemmler S, Ay M, Vukovic M, Abel D, Heinisch J, Hopmann C (2019) Cross-phase model-based predictive cavity pressure control in injection molding. In: 2019 IEEE Conf. Control Technol. Appl. (CCTA), IEEE, Hong Kong, China, pp 360–367, https://doi.org/10.1109/CCTA.2019.8920461 Cuzzola FA, Geromel JC, Morari M (2002) An improved approach for constrained robust model predictive control. Automatica 38(7):1183–1189, https://doi.org/10.1016/S0005-1098(02)00012-2 Laughlin DL, Morari M (1987) Smith predictor design for robust performance. Am Control Conf, 1987 pp 637–642, https://doi.org/10.1080/00207178708933912 Serale G, Fiorentini M, Capozzoli A, Bernardini D, Bemporad A (2018) Model Predictive Control (MPC) for Enhancing Building and HVAC System Energy Efficiency: Problem Formulation, Applications and Opportunities. Energies 11(3):631, https://doi.org/10.3390/en11030631. http://www.mdpi.com/1996-1073/11/3/631 Mayne DQ, Rawlings JB, Rao CV, Scokaert P (2000) Constrained model predictive control: Stability and optimality. Automatica 36(6):789–814, https://doi.org/10.1016/S0005-1098(99)00214-9 Linder A, Kennel R (2005) Model predictive control for electrical drives. 2005 IEEE 36th Power Electronics Specialists Conference pp 1793–1799, https://doi.org/10.1109/PESC.2005.1581874 Salazar JL, Valdes-Gonzalez H, Vyhmesiter E, Cubillos F (2014) Model predictive control of semiautogenous mills (sag). Minerals Eng 64:92–96, https://doi.org/10.1016/j.mineng.2014.03.029 Michalska H, Mayne DQ (1993) Robust receding horizon control of constrained nonlinear systems. IEEE Trans Autom Control 38(11):1623–1633, https://doi.org/10.1109/9.262032 Gilbert EG, Kolmanovsky I (1999) Fast reference governors for systems with state and control constraints and disturbance inputs. Int J of Robust and Nonlinear Control 9(15):1117–1141, https://doi.org/10.1002/(SICI)1099-1239(19991230)9:15<1117::AID-RNC447>3.0.CO;2-I Shen C, Shi Y, Buckham B (2018) Trajectory tracking control of an autonomous underwater vehicle using Lyapunov-based model predictive control. IEEE Transactions on Industrial Electronics 65(7):5796–5805, https://doi.org/10.1109/TIE.2017.2779442. http://ieeexplore.ieee.org/document/8126875 MaciejowskiJMPredictive control: with constraints2002HarlowPrentice Hall0978.93002 Vahidi A, Stefanopoulou A, Peng H (2006) Current management in a hybrid fuel cell power system: A model-predictive control approach. IEEE Trans Control Sys Technol 14(6):1047–1057, https://doi.org/10.1109/TCST.2006.880199 Bemporad A, Morari M (1999) Robust model predictive control: a survey. In: Garulli A, Tesi A (eds) Robustness in identification and control, Springer London, London, pp 207–226, https://doi.org/10.1007/BFb0109870 Mayne D, Rawlings J (2001) Correction to “constrained model predictive control: stability and optimality”. Automatica 37(3):483, https://doi.org/10.1016/S0005-1098(00)00173-4 Li L, You S, Yang C, Yan B, Song J, Chen Z (2016b) Driving-behavior-aware stochastic model predictive control for plug-in hybrid electric buses. Applied Energy 162:868–879, https://doi.org/10.1016/j.apenergy.2015.10.152 Gros S, Zanon M, Quirynen R, Bemporad A, Diehl M (2020) From linear to nonlinear MPC: bridging the gap via the real-time iteration. International Journal of Control 93(1):62–80, https://doi.org/10.1080/00207179.2016.1222553. https://www.tandfonline.com/doi/full/10.1080/00207179.2016.1222553 Le Roux JD, Olivier LE, Naidoo MA, Padhi R, Craig IK (2016) Throughput and product quality control for a grinding mill circuit using non-linear mpc. Journal of Process Control 42:35–50, https://doi.org/10.1016/j.jprocont.2016.04.007 Qin S, Badgwell TA (2003) A survey of industrial model predictive control technology. Control Eng Pract 11(7):733–764, https://doi.org/10.1016/S0967-0661(02)00186-7 Rao CV, Rawlings JB, Lee JH (2001) Constrained linear state estimation—a moving horizon approach. Automatica 37(10):1619–1628, https://doi.org/10.1016/S0005-1098(01)00115-7 Stemmler S, Abel D, Schwenzer M, Adams O, Klocke F (2017) Model predictive control for force control in milling. IFAC-PapersOnLine 50(1):15871–15876, https://doi.org/10.1016/j.ifacol.2017.08.2336 Djurdjanovic D, Mears L, Niaki FA, Haq AU, Li L (2018) State of the art review on process, system, and operations control in modern manufacturing. J Manuf Sci Eng 140(061010), https://doi.org/10.1115/1.4038074 Li S, Jiang P, Han K (2019) RBF neural network based model predictive control algorithm and its application to a CSTR process. In: 2019 Chinese Control Conference (CCC), IEEE, Guangzhou, China, pp 2948–2952, https://doi.org/10.23919/ChiCC.2019.8865797. https://ieeexplore.ieee.org/document/8865797 Oldewurtel F, Parisio A, Jones CN, Gyalistras D, Gwerder M, Stauch V, Lehmann B, Morari M (2012) Use of model predictive control and weather forecasts for energy efficient building climate control. Energy and Buildings 45:15–27, https://doi.org/10.1016/j.enbuild.2011.09.022 Reiter M, Stemmler S, Hopmann C, Ressmann A, Abel D (2014) Model predictive control of cavity pressure in an injection moulding process. IFAC Proc Vol 47(3):4358–4363, https://doi.org/10.3182/20140824-6-ZA-1003.02505 Atam E (2016) New paths toward energy-efficient buildings: a multiaspect discussion of advanced model-based control. IEEE Ind Electron Mag 10(4):50–66, https://doi.org/10.1109/MIE.2016.2615127 Olivier LE, Craig IK (2016) Fault-tolerant nonlinear mpc using 7682_CR14 7682_CR15 7682_CR16 7682_CR10 7682_CR98 7682_CR11 7682_CR99 7682_CR12 7682_CR13 7682_CR94 7682_CR95 7682_CR96 7682_CR97 7682_CR2 7682_CR90 7682_CR1 7682_CR91 7682_CR4 7682_CR92 7682_CR3 7682_CR93 7682_CR102 7682_CR103 7682_CR100 7682_CR101 JM Maciejowski (7682_CR70) 2002 7682_CR87 7682_CR88 7682_CR89 7682_CR83 7682_CR84 7682_CR85 7682_CR86 7682_CR80 7682_CR81 7682_CR82 EF Camacho (7682_CR17) 2004 M Schwenzer (7682_CR111) 2021 7682_CR36 7682_CR37 7682_CR38 7682_CR39 7682_CR32 7682_CR33 7682_CR34 7682_CR35 7682_CR30 7682_CR31 PJ Campo (7682_CR18) 1986; 1986 7682_CR29 7682_CR148 7682_CR25 7682_CR26 7682_CR27 7682_CR28 7682_CR21 7682_CR22 7682_CR23 PJ Campo (7682_CR19) 1987; 1987 7682_CR20 CR Cutler (7682_CR24) 1980; 17 7682_CR139 7682_CR137 7682_CR138 7682_CR58 7682_CR59 7682_CR54 7682_CR55 7682_CR56 7682_CR57 7682_CR50 7682_CR51 7682_CR52 7682_CR53 7682_CR142 7682_CR143 7682_CR140 7682_CR141 7682_CR146 7682_CR147 7682_CR144 7682_CR145 7682_CR128 7682_CR129 7682_CR126 7682_CR127 7682_CR47 7682_CR48 7682_CR49 7682_CR43 7682_CR44 7682_CR45 7682_CR46 7682_CR40 7682_CR41 7682_CR42 7682_CR131 7682_CR132 7682_CR130 7682_CR135 7682_CR136 7682_CR133 7682_CR134 7682_CR117 7682_CR118 7682_CR115 7682_CR116 7682_CR119 7682_CR76 7682_CR77 7682_CR78 7682_CR79 7682_CR72 7682_CR73 7682_CR74 7682_CR75 7682_CR71 7682_CR120 7682_CR121 7682_CR124 7682_CR125 7682_CR122 7682_CR123 7682_CR106 7682_CR107 7682_CR104 7682_CR105 7682_CR69 7682_CR108 7682_CR109 7682_CR65 7682_CR9 7682_CR66 7682_CR67 7682_CR68 7682_CR6 7682_CR61 7682_CR5 7682_CR62 7682_CR8 7682_CR63 7682_CR7 7682_CR64 7682_CR60 7682_CR110 7682_CR113 7682_CR114 7682_CR112 |
