Review on model predictive control: an engineering perspective

Model-based predictive control (MPC) describes a set of advanced control methods, which make use of a process model to predict the future behavior of the controlled system. By solving a—potentially constrained—optimization problem, MPC determines the control law implicitly. This shifts the effort fo...

Full description

Saved in:
Bibliographic Details
Published in:International journal of advanced manufacturing technology Vol. 117; no. 5-6; pp. 1327 - 1349
Main Authors: Schwenzer, Max, Ay, Muzaffer, Bergs, Thomas, Abel, Dirk
Format: Journal Article
Language:English
Published: London Springer London 01.11.2021
Springer Nature B.V
Subjects:
ISSN:0268-3768, 1433-3015
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Model-based predictive control (MPC) describes a set of advanced control methods, which make use of a process model to predict the future behavior of the controlled system. By solving a—potentially constrained—optimization problem, MPC determines the control law implicitly. This shifts the effort for the design of a controller towards modeling of the to-be-controlled process. Since such models are available in many fields of engineering, the initial hurdle for applying control is deceased with MPC. Its implicit formulation maintains the physical understanding of the system parameters facilitating the tuning of the controller. Model-based predictive control (MPC) can even control systems, which cannot be controlled by conventional feedback controllers. With most of the theory laid out, it is time for a concise summary of it and an application-driven survey. This review article should serve as such. While in the beginnings of MPC, several widely noticed review paper have been published, a comprehensive overview on the latest developments, and on applications, is missing today. This article reviews the current state of the art including theory, historic evolution, and practical considerations to create intuitive understanding. We lay special attention on applications in order to demonstrate what is already possible today. Furthermore, we provide detailed discussion on implantation details in general and strategies to cope with the computational burden—still a major factor in the design of MPC. Besides key methods in the development of MPC, this review points to the future trends emphasizing why they are the next logical steps in MPC.
AbstractList Model-based predictive control (MPC) describes a set of advanced control methods, which make use of a process model to predict the future behavior of the controlled system. By solving a—potentially constrained—optimization problem, MPC determines the control law implicitly. This shifts the effort for the design of a controller towards modeling of the to-be-controlled process. Since such models are available in many fields of engineering, the initial hurdle for applying control is deceased with MPC. Its implicit formulation maintains the physical understanding of the system parameters facilitating the tuning of the controller. Model-based predictive control (MPC) can even control systems, which cannot be controlled by conventional feedback controllers. With most of the theory laid out, it is time for a concise summary of it and an application-driven survey. This review article should serve as such. While in the beginnings of MPC, several widely noticed review paper have been published, a comprehensive overview on the latest developments, and on applications, is missing today. This article reviews the current state of the art including theory, historic evolution, and practical considerations to create intuitive understanding. We lay special attention on applications in order to demonstrate what is already possible today. Furthermore, we provide detailed discussion on implantation details in general and strategies to cope with the computational burden—still a major factor in the design of MPC. Besides key methods in the development of MPC, this review points to the future trends emphasizing why they are the next logical steps in MPC.