| References_xml | – reference: Rao CV, Rawlings JB, Lee JH (2001) Constrained linear state estimation—a moving horizon approach. Automatica 37(10):1619–1628, https://doi.org/10.1016/S0005-1098(01)00115-7 – reference: Mehta P, Mears L (2011) Model based prediction and control of machining deflection error in turning slender bars. In: Proceedings of the ASME International Manufacturing Science and Engineering Conference–2011: presented at ASME 2011 International Manufacturing Science and Engineering Conference, June 13-17, 2011, Corvallis, Oregon, USA, Amer Soc Mechanical Engineers, Corvallis, Oregon, USA, vol 2, pp 263–271, https://doi.org/10.1115/MSEC2011-50154 – reference: Piche S, Sayyar-Rodsari B, Johnson D, Gerules M (2000) Nonlinear model predictive control using neural networks. IEEE Control Sys 20(3):53–62, https://doi.org/10.1109/37.845038 – reference: Steyn CW, Sandrock C (2013) Benefits of optimisation and model predictive control on a fully autogenous mill with variable speed. Minerals Eng 53:113–123, https://doi.org/10.1016/j.mineng.2013.07.012 – reference: Garnier A, Eynard J, Caussanel M, Grieu S (2015) Predictive control of multizone heating, ventilation and air-conditioning systems in non-residential buildings. Applied Soft Computing 37:847–862, https://doi.org/10.1016/j.asoc.2015.09.022 – reference: Michalska H, Mayne DQ (1993) Robust receding horizon control of constrained nonlinear systems. IEEE Trans Autom Control 38(11):1623–1633, https://doi.org/10.1109/9.262032 – reference: Cagienard R, Grieder P, Kerrigan EC, Morari M (2007) Move blocking strategies in receding horizon control. Journal of Process Control 17(6):563–570, https://doi.org/10.1016/j.jprocont.2007.01.001 – reference: Zheng A, Morari M (1995) Stability of model predictive control with mixed constraints. IEEE Trans Autom Control 40(10):1818–1823, https://doi.org/10.1109/9.467664 – reference: Li D, Xi Y, Lu J, Gao F (2016a) Synthesis of real-time-feedback-based 2d iterative learning control–model predictive control for constrained batch processes with unknown input nonlinearity. Industrial & Engineering Chemistry Research 55(51):13074–13084, https://doi.org/10.1021/acs.iecr.6b03275 – reference: Froisy JB (2006) Model predictive control—building a bridge between theory and practice. Comp & Chem Eng 30(10–12):1426–1435, https://doi.org/10.1016/j.compchemeng.2006.05.044 – reference: Prasad GM, Kedia V, Rao AS (2020) Multi-model predictive control (MMPC) for non-linear systems with time delay: an experimental investigation. In: 2020 First IEEE International Conference on Measurement, Instrumentation, Control and Automation (ICMICA), IEEE, Kurukshetra, India, pp 1–5, https://doi.org/10.1109/ICMICA48462.2020.9242772. https://ieeexplore.ieee.org/document/9242772/ – reference: Chavan S, Birnale N, Deshpande AS (2018) Design and simulation of model predictive control for multivariable distillation column. In: 2018 3rd IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT), IEEE, Bangalore, India, pp 764–768, https://doi.org/10.1109/RTEICT42901.2018.9012517, https://ieeexplore.ieee.org/document/9012517/ – reference: Li D, He S, Xi Y, Liu T, Gao F, Wang Y, Lu J (2020) Synthesis of ilc–mpc controller with data-driven approach for constrained batch processes. IEEE Trans Ind Electron 67(4):3116–3125, https://doi.org/10.1109/TIE.2019.2910034 – reference: Le Roux JD, Olivier LE, Naidoo MA, Padhi R, Craig IK (2016) Throughput and product quality control for a grinding mill circuit using non-linear mpc. Journal of Process Control 42:35–50, https://doi.org/10.1016/j.jprocont.2016.04.007 – reference: Liu YK, Zhang YM (2014) Model-based predictive control of weld penetration in gas tungsten arc welding. IEEE Trans Control Sys Technol 22(3):955–966, https://doi.org/10.1109/TCST.2013.2266662 – reference: Yoon S, Jeon H, Kum D (2019) Predictive cruise control using radial basis function network-based vehicle motion prediction and chance constrained model predictive control. IEEE Transactions on Intelligent Transportation Systems 20(10):3832–3843, https://doi.org/10.1109/TITS.2019.2928217. https://ieeexplore.ieee.org/document/8792151/ – reference: Garriga JL, Soroush M (2010) Model predictive control tuning methods: a review. Industrial & Engineering Chemistry Research 49(8):3505–3515, https://doi.org/10.1021/ie900323c – reference: Bemporad A, Morari M (1999) Robust model predictive control: a survey. In: Garulli A, Tesi A (eds) Robustness in identification and control, Springer London, London, pp 207–226, https://doi.org/10.1007/BFb0109870 – reference: MaciejowskiJMPredictive control: with constraints2002HarlowPrentice Hall0978.93002 – reference: Mayne D, Rawlings J (2001) Correction to “constrained model predictive control: stability and optimality”. Automatica 37(3):483, https://doi.org/10.1016/S0005-1098(00)00173-4 – reference: Linder A, Kennel R (2005) Model predictive control for electrical drives. 2005 IEEE 36th Power Electronics Specialists Conference pp 1793–1799, https://doi.org/10.1109/PESC.2005.1581874 – reference: Cuzzola FA, Geromel JC, Morari M (2002) An improved approach for constrained robust model predictive control. Automatica 38(7):1183–1189, https://doi.org/10.1016/S0005-1098(02)00012-2 – reference: Barisa T, Iles S, Sumina D, Matusko J (2018) Model predictive direct current control of a permanent magnet synchronous generator based on flexible Lyapunov function Ccnsidering converter dead time. IEEE Transactions on Industry Applications 54(3):2899–2912, https://doi.org/10.1109/TIA.2018.2801838, https://ieeexplore.ieee.org/document/8281032/ – reference: Geyer T, Papafotiou G, Morari M (2009) Model predictive direct torque control—part i: concept, algorithm, and analysis. IEEE Trans Ind Electron 56(6):1894–1905, https://doi.org/10.1109/TIE.2008.2007030 – reference: Margolis BWL, Farouki RT (2020) Inverse dynamics toolpath compensation for CNC machines based on model predictive control. The International Journal of Advanced Manufacturing Technology 109(7-8):2155–2172, https://doi.org/10.1007/s00170-020-05719-7. http://link.springer.com/10.1007/s00170-020-05719-7 – reference: Stemmler S, Abel D, Schwenzer M, Adams O, Klocke F (2017) Model predictive control for force control in milling. IFAC-PapersOnLine 50(1):15871–15876, https://doi.org/10.1016/j.ifacol.2017.08.2336 – reference: CamachoEFBordonsCModel predictive control Advanced textbooks in control and signal processing2004London and New YorkSpringer1080.93001 – reference: Richalet J, Rault A, Testud JL, Papon J (1978) Model predictive heuristic control. Automatica 14(5):413–428, https://doi.org/10.1016/0005-1098(78)90001-8 – reference: Wu Z, Rincon D, Christofides PD (2020) Process structure-based recurrent neural network modeling for model predictive control of nonlinear processes. Journal of Process Control 89:74–84, https://doi.org/10.1016/j.jprocont.2020.03.013. https://linkinghub.elsevier.com/retrieve/pii/S095915241930825X – reference: Akter F, Alam KS, Akter MP (2018) Simplified model predictive control of four-leg inverters for stand-alone power systems. In: 2018 10th International Conference on Electrical and Computer Engineering (ICECE), IEEE, Dhaka, Bangladesh, pp 261–264, https://doi.org/10.1109/ICECE.2018.8636741. https://ieeexplore.ieee.org/document/8636741/ – reference: Oldewurtel F, Parisio A, Jones CN, Morari M, Gyalistras D, Gwerder M, Stauch V, Lehmann B, Wirth K (2010) Energy efficient building climate control using stochastic model predictive control and weather predictions. Proc of the 2010 Am Control Conf pp 5100–5105, https://doi.org/10.1109/ACC.2010.5530680 – reference: Olivier LE, Craig IK (2016) Fault-tolerant nonlinear mpc using particle filtering. IFAC-PapersOnLine 49(7):177–182, https://doi.org/10.1016/j.ifacol.2016.07.242 – reference: Cataldo A, Morescalchi M, Scattolini R (2019) Fault-tolerant model predictive control of a de-manufacturing plant. The International Journal of Advanced Manufacturing Technology 104 (9-12):4803–4812, https://doi.org/10.1007/s00170-019-04335-4. http://link.springer.com/10.1007/s00170-019-04335-4 – reference: Nunez F, Langarica S, Diaz P, Torres M, Salas JC (2020) Neural network-based model predictive control of a paste thickener over an industrial Internet platform. IEEE Transactions on Industrial Informatics 16(4):2859–2867, https://doi.org/10.1109/TII.2019.2953275. https://ieeexplore.ieee.org/document/8897590/ – reference: Stephens MA, Manzie C, Good MC (2013) Model predictive control for reference tracking on an industrial machine tool servo drive. IEEE Trans Ind Inform 9(2):808–816, https://doi.org/10.1109/TII.2012.2223222 – reference: Luis CE, Vukosavljev M, Schoellig AP (2020) Online trajectory generation with distributed model predictive control for multi-robot motion planning. IEEE Robotics and Autom Lett 5(2):604–611, https://doi.org/10.1109/LRA.2020.2964159 – reference: Waldrop MM (2016) The chips are down for moore’s law. Nature 530(7589):144–147, https://doi.org/10.1038/530144a – reference: Mariano-Hernández D, Hernández-Callejo L, Zorita-Lamadrid A, Duque-Pérez O, Santos García F (2021) A review of strategies for building energy management system: Model predictive control, demand side management, optimization, and fault detect & diagnosis. Journal of Building Engineering 33:101692, https://doi.org/10.1016/j.jobe.2020.101692, https://linkinghub.elsevier.com/retrieve/pii/S2352710220310627 – reference: Ma Y, Borrelli F, Hencey B, Coffey B, Bengea S, Haves P (2012) Model predictive control for the operation of building cooling systems. IEEE Trans Control Sys Technol 20(3):796–803, https://doi.org/10.1109/TCST.2011.2124461 – reference: Vallon C, Borrelli F (2020) Task decomposition for iterative learning model predictive control. 2020 Am Control Conf (ACC), Denver, CO, USA pp 2024–2029, https://doi.org/10.23919/ACC45564.2020.9147625 – reference: Yin X, Wang X, Liu X, Chi R, Lin M, Wang Y (2018) An iterative learning model predictive control strategy for evaporator. In: 2018 37th Chinese Control Conference (CCC), IEEE, Wuhan, pp 3652–3656, https://doi.org/10.23919/ChiCC.2018.8483834. https://ieeexplore.ieee.org/document/8483834/ – reference: Maddalena E, da S Moraes C, Waltrich G, Jones C (2020) A neural network architecture to learn explicit MPC controllers from data. IFAC-PapersOnLine 53(2):11362–11367, https://doi.org/10.1016/j.ifacol.2020.12.546. https://linkinghub.elsevier.com/retrieve/pii/S2405896320308442 – reference: Zou C, Hu X, Wei Z, Wik T, Egardt B (2018) Electrochemical estimation and control for lithium-ion battery health-aware fast charging. IEEE Trans Ind Electron 65(8):6635–6645, https://doi.org/10.1109/TIE.2017.2772154 – reference: Gong Z, Wu X, Dai P, Zhu R (2019) Modulated model predictive control for mmc-based active front-end rectifiers under unbalanced grid conditions. IEEE Trans Ind Electron 66(3):2398–2409, https://doi.org/10.1109/TIE.2018.2844836 – reference: Kouro S, Cortes P, Vargas R, Ammann U, Rodriguez J (2009) Model predictive control—a simple and powerful method to control power converters. IEEE Trans Ind Electron 56(6):1826–1838, https://doi.org/10.1109/TIE.2008.2008349 – reference: Yin X, Jindal A, Sekar V, Sinopoli B (2015) A control-theoretic approach for dynamic adaptive video streaming over http. In: Proc. 2015 ACM Conf. Special Interest Group on Data Com. - SIGCOMM ’15, ACM Press, London, United Kingdom, pp 325–338, https://doi.org/10.1145/2785956.2787486 – reference: Rawlings JB (2000) Tutorial overview of model predictive control. IEEE Control Sys 20(3):38–52, https://doi.org/10.1109/37.845037 – reference: Visioli A (2006) Practical PID Control. Springer-Verlag GmbH. https://www.ebook.de/de/product/11430954/antonio_visioli_practical_pid_control.html – reference: García CE, Prett DM, Morari M (1989) Model predictive control: theory and practice—a survey. Automatica 25(3):335–348, https://doi.org/10.1016/0005-1098(89)90002-2 – reference: Schubert P, Stemmler S, Abel D (2019) Towards predictive anti-sway control of hanging loads: model-based controller design for a knuckle boom crane. In: 2019 18th European Control Conference (ECC), IEEE, Naples, Italy, pp 2276–2282, https://doi.org/10.23919/ECC.2019.8795871 – reference: Serale G, Fiorentini M, Capozzoli A, Bernardini D, Bemporad A (2018) Model Predictive Control (MPC) for Enhancing Building and HVAC System Energy Efficiency: Problem Formulation, Applications and Opportunities. Energies 11(3):631, https://doi.org/10.3390/en11030631. http://www.mdpi.com/1996-1073/11/3/631 – reference: Afram A, Janabi-Sharifi F, Fung AS, Raahemifar K (2017) Artificial neural network (ann) based model predictive control (mpc) and optimization of hvac systems: a state of the art review and case study of a residential hvac system. Energy and Buildings 141:96–113, https://doi.org/10.1016/j.enbuild.2017.02.012 – reference: Wieber Pb (2006) Trajectory free linear model predictive control for stable walking in the presence of strong perturbations. 