Author Schwenzer, Max
Ay, Muzaffer
Abel, Dirk
Bergs, Thomas
Author_xml – sequence: 1
  givenname: Max
  orcidid: 0000-0002-3422-8631
  surname: Schwenzer
  fullname: Schwenzer, Max
  email: max.schwenzer@rwth-aachen.de
  organization: Laboratory for Machine Tools and Production Engineering (WZL), RWTH Aachen University
– sequence: 2
  givenname: Muzaffer
  surname: Ay
  fullname: Ay, Muzaffer
  organization: Institute of Automatic Control (IRT), RWTH Aachen University
– sequence: 3
  givenname: Thomas
  surname: Bergs
  fullname: Bergs, Thomas
  organization: Laboratory for Machine Tools and Production Engineering (WZL), RWTH Aachen University, Fraunhofer Institute for Production Technology IPT
– sequence: 4
  givenname: Dirk
  surname: Abel
  fullname: Abel, Dirk
  organization: Institute of Automatic Control (IRT), RWTH Aachen University
BookMark eNp9kF1LwzAUhoNMcJv-Aa8KXldPkrZJvRBk-AUDQfQ6pOnpyOiSmnQT_73dKghe7Coc8j7n45mRifMOCbmkcE0BxE0EoAJSYDQFUUiW8hMypRnnKQeaT8gUWCFTPnydkVmM6yFe0EJOyd0b7ix-Jd4lG19jm3QBa2t6u8PEeNcH394m2iXoVtYhButWSYchdnjInJPTRrcRL37fOfl4fHhfPKfL16eXxf0yNRkr-7QquZBMZk0GsqmynPOqqUsoyqZmQy1BmLzWpipBQMmaGkooea25ELUGg8jn5Grs2wX_ucXYq7XfBjeMVCyXrMilkHJIsTFlgo8xYKO6YDc6fCsKau9JjZ7U4EkdPCk-QPIfZGyve7s_Xtv2OMpHNHZ7MRj-tjpC_QAkoX5n
CitedBy_id crossref_primary_10_3390_computation13020036
crossref_primary_10_1080_00207721_2024_2420257
crossref_primary_10_4018_JOEUC_355191
crossref_primary_10_1016_j_jocs_2024_102421
crossref_primary_10_1049_cth2_70051
crossref_primary_10_1109_TSMC_2025_3540059
crossref_primary_10_1016_j_apenergy_2023_121455
crossref_primary_10_1016_j_compag_2024_109496
crossref_primary_10_1007_s12257_024_00174_7
crossref_primary_10_1109_COMST_2024_3442149
crossref_primary_10_1109_ACCESS_2025_3563300
crossref_primary_10_3390_brainsci14040350
crossref_primary_10_1049_cth2_70045
crossref_primary_10_1177_10775463231167251
crossref_primary_10_1038_s41598_024_69365_9
crossref_primary_10_1016_j_ces_2025_122268
crossref_primary_10_1016_j_ejcon_2025_101217
crossref_primary_10_3390_pr11072216
crossref_primary_10_1109_ACCESS_2024_3466229
crossref_primary_10_1109_TASE_2024_3400598
crossref_primary_10_1515_ijcre_2025_0024
crossref_primary_10_1177_17568293251349733
crossref_primary_10_1016_j_ijepes_2025_111101
crossref_primary_10_4271_10_09_01_0007
crossref_primary_10_1016_j_jsv_2024_118415
crossref_primary_10_3390_en17215307
crossref_primary_10_1002_cjce_25244
crossref_primary_10_1016_j_conengprac_2023_105498
crossref_primary_10_1016_j_apenergy_2025_125355
crossref_primary_10_3389_fenrg_2021_757507
crossref_primary_10_1016_j_compind_2025_104256
crossref_primary_10_1109_TIE_2025_3546352
crossref_primary_10_1109_TSTE_2023_3336536
crossref_primary_10_3390_bioengineering9110664
crossref_primary_10_1016_j_apenergy_2025_125478
crossref_primary_10_1080_02286203_2024_2371680
crossref_primary_10_1016_j_ceja_2025_100753
crossref_primary_10_1080_00051144_2023_2170022
crossref_primary_10_3390_a16080387
crossref_primary_10_1016_j_compchemeng_2024_108917
crossref_primary_10_3390_fi16120435
crossref_primary_10_1002_tal_1941
crossref_primary_10_3390_info15020094
crossref_primary_10_3390_act14040191
crossref_primary_10_1007_s00500_024_09699_8
crossref_primary_10_3390_en16083499
crossref_primary_10_1016_j_energy_2025_135217
crossref_primary_10_1016_j_jfranklin_2023_05_009
crossref_primary_10_1016_j_cose_2024_104186
crossref_primary_10_1109_LCSYS_2024_3405823
crossref_primary_10_3390_app14146025
crossref_primary_10_3390_math10132324
crossref_primary_10_1016_j_compchemeng_2025_109359
crossref_primary_10_1007_s10957_023_02241_0
crossref_primary_10_1088_1742_5468_ad292b
crossref_primary_10_1109_JESTPE_2022_3172138
crossref_primary_10_1109_TCYB_2025_3565580
crossref_primary_10_1109_TII_2025_3528556
crossref_primary_10_1016_j_energy_2025_135462
crossref_primary_10_1016_j_apenergy_2024_122917
crossref_primary_10_1177_19322968231206798
crossref_primary_10_1520_SSMS20220037
crossref_primary_10_17979_ja_cea_2025_46_12034
crossref_primary_10_1016_j_apenergy_2025_126662
crossref_primary_10_1016_j_ijhydene_2025_150949
crossref_primary_10_1016_j_applthermaleng_2024_124558