2006 6th IEEE-RAS Int Conf Humanoid Robots pp 137–142, https://doi.org/10.1109/ICHR.2006.321375 – reference: Zinober A, Owens DH (2003) Nonlinear and adaptive control: NCN4 2001. Lect. Notes Control Inform. Sci., Springer Berlin Heidelberg, https://books.google.de/books?id=KcxrCQAAQBAJ – reference: Nubert J, Köhler J, Berenz V, Allgöwer F, Trimpe S (2020) Safe and fast tracking on a robot manipulator: Robust mpc and neural network control. IEEE Robotics and Autom Lett 5(2):3050–3057, https://doi.org/10.1109/LRA.2020.2975727 – reference: Bemporad A, Morari M, Dua V, Pistikopoulos EN (2000) The explicit solution of model predictive control via multiparametric quadratic programming. Proc of the 2010 Am Control Conf 2:872–876 vol.2, https://doi.org/10.1109/ACC.2000.876624 – reference: Richalet J (1993) Industrial applications of model based predictive control. Automatica 29(5):1251–1274, https://doi.org/10.1016/0005-1098(93)90049-Y – reference: Forbes MG, Patwardhan RS, Hamadah H, Gopaluni RB (2015) Model predictive control in industry: challenges and opportunities. IFAC-PapersOnLine 48(8):531–538, https://doi.org/10.1016/j.ifacol.2015.09.022 – reference: Sun X, Liao K, Yang J, He Z (2019) Model predictive control based load frequency control for power systems with wind turbine generators. In: 2019 IEEE Innovative Smart Grid Technologies - Asia (ISGT Asia), IEEE, Chengdu, China, pp 1387–1392, https://doi.org/10.1109/ISGT-Asia.2019.8881147, https://ieeexplore.ieee.org/document/8881147/ – reference: Reiter M, Stemmler S, Hopmann C, Ressmann A, Abel D (2014) Model predictive control of cavity pressure in an injection moulding process. IFAC Proc Vol 47(3):4358–4363, https://doi.org/10.3182/20140824-6-ZA-1003.02505 – reference: Mayne DQ (2014) Model predictive control: Recent developments and future promise. Automatica 50(12):2967–2986, https://doi.org/10.1016/j.automatica.2014.10.128 – reference: Schmitt L, Keller M, Albin T, Abel D (2020) Real-time nonlinear model predictive control for the energy management of hybrid electric vehicles in a hierarchical framework*. 2020 Am Control Conf (ACC), Denver, CO, USA pp 1961–1967, https://doi.org/10.23919/ACC45564.2020.9147465 – reference: Zhang HT, Wu Y, He D, Zhao H (2015) Model predictive control to mitigate chatters in milling processes with input constraints. Int J Machine Tools Manuf 91:54–61, https://doi.org/10.1016/j.ijmachtools.2015.01.002 – reference: Djurdjanovic D, Mears L, Niaki FA, Haq AU, Li L (2018) State of the art review on process, system, and operations control in modern manufacturing. J Manuf Sci Eng 140(061010), https://doi.org/10.1115/1.4038074 – reference: Shekhar RC, Manzie C (2015) Optimal move blocking strategies for model predictive control. Automatica 61:27–34, https://doi.org/10.1016/j.automatica.2015.07.030 – reference: Salakij S, Yu N, Paolucci S, Antsaklis P (2016) Model-based predictive control for building energy management. i: Energy modeling and optimal control. Energy and Buildings 133:345–358, https://doi.org/10.1016/j.enbuild.2016.09.044 – reference: Yu N, Salakij S, Chavez R, Paolucci S, Sen M, Antsaklis P (2017) Model-based predictive control for building energy management: Part ii – experimental validations. Energy and Buildings 146:19–26, https://doi.org/10.1016/j.enbuild.2017.04.027 – reference: Stemmler S, Ay M, Vukovic M, Abel D, Heinisch J, Hopmann C (2019) Cross-phase model-based predictive cavity pressure control in injection molding. In: 2019 IEEE Conf. Control Technol. Appl. (CCTA), IEEE, Hong Kong, China, pp 360–367, https://doi.org/10.1109/CCTA.2019.8920461 – reference: Mendis P, Wickramasinghe C, Narayana M, Bayer C (2019) Adaptive model predictive control with successive linearization for distillate composition control in batch distillation. In: 2019 Moratuwa Engineering Research Conference (MERCon), IEEE, Moratuwa, Sri Lanka, pp 366–369, https://doi.org/10.1109/MERCon.2019.8818777, https://ieeexplore.ieee.org/document/8818777/ – reference: Schwenzer M, Adams O, Klocke F, Stemmler S, Abel D (2017) Model-based predictive force control in milling: determination of reference trajectory. Prod Eng 11(2):107–115, https://doi.org/10.1007/s11740-017-0721-z – reference: Tavakoli M, Shokridehaki F, Marzband M, Godina R, Pouresmaeil E (2018) A two stage hierarchical control approach for the optimal energy management in commercial building microgrids based on local wind power and pevs. Sustain Cities Soc 41:332–340, https://doi.org/10.1016/j.scs.2018.05.035 – reference: de Nicolao G, Magni L, Scattolini R (1996) On the robustness of receding-horizon control with terminal constraints. IEEE Trans Autom Control 41(3):451–453, https://doi.org/10.1109/9.486649 – reference: Ay M, Stemmler S, Schwenzer M, Abel D, Bergs T (2019) Model predictive control in milling based on support vector machines. IFAC-PapersOnLine 52(13):1797–1802, https://doi.org/10.1016/j.ifacol.2019.11.462 – reference: Zou S, Wang Z, Hu S, Wang W, Cao Y (2020) Control of weld penetration depth using relative fluctuation coefficient as feedback. J Intell Manuf 31(5):1203–1213, https://doi.org/10.1007/s10845-019-01506-8 – reference: Ławryńczuk M (2007) A family of model predictive control algorithms with artificial neural networks. International Journal of Applied Mathematics and Computer Science 17(2):217–232, https://doi.org/10.2478/v10006-007-0020-5. https://content.sciendo.com/doi/10.2478/v10006-007-0020-5 – reference: Vahidi A, Stefanopoulou A, Peng H (2006) Current management in a hybrid fuel cell power system: A model-predictive control approach. IEEE Trans Control Sys Technol 14(6):1047–1057, https://doi.org/10.1109/TCST.2006.880199 – reference: Li S, Li K, Rajamani R, Wang J (2011) Model predictive multi-objective vehicular adaptive cruise control. IEEE Trans Control Sys Technol 19(3):556–566, https://doi.org/10.1109/TCST.2010.2049203 – reference: Zhongjun X, Mengxiao W (2009) Time-delay process Multivariable model predictive function control for basis weight & moisture content control system. In: 2009 Chinese Control and Decision Conference, IEEE, Guilin, China, pp 4089–4093, https://doi.org/10.1109/CCDC.2009.5192458. http://ieeexplore.ieee.org/document/5192458/ – reference: Allgöwer F, Zheng A (2000) Nonlinear model predictive control. Birkhauser Basel̈, Basel, https://doi.org/10.1007/978-3-0348-8407-5 – reference: Liu C, Atkeson CG (2009) Standing balance control using a trajectory library. 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, St Louis, MO pp 3031–3036, https://doi.org/10.1109/IROS.2009.5354018 – reference: Hillerström G, Walgama K (1996) Repetitive control theory and applications - a survey. IFAC Proc Vol 29(1):1446–1451, https://doi.org/10.1016/s1474-6670(17)57870-2 – reference: Koller T, Berkenkamp F, Turchetta M, Krause A (2018) Learning-based Model Predictive Control for Safe Exploration. arXiv:1803.08287[cs] – reference: Salazar JL, Valdes-Gonzalez H, Vyhmesiter E, Cubillos F (2014) Model predictive control of semiautogenous mills (sag). Minerals Eng 64:92–96, https://doi.org/10.1016/j.mineng.2014.03.029 – reference: Rouhani R, Mehra RK (1982) Model algorithmic control (mac); basic theoretical properties. Automatica 18(4):401–414, https://doi.org/10.1016/0005-1098(82)90069-3 – reference: Gros S, Zanon M, Quirynen R, Bemporad A, Diehl M (2020) From linear to nonlinear MPC: bridging the gap via the real-time iteration. International Journal of Control 93(1):62–80, https://doi.org/10.1080/00207179.2016.1222553. https://www.tandfonline.com/doi/full/10.1080/00207179.2016.1222553 – reference: Lee JH, Morari M, Garcia CE (1994) State-space interpretation of model predictive control. Automatica 30(4):707–717, https://doi.org/10.1016/0005-1098(94)90159-7 – reference: Li S, Jiang P, Han K (2019) RBF neural network based model predictive control algorithm and its application to a CSTR process. In: 2019 Chinese Control Conference (CCC), IEEE, Guangzhou, China, pp 2948–2952, https://doi.org/10.23919/ChiCC.2019.8865797. https://ieeexplore.ieee.org/document/8865797/ – reference: Morari M, Lee JH (1999) Model predictive control: past, present and future. Comp & Chem Eng 23(4–5):667–682, https://doi.org/10.1016/S0098-1354(98)00301-9 – reference: Vazquez S, Leon JI, Franquelo LG, Rodriguez J, Young HA, Marquez A, Zanchetta P (2014) Model predictive control: A review of its applications in power electronics. IEEE Ind Electron Mag 8(1):16–31, https://doi.org/10.1109/MIE.2013.2290138 – reference: Darby ML, Harmse M, Nikolaou M (2009) MPC: current practice and challenges. IFAC Proc Vol 42(11):86–98, https://doi.org/10.3182/20090712-4-TR-2008.00014, https://linkinghub.elsevier.com/retrieve/pii/S1474667015302573 – reference: Ang KH, Chong G, Li Y (2005) Pid control system analysis, design, and technology. IEEE Trans Control Sys Technol 13(4):559–576, https://doi.org/10.1109/tcst.2005.847331 – reference: Ferreau HJ, Potschka A, Kirches C (2017) qpoasis – reference: CutlerCRRamakerBLDynamic matrix control - a computer control algorithmJt Autom Control Conf19801772 – reference: Xie S, Hu X, Xin Z, Brighton J (2019) Pontryagin’s Minimum Principle based model predictive control of energy management for a plug-in hybrid electric bus. Applied Energy 236:893–905, https://doi.org/10.1016/j.apenergy.2018.12.032. https://linkinghub.elsevier.com/retrieve/pii/S0306261918318518 – reference: Lee KS, Chin IS, Lee HJ, Lee JH (1999) Model predictive control technique combined with iterative learning for batch processes. AIChE Journal 45(10):2175–2187, https://doi.org/10.1002/aic.690451016 – reference: Dragicevic T (2018) Model predictive control of power converters for robust and fast pperation of AC microgrids. IEEE Transactions on Power Electronics 33(7):6304–6317, https://doi.org/10.1109/TPEL.2017.2744986. http://ieeexplore.ieee.org/document/8016597/ – reference: Mirakhorli A, Dong B (2016) Occupancy behavior based model predictive control for building indoor climate—a critical review. Energy and Buildings 129:499–513, https://doi.org/10.1016/j.enbuild.2016.07.036 – reference: Wehr M, Schatzler S, Abel D, Hirt G (2020) Model predictive control of an overactuated roll gap with a moving manipulated variable. 2020 Am Control Conf (ACC), Denver, CO, USA pp 1931–1936, https://doi.org/10.23919/ACC45564.2020.9147360 – reference: Dickler S, Wiens M, Thonnissen F, Jassmann U, Abel D (2019) Requirements on super-short-term wind speed predictions for model predictive wind turbine control. 2019 18th European Control Conference (ECC), Naples, Italy pp 3346–3352, https://doi.org/10.23919/ECC.2019.8795826 – reference: Papafotiou G, Kley J, Papadopoulos KG, Bohren P, Morari M (2009) Model predictive direct torque control—part ii: implementation and experimental evaluation. IEEE Trans Ind Electron 56(6):1906–1915, https://doi.org/10.1109/TIE.2008.2007032 – reference: Morari M (1994) Model predictive control: multivariable control technique of choice in the 1990s? In: Clarke DW (ed) Advances in model-based predictive control, Oxford science publications, Oxford University Press, Oxford and New York, pp 22–37. http://resolver.caltech.edu/CaltechCDSTR:1993.024 – reference: Rawlings JB, Maravelias CT (2019) Bringing new technologies and approaches to the operation and control of chemical process systems. AIChE Journal 65(6), https://doi.org/10.1002/aic.16615, https://onlinelibrary.wiley.com/doi/10.1002/aic.16615 – reference: Koh H, Magee CL (2006) A functional approach for studying technological progress: application to information technology. Technological Forecasting and Social Change 73(9):1061–1083, https://doi.org/10.1016/j.techfore.2006.06.001 – reference: Zhang X, Bujarbaruah M, Borrelli F (2019) Safe and near-optimal policy learning for model predictive control using primal-dual neural networks. arXiv:190608257 [cs, eess, stat] – reference: Beaudin M, Zareipour H (2015) Home energy management systems: a review of modelling and complexity. Renew and Sustain Energy Rev 45:318–335, https://doi.org/10.1016/j.rser.2015.01.046 – reference: Qin S, Badgwell TA (2003) A survey of industrial model predictive control technology. Control Eng Pract 11(7):733–764, https://doi.org/10.1016/S0967-0661(02)00186-7 – reference: Gunay HB, Bursill J, Huchuk B, O’Brien W, Beausoleil-Morrison I (2014) Shortest-prediction-horizon model-based predictive control for individual offices. Build and Environ 82:408–419, https://doi.org/10.1016/j.buildenv.2014.09.011 – reference: CampoPJMorariM$\infty $∞-norm formulation of model predictive control problemsAm Control Conf19861986339343 – reference: Vazquez S, Rodriguez J, Rivera M, Franquelo LG, Norambuena M (2017) Model predictive control for power converters and drives: Advances and trends. IEEE Trans Ind Electron 64(2):935–947, https://doi.org/10.1109/TIE.2016.2625238 – reference: Laughlin DL, Morari M (1987) Smith predictor design for robust performance. Am Control Conf, 1987 pp 637–642, https://doi.org/10.1080/00207178708933912 – reference: CampoPJMorariMRobust model predictive controlAm Control Conf1987198710211026 – reference: Bemporad A (2006) Model predictive control design: new trends and tools. Proceedings of the 45th IEEE Conference on Decision and Control pp 6678–6683, https://doi.org/10.1109/CDC.2006.377490 – reference: Stemmler S, Abel D, Adams O, Klocke F (2016) Model predictive feed rate control for a milling machine. IFAC-PapersOnLine 49(12):11–16, https://doi.org/10.1016/j.ifacol.2016.07.542 – reference: Prett DM, Gillette RD (1980) Optimization and constrained multivariable control of a catalytic cracking unit. Jt Autom Control Conf 17:73–78, https://doi.org/10.1109/JACC.1980.4232010 – reference: Morrison J, Nagamune R, Grebenyuk V (2020) An iterative learning approach to economic model predictive control for an integrated solar thermal system. IFAC-PapersOnLine 53(2):12777–12782, https://doi.org/10.1016/j.ifacol.2020.12.1930. https://linkinghub.elsevier.com/retrieve/pii/S2405896320325532 – reference: Garcia CE, Morari M (1982) Internal model control. 1. a unifying review and some new results. Industrial & Engineering Chemistry Process Design and Development 21(2):308–323, https://doi.org/10.1021/i200017a016 – reference: Oldewurtel F, Parisio A, Jones CN, Gyalistras D, Gwerder M, Stauch V, Lehmann B, Morari M (2012) Use of model predictive control and weather forecasts for energy efficient building climate control. Energy and Buildings 45:15–27, https://doi.org/10.1016/j.enbuild.2011.09.022 – reference: Husmann S, Stemmler S, Hähnel S, Vogelgesang S, Abel D, Bergs T (2019) Model predictive force control in grinding based on a lightweight robot. IFAC-PapersOnLine 52(13):1779–1784, https://doi.org/10.1016/j.ifacol.2019.11.459 – reference: Barancelli Schwedersky B, Costa Flesch RC, Sirino Dangui HA, Arrigoni Iervolino L (2018) Practical nonlinear model predictive control using an echo state network model. In: 2018 International Joint Conference on Neural Networks (IJCNN), IEEE, Rio de Janeiro, pp 1–8, https://doi.org/10.1109/IJCNN.2018.8489446, https://ieeexplore.ieee.org/document/8489446/ – reference: Shen C, Shi Y, Buckham B (2018) Trajectory tracking control of an autonomous underwater vehicle using Lyapunov-based model predictive control. IEEE Transactions on Industrial Electronics 65(7):5796–5805, https://doi.org/10.1109/TIE.2017.2779442. http://ieeexplore.ieee.org/document/8126875/ – reference: Lee KS, Lee JH (2000) Convergence of constrained model-based predictive control for batch processes. IEEE Trans Autom Control 45(10):1928–1932, https://doi.org/10.1109/TAC.2000.881002 – reference: Shin Y, Smith R, Hwang S (2020) Development of model predictive control system using an artificial neural network: a case study with a distillation column. Journal of Cleaner Production 277:124124, https://doi.org/10.1016/j.jclepro.2020.124124. https://linkinghub.elsevier.com/retrieve/pii/S095965262034169X – reference: Wu T, Kemper M, Stemmler S, Abel D, Gries T (2019) Model predictive control of the weft insertion in air-jet weaving. IFAC-PapersOnLine 52(13):630–635, https://doi.org/10.1016/j.ifacol.2019.11.094 – reference: Mayne DQ, Rawlings JB, Rao CV, Scokaert P (2000) Constrained model predictive control: Stability and optimality. Automatica 36(6):789–814, https://doi.org/10.1016/S0005-1098(99)00214-9 – reference: Mora A, Cardenas-Dobson R, Aguilera RP, Angulo A, Donoso F, Rodriguez J (2019) Computationally efficient cascaded optimal switching sequence MPC for grid-connected three-Level NPC converters. IEEE Transactions on Power Electronics 34(12):12464–12475, https://doi.org/10.1109/TPEL.2019.2906805. https://ieeexplore.ieee.org/document/8672506/ – reference: Park JY, Nagy Z (2018) Comprehensive analysis of the relationship between thermal comfort and building control research - a data-driven literature review. Renew and Sustain Energy Rev 82:2664–2679, https://doi.org/10.1016/j.rser.2017.09.102 – reference: Bolognani S, Peretti L, Zigliotto M (2009) Design and implementation of model predictive control for electrical motor drives. IEEE Trans Ind Electron 56(6):1925–1936, https://doi.org/10.1109/TIE.2008.2007547 – reference: Clarke DW, Mohtadi C, Tuffs PS (1987b) Generalized predictive control—part ii extensions and interpretations. Automatica 23(2):149–160, https://doi.org/10.1016/0005-1098(87)90088-4 – reference: Guicheng W, Jinjin M, Min Z, Zhansheng Z, Jinna L (2013) Model predictive control for fermentation process. In: 2013 25th Chinese Control and Decision Conference (CCDC), IEEE, Guiyang, China, pp 4445–4449, https://doi.org/10.1109/CCDC.2013.6561735. http://ieeexplore.ieee.org/document/6561735/ – reference: Primbs JA, Nevistić V, Doyle JC (1999) Nonlinear optimal control: a control lyapunov function and receding horizon perspective. Asian J of Control 1(1):14–24, https://doi.org/10.1111/j.1934-6093.1999.tb00002.x – reference: Lazic N, Lu T, Boutilier C, Ryu MK, Wong EJ, Roy B, Imwalle G (2018) Data center cooling using model-predictive Control. In: Proceedings of the Thirty-second Conference on neural information processing systems (NeurIPS-18), Montreal, QC, pp 3818–3827. https://papers.nips.cc/paper/7638-data-center-cooling-using-model-predictive-control – reference: Li Z, Deng J, Lu R, Xu Y, Bai J, Su CY (2016c) Trajectory-tracking control of mobile robot systems incorporating neural-dynamic optimized model predictive approach. IEEE Transactions on Systems, Man, and Cybernetics: Systems 46(6):740–749, https://doi.org/10.1109/TSMC.2015.2465352 – reference: Henson MA (1998) Nonlinear model predictive control: current status and future directions. Comp & Chem Eng 23(2):187–202, https://doi.org/10.1016/S0098-1354(98)00260-9 – reference: Atam E (2016) New paths toward energy-efficient buildings: a multiaspect discussion of advanced model-based control. IEEE Ind Electron Mag 10(4):50–66, https://doi.org/10.1109/MIE.2016.2615127 – reference: Korda M, Jones CN (2017) Stability and performance verification of optimization-based controllers. Automatica 78:34–45, https://doi.org/10.1016/j.automatica.2016.12.008, https://linkinghub.elsevier.com/retrieve/pii/S0005109816305003 – reference: Shaltout ML, Alhneaish MM, Metwalli SM (2020) An Economic Model Predictive Control Approach for Wind Power Smoothing and Tower Load Mitigation. Journal of Dynamic Systems, Measurement, and Control 142(6):061005, https://doi.org/10.1115/1.4046278. https://asmedigitalcollection.asme.org/dynamicsystems/article/doi/10.1115/1.4046278/1074358/An-Economic-Model-Predictive-Control-Approach-for – reference: Magni L, Nicolao G, Magnani L, Scattolini R (2001) A stabilizing model-based predictive control algorithm for nonlinear systems. Automatica 37(9):1351–1362, https://doi.org/10.1016/S0005-1098(01)00083-8 – reference: McKinnon CD, Schoellig AP (2019) Learn fast, forget slow: Safe predictive learning control for systems with unknown and changing dynamics performing repetitive tasks. IEEE Robotics and Autom Lett 4(2):2180–2187, https://doi.org/10.1109/LRA.2019.2901638 – reference: Stephens MA, Manzie C, Good MC (2011) Explicit model predictive control for reference tracking on an industrial machine tool. IFAC Proc Vol 44(1):14513–14518, https://doi.org/10.3182/20110828-6-IT-1002.00579 – reference: Hertneck M, Köhler J, Trimpe S, Allgöwer F (2018) Learning an approximate model predictive controller with guarantees. IEEE Control Sys Letters 2(3):543–548, https://doi.org/10.1109/LCSYS.2018.2843682 – reference: SchwenzerMClosing the loop of model predictive force control in milling with ensemble Kalman filtering. PhD thesis RWTH Aachen University2021GermanyAachen – reference: Ay M, Stemmler S, Abel D, Schwenzer M, Klocke F (2018) System identification of a cnc machining center with support vector machines. In: 2018 26th Mediterranean Conference on Control and Automation (MED), IEEE, Zadar, Croatia, pp 1–9, https://doi.org/10.1109/MED.2018.8442437 – reference: Clarke DW, Mohtadi C, Tuffs PS (1987a) Generalized predictive control—part i. the basic algorithm. Automatica 23(2):137–148, https://doi.org/10.1016/0005-1098(87)90087-2 – reference: Stemmler S (2020) Intelligente regelungsstrategien als schlüsseltechnologie selbstoptimierender fertigungssysteme. Dissertation, RWTH Aachen University, https://doi.org/10.18154/RWTH-2020-02766 – reference: Li L, You S, Yang C, Yan B, Song J, Chen Z (2016b) Driving-behavior-aware stochastic model predictive control for plug-in hybrid electric buses. Applied Energy 162:868–879, https://doi.org/10.1016/j.apenergy.2015.10.152 – reference: Gilbert EG, Kolmanovsky I (1999) Fast reference governors for systems with state and control constraints and disturbance inputs. Int J of Robust and Nonlinear Control 9(15):1117–1141, https://doi.org/10.1002/(SICI)1099-1239(19991230)9:15<1117::AID-RNC447>3.0.CO;2-I – reference: Fontes FA (2001) A general framework to design stabilizing nonlinear model predictive controllers. Systems & Control Letters 42(2):127–143, https://doi.org/10.1016/S0167-6911(00)00084-0 – reference: Ji J, Khajepour A, Melek WW, Huang Y (2017) Path planning and tracking for vehicle collision avoidance based on model predictive control with multiconstraints. IEEE Transactions on Vehicular Technology 66(2):952–964, https://doi.org/10.1109/TVT.2016.2555853 – ident: 7682_CR14 doi: 10.1109/ACC.2000.876624 – ident: 7682_CR145 doi: 10.1109/CCDC.2009.5192458 – ident: 7682_CR146 doi: 10.1007/3-540-45802-6 – ident: 7682_CR110 doi: 10.23919/ECC.2019.8795871 – ident: 7682_CR130 doi: 10.1109/TIE.2016.2625238 – ident: 7682_CR64 doi: 10.1109/TSMC.2015.2465352 – ident: 7682_CR53 doi: 10.1080/00207178708933912 – ident: 7682_CR69 doi: 10.1109/TCST.2011.2124461 – ident: 7682_CR60 doi: 10.1109/TIE.2019.2910034 – ident: 7682_CR112 doi: 10.1007/s11740-017-0721-z – ident: 7682_CR116 doi: 10.1109/TIE.2017.2779442 – ident: 7682_CR48 doi: 10.1109/TVT.2016.2555853 – ident: 7682_CR103 doi: 10.3182/20140824-6-ZA-1003.02505 – ident: 7682_CR1 doi: 10.1016/j.enbuild.2017.02.012 – ident: 7682_CR94 doi: 10.1016/j.rser.2017.09.102 – ident: 7682_CR2 doi: 10.1109/ICECE.2018.8636741 – ident: 7682_CR76 doi: 10.1016/j.automatica.2014.10.128 – ident: 7682_CR65 doi: 10.1109/PESC.2005.1581874 – ident: 7682_CR13 doi: 10.1007/BFb0109870 – ident: 7682_CR77 doi: 10.1016/S0005-1098(99)00214-9 – ident: 7682_CR68 doi: 10.1109/LRA.2020.2964159 – ident: 7682_CR89 doi: 10.1109/TII.2019.2953275 – ident: 7682_CR61 doi: 10.1016/j.apenergy.2015.10.152 – ident: 7682_CR40 doi: 10.1109/TIE.2018.2844836 – ident: 7682_CR143 doi: 10.23919/ACC.2019.8814335 – ident: 7682_CR107 doi: 10.1016/j.enbuild.2016.09.044 – ident: 7682_CR104 doi: 10.1016/0005-1098(93)90049-Y – ident: 7682_CR50 doi: 10.1109/CDC.2018.8619572 – ident: 7682_CR123 doi: 10.1109/TII.2012.2223222 – ident: 7682_CR115 doi: 10.1016/j.automatica.2015.07.030 – ident: 7682_CR114 doi: 10.1115/1.4046278 – ident: 7682_CR137 doi: 10.1016/j.apenergy.2018.12.032 – ident: 7682_CR20 doi: 10.1007/s00170-019-04335-4 – volume: 1987 start-page: 1021 year: 1987 ident: 7682_CR19 publication-title: Am Control Conf – ident: 7682_CR30 – volume-title: Predictive control: with constraints year: 2002 ident: 7682_CR70 – ident: 7682_CR16 doi: 10.1016/j.jprocont.2007.01.001 – ident: 7682_CR42 doi: 10.1109/CCDC.2013.6561735 – ident: 7682_CR129 doi: 10.1109/MIE.2013.2290138 – ident: 7682_CR55 doi: 10.1016/j.jprocont.2016.04.007 – ident: 7682_CR81 doi: 10.1109/9.262032 – ident: 7682_CR44 doi: 10.1016/S0098-1354(98)00260-9 – ident: 7682_CR83 doi: 10.1109/TPEL.2019.2906805 – ident: 7682_CR147 doi: 10.1109/TIE.2017.2772154 – ident: 7682_CR33 doi: 10.1016/j.compchemeng.2006.05.044 – ident: 7682_CR119 doi: 10.1016/j.ifacol.2016.07.542 – volume-title: Model predictive control Advanced textbooks in control and signal processing year: 2004 ident: 7682_CR17 – ident: 7682_CR54 – ident: 7682_CR72 doi: 10.1016/S0005-1098(01)00083-8 – ident: 7682_CR29 doi: 10.1109/TPEL.2017.2744986 – ident: 7682_CR52 doi: 10.1109/TIE.2008.2008349 – ident: 7682_CR3 doi: 10.1007/978-3-0348-8407-5 – ident: 7682_CR9 doi: 10.1109/IJCNN.2018.8489446 – ident: 7682_CR37 doi: 10.1021/ie900323c – ident: 7682_CR96 doi: 10.1109/ICMICA48462.2020.9242772 – ident: 7682_CR106 doi: 10.1016/0005-1098(82)90069-3 – ident: 7682_CR74 doi: 10.1016/j.jobe.2020.101692 – ident: 7682_CR75 doi: 10.1016/S0005-1098(00)00173-4 – ident: 7682_CR138 doi: 10.1145/2785956.2787486 – ident: 7682_CR88 doi: 10.1109/LRA.2020.2975727 – ident: 7682_CR35 doi: 10.1016/0005-1098(89)90002-2 – ident: 7682_CR93 doi: 10.1109/TIE.2008.2007032 – ident: 7682_CR126 doi: 10.1016/j.scs.2018.05.035 – ident: 7682_CR128 doi: 10.23919/ACC45564.2020.9147625 – ident: 7682_CR102 doi: 10.1002/aic.16615 – ident: 7682_CR22 doi: 10.1016/0005-1098(87)90087-2 – ident: 7682_CR58 doi: 10.1002/aic.690451016 – ident: 7682_CR100 doi: 10.1016/S0005-1098(01)00115-7 – ident: 7682_CR4 doi: 10.1109/tcst.2005.847331 – ident: 7682_CR6 doi: 10.2478/v10006-007-0020-5 – ident: 7682_CR113 doi: 10.3390/en11030631 – ident: 7682_CR26 doi: 10.3182/20090712-4-TR-2008.00014 – ident: 7682_CR84 – ident: 7682_CR135 doi: 10.1016/j.ifacol.2019.11.094 – ident: 7682_CR28 doi: 10.1115/1.4038074 – ident: 7682_CR36 doi: 10.1016/j.asoc.2015.09.022 – ident: 7682_CR49 doi: 10.1016/j.techfore.2006.06.001 – ident: 7682_CR90 doi: 10.1109/ACC.2010.5530680 – ident: 7682_CR132 doi: 10.1038/530144a – ident: 7682_CR39 doi: 10.1002/(SICI)1099-1239(19991230)9:15<1117::AID-RNC447>3.0.CO;2-I – ident: 7682_CR118 doi: 10.18154/RWTH-2020-02766 – volume: 1986 start-page: 339 year: 1986 ident: 7682_CR18 publication-title: Am Control Conf – ident: 7682_CR41 doi: 10.1080/00207179.2016.1222553 – ident: 7682_CR109 doi: 10.23919/ACC45564.2020.9147465 – ident: 7682_CR51 doi: 10.1016/j.automatica.2016.12.008 – ident: 7682_CR25 doi: 10.1016/S0005-1098(02)00012-2 – ident: 7682_CR117 doi: 10.1016/j.jclepro.2020.124124 – ident: 7682_CR131 – volume: 17 start-page: 72 year: 1980 ident: 7682_CR24 publication-title: Jt Autom Control Conf – ident: 7682_CR43 doi: 10.1016/j.buildenv.2014.09.011 – ident: 7682_CR142 doi: 10.1016/j.ijmachtools.2015.01.002 – ident: 7682_CR21 doi: 10.1109/RTEICT42901.2018.9012517 – ident: 7682_CR73 doi: 10.1007/s00170-020-05719-7 – ident: 7682_CR8 doi: 10.1016/j.ifacol.2019.11.462 – ident: 7682_CR63 doi: 10.23919/ChiCC.2019.8865797 – ident: 7682_CR91 doi: 10.1016/j.enbuild.2011.09.022 – ident: 7682_CR105 doi: 10.1016/0005-1098(78)90001-8 – ident: 7682_CR66 doi: 10.1109/IROS.2009.5354018 – ident: 7682_CR98 doi: 10.1111/j.1934-6093.1999.tb00002.x – ident: 7682_CR23 doi: 10.1016/0005-1098(87)90088-4 – ident: 7682_CR15 doi: 10.1109/TIE.2008.2007547 – ident: 7682_CR7 doi: 10.1109/MED.2018.8442437 – ident: 7682_CR45 doi: 10.1109/LCSYS.2018.2843682 – ident: 7682_CR87 doi: 10.1109/9.486649 – ident: 7682_CR125 doi: 10.1109/ISGT-Asia.2019.8881147 – ident: 7682_CR124 doi: 10.1016/j.mineng.2013.07.012 – ident: 7682_CR127 doi: 10.1109/TCST.2006.880199 – ident: 7682_CR97 doi: 10.1109/JACC.1980.4232010 – ident: 7682_CR85 doi: 10.1016/S0098-1354(98)00301-9 – ident: 7682_CR120 doi: 10.1016/j.ifacol.2017.08.2336 – ident: 7682_CR62 doi: 10.1109/TCST.2010.2049203 – ident: 7682_CR59 doi: 10.1021/acs.iecr.6b03275 – ident: 7682_CR46 doi: 10.1016/s1474-6670(17)57870-2 – ident: 7682_CR80 doi: 10.1109/MERCon.2019.8818777 – ident: 7682_CR67 doi: 10.1109/TCST.2013.2266662 – ident: 7682_CR144 doi: 10.1109/9.467664 – ident: 7682_CR56 doi: 10.1016/0005-1098(94)90159-7 – ident: 7682_CR82 doi: 10.1016/j.enbuild.2016.07.036 – ident: 7682_CR32 doi: 10.1016/j.ifacol.2015.09.022 – ident: 7682_CR122 doi: 10.3182/20110828-6-IT-1002.00579 – ident: 7682_CR140 doi: 10.1109/TITS.2019.2928217 – ident: 7682_CR5 doi: 10.1109/MIE.2016.2615127 – ident: 7682_CR133 doi: 10.23919/ACC45564.2020.9147360 – ident: 7682_CR136 doi: 10.1016/j.jprocont.2020.03.013 – ident: 7682_CR10 doi: 10.1109/TIA.2018.2801838 – ident: 7682_CR31 doi: 10.1016/S0167-6911(00)00084-0 – ident: 7682_CR141 doi: 10.1016/j.enbuild.2017.04.027 – ident: 7682_CR11 doi: 10.1016/j.rser.2015.01.046 – ident: 7682_CR78 doi: 10.1109/LRA.2019.2901638 – ident: 7682_CR79 doi: 10.1115/MSEC2011-50154 – ident: 7682_CR99 doi: 10.1016/S0967-0661(02)00186-7 – ident: 7682_CR86 doi: 10.1016/j.ifacol.2020.12.1930 – ident: 7682_CR92 doi: 10.1016/j.ifacol.2016.07.242 – ident: 7682_CR108 doi: 10.1016/j.mineng.2014.03.029 – ident: 7682_CR12 doi: 10.1109/CDC.2006.377490 – volume-title: Closing the loop of model predictive force control in milling with ensemble Kalman filtering. PhD thesis RWTH Aachen University year: 2021 ident: 7682_CR111 – ident: 7682_CR71 doi: 10.1016/j.ifacol.2020.12.546 – ident: 7682_CR27 doi: 10.23919/ECC.2019.8795826 – ident: 7682_CR38 doi: 10.1109/TIE.2008.2007030 – ident: 7682_CR47 doi: 10.1016/j.ifacol.2019.11.459 – ident: 7682_CR139 doi: 10.23919/ChiCC.2018.8483834 – ident: 7682_CR34 doi: 10.1021/i200017a016 – ident: 7682_CR101 doi: 10.1109/37.845037 – ident: 7682_CR134 doi: 10.1109/ICHR.2006.321375 – ident: 7682_CR95 doi: 10.1109/37.845038 – ident: 7682_CR148 doi: 10.1007/s10845-019-01506-8 – ident: 7682_CR121 doi: 10.1109/CCTA.2019.8920461 – ident: 7682_CR57 doi: 10.1109/TAC.2000.881002 |
| SSID | ssj0016168 ssib034539549 ssib019759004 ssib029851711 |
| Score | 2.722929 |
| SecondaryResourceType | review_article |
| Snippet | Model-based predictive control (MPC) describes a set of advanced control methods, which make use of a process model to predict the future behavior of the... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1327 |
| SubjectTerms | Advanced manufacturing technologies CAE) and Design Computer-Aided Engineering (CAD Control algorithms Control methods Control systems design Control theory Critical Review Design factors Engineering Feedback control Industrial and Production Engineering Mechanical Engineering Media Management Optimization Predictive control State-of-the-art reviews |
| SummonAdditionalLinks | – databaseName: SpringerLINK Contemporary 1997-Present dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA46PejB3-J0Sg7eNJAm6ZJ4EEQcHmQI6tit5EcLgnRjm_79Jmnaqqigx9Kmpe-95OXjy_seAKferQ5VWCSFoojxfooUMxwxwqzUQioRtPRGd3w4FOOxvI9FYfP6tHtNSYaVuil2C1IvyB8p8OwRQXQZrKRebcZj9IdRHUWJ5L4TZhNlRPr2820UU5bSituKXEM_CQVzDowIP91ELK35_puf01e7J_1Co4bsNNj8339tgY24G4VXVfhsg6W83AHrHzQKd8FlxR7ASQlD1xw4nXlux6-SMJ5zv4CqhHk7CE7bCs498DS4eby-RbHpAjIuNS2QdvsVh8JYwbAotLMV1YWVuC8LS9y1wNykVhntQDWWpLBYYkmtopxbhV3GpfugU07K_ABAa70WjNFK8IIxIzR1eFgqnXNcYEuSLkhqW2YmKpL7xhgvWaOlHGyTOdtkwTYZ7YKzZsy00uP49ele7aIszs15RlIHqVLhsH8XnNcuaW___LbDvz1-BNaI92ooXOyBzmL2mh-DVfO2eJ7PTkLMvgMAX94f priority: 102 providerName: Springer Nature |
| Title | Review on model predictive control: an engineering perspective |
| URI | https://link.springer.com/article/10.1007/s00170-021-07682-3 https://www.proquest.com/docview/2582658788 |
| Volume | 117 |
| WOSCitedRecordID | wos000684098200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1433-3015 dateEnd: 20221231 omitProxy: false ssIdentifier: ssj0016168 issn: 0268-3768 databaseCode: M7S dateStart: 19970201 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest One Academic customDbUrl: eissn: 1433-3015 dateEnd: 20221231 omitProxy: false ssIdentifier: ssj0016168 issn: 0268-3768 databaseCode: BENPR dateStart: 19970201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1433-3015 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016168 issn: 0268-3768 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZ4HeDAGzEYUw7cICJt0iXhAALExAFN0waIW5UmrYSEurENfj9Jlq6ABBculaomkWo7sR3bnwGOHVutV2GwFIpixtsJVkxzzGJmZCakEh5L7-med7vi-Vn2woXbJKRVVmeiP6jNULs78rM4sYZwIqzHdjl6w65rlIuuhhYai7DsUBIin7o3qOQpktz1xJzLWyxdI_panilL6CzKFaIO7ciXzlm3RLiNJ0KRjS-180Az2CU0uNhVjOl3RVZbpz8Cql5PdTb--4ebsB4sVHQ1E6ktWMjLbVj7glu4AxeziAIalsh30kGjsYv3uJMThdz3c6RKlNeT0Kiu6tyFx87tw80dDo0YsLbqaooza8NYz4wVjIgis1SjWWEkacvCxPZdEK4To3RmHW0i48IQSSQ1inJuFLFamO7BUjks831Axjh8GJ0pwQvGtMio9ZGlynJOCmLiqAFRRdVUB5Ry1yzjNZ3jK3tOpJYTqedEShtwMp8zmmF0_Dm6WZE_Dft1kta0b8BpxcD68--rHfy92iGsxk5mfPFiE5am4_f8CFb0x_RlMm7B8vVtt9dveam1z_7g6RMO_Osl |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3PT9swFH5iBWnbYTDYtA4GPozTsEhtp7aRBhoMBKJUCAHiljl2IiGhtGu7If6p_Y17dpKGIcGNw45REkfJ937m83sP4LOHFbMKR7UynArZjakRVlLBhNOp0kaFXnqXPdnvq6srfToDf-paGL-tsraJwVC7gfX_yDdZjIFwrDBj2xn-pH5qlGdX6xEapVgcZ3e3mLKNvx59R3zXGTvYP987pNVUAWrR9k5oig4Z0wyRi0jlqcBwJ82djro6dwyPVSRt7IxNMWuMNMtdpDHpd4ZL6UyELoXjui9gVnDRjVswu7vfPz2rJbijpZ_COZVwpjGgkY0GcXxcyatVPEe3E4r1MBFSXtVVVdYTivtCaxvqt1B4toxR_q_rbOLhBxRu8IwH8__bN12AN1UMTr6VSvMWZrJiEV7f68y4BNslZ0IGBQmzgshw5Bkt7xtItbt_i5iCZM1NZNjUrb6Di2d5gffQKgZF9gGIc74Djk2NkrkQVqWcY1Bo0kxGeeRYpw2dGsXEVn3Y_TiQm2TaQTognyDySUA-4W34Mr1nWHYhefLqlRrupLJI46TBug0btcA0px9f7ePTq63By8Pzk17SO-ofL8Mr5uU1lGquQGsy-pV9gjn7e3I9Hq1WukLgx3OL0l9UO0cq |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED90iuiD3-J0ah5802DapEvigyDqUBxj-DH2VtKmBUG6sU3_fpO0XaeoID6W5oPeXXo57n6_Azi2ajVRhcZSKIoZbwZYsZhj5jMtIyGVcFx6vTbvdES_L7szKH5X7V6mJHNMg2VpyiZnQ52eTYFvjvYF2_ICm0nyMZ2HBWb2tEVdD4-90qI8yW1XzKnF-dK2oq8smrKA5nmuIu_Q9Bx4zgQmwh49UcBsvt_zsyur7qdfUqrOU7XW_v-N67Ba3FLRZW5WGzCXZJuwMsNduAUXeVYBDTLkuumg4cjmfOzfExX17-dIZSipJqFhhezchufWzdPVLS6aMeDYuKwJjsw9xkRnLGVEpJGRG41SLUlTpto3z4LwONAqjkywTaSfaiKJpFpRzrUixhPTHahlgyzZBaS15YiJIyV4ylgsImriZKmihJOUaN-rg1fKNYwLpnLbMOM1nHIsO9mERjahk01I63AynTPMeTp-Hd0o1RUWZ3Yc-oEJtQLBhajDaame6vXPq-39bfgRLHWvW2H7rnO_D8u-VbDDNjagNhm9JQewGL9PXsajQ2fKH1Hl6ec |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Review+on+model+predictive+control%3A+an+engineering+perspective&rft.jtitle=International+journal+of+advanced+manufacturing+technology&rft.au=Schwenzer%2C+Max&rft.au=Ay%2C+Muzaffer&rft.au=Bergs%2C+Thomas&rft.au=Abel%2C+Dirk&rft.date=2021-11-01&rft.issn=0268-3768&rft.eissn=1433-3015&rft.volume=117&rft.issue=5-6&rft.spage=1327&rft.epage=1349&rft_id=info:doi/10.1007%2Fs00170-021-07682-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00170_021_07682_3 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0268-3768&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0268-3768&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0268-3768&client=summon |