crossref_primary_10_1016_j_apenergy_2025_126664
crossref_primary_10_1016_j_isatra_2023_06_025
crossref_primary_10_1016_j_neucom_2025_129712
crossref_primary_10_1016_j_trc_2023_104268
crossref_primary_10_1109_ACCESS_2024_3391511
crossref_primary_10_3390_electronics14183710
crossref_primary_10_1007_s11071_024_09615_7
crossref_primary_10_1016_j_asej_2025_103743
crossref_primary_10_3390_buildings15183298
crossref_primary_10_1051_e3sconf_202560100050
crossref_primary_10_1016_j_jwpe_2024_104885
crossref_primary_10_1038_s41598_025_03957_x
crossref_primary_10_1007_s40435_024_01533_1
crossref_primary_10_1016_j_asoc_2025_112829
crossref_primary_10_3390_pr10081649
crossref_primary_10_1016_j_ifacol_2023_10_869
crossref_primary_10_1016_j_arcontrol_2024_100973
crossref_primary_10_3390_s24227313
crossref_primary_10_1016_j_plrev_2023_08_016
crossref_primary_10_1177_00202940241302672
crossref_primary_10_1002_rnc_70083
crossref_primary_10_1109_TAES_2024_3437329
crossref_primary_10_3390_pr13061791
crossref_primary_10_1109_JIOT_2024_3367350
crossref_primary_10_3390_e27090992
crossref_primary_10_1080_19401493_2025_2496659
crossref_primary_10_5194_npg_32_293_2025
crossref_primary_10_3390_en18123027
crossref_primary_10_3233_JIFS_212322
crossref_primary_10_1016_j_ijepes_2025_110668
crossref_primary_10_1109_ACCESS_2025_3583103
crossref_primary_10_3390_pr13072314
crossref_primary_10_1007_s40998_025_00867_6
crossref_primary_10_1115_1_4067654
crossref_primary_10_1016_j_oceaneng_2025_121840
crossref_primary_10_1109_LCSYS_2022_3178785
crossref_primary_10_3390_math10071157
crossref_primary_10_1016_j_enbuild_2024_115205
crossref_primary_10_1016_j_ifacol_2024_08_379
crossref_primary_10_1016_j_oceaneng_2024_119345
crossref_primary_10_1016_j_cobeha_2025_101509
crossref_primary_10_1016_j_pnucene_2022_104527
crossref_primary_10_1016_j_ejcon_2022_100695
crossref_primary_10_1016_j_jestch_2025_101982
crossref_primary_10_1109_TIV_2024_3376797
crossref_primary_10_1016_j_cie_2022_108113
crossref_primary_10_1109_TIE_2024_3508078
crossref_primary_10_4316_AECE_2025_02005
crossref_primary_10_5194_npg_31_319_2024
crossref_primary_10_1109_ACCESS_2025_3542337
crossref_primary_10_1016_j_fusengdes_2024_114153
crossref_primary_10_1093_ijlct_ctae236
crossref_primary_10_1007_s11071_023_08996_5
crossref_primary_10_1109_JESTPE_2022_3179286
crossref_primary_10_1016_j_ifacol_2024_10_139
crossref_primary_10_1080_07373937_2024_2400225
crossref_primary_10_3390_agriculture15121297
crossref_primary_10_1016_j_ijpharm_2025_125204
crossref_primary_10_3390_robotics12060170
crossref_primary_10_1016_j_anucene_2025_111643
crossref_primary_10_1016_j_compchemeng_2024_108970
crossref_primary_10_1088_1748_3190_ad8e25
crossref_primary_10_1016_j_chroma_2023_463931
crossref_primary_10_1016_j_ijepes_2024_110248
crossref_primary_10_1109_LRA_2025_3535185
crossref_primary_10_1016_j_energy_2025_137011
crossref_primary_10_1364_OL_565049
crossref_primary_10_1016_j_tibtech_2022_10_010
crossref_primary_10_1016_j_isatra_2024_05_016
crossref_primary_10_1109_TIM_2025_3561376
crossref_primary_10_1016_j_mex_2025_103470
crossref_primary_10_1016_j_heliyon_2024_e38095
crossref_primary_10_3390_math12050709
crossref_primary_10_3390_su16177650
crossref_primary_10_1038_s41598_024_62416_1
crossref_primary_10_1007_s11740_023_01254_y
crossref_primary_10_1016_j_ifacol_2024_10_237
crossref_primary_10_64289_iej_25_01B05_6395787
crossref_primary_10_3390_app12041995
crossref_primary_10_3390_machines13090756
crossref_primary_10_1002_rob_22514
crossref_primary_10_1007_s00158_022_03425_4
crossref_primary_10_1007_s40435_025_01759_7
crossref_primary_10_3389_fenrg_2022_996206
crossref_primary_10_1016_j_compag_2025_110028
crossref_primary_10_1016_j_physleta_2024_130180
crossref_primary_10_1515_nleng_2025_0099
crossref_primary_10_1007_s11831_024_10207_2
crossref_primary_10_3390_technologies13090402
crossref_primary_10_1109_LRA_2024_3350372
crossref_primary_10_3390_modelling5030040
crossref_primary_10_3390_electronics14101954
crossref_primary_10_1049_cth2_12599
crossref_primary_10_1371_journal_pcbi_1013426
crossref_primary_10_3390_drones9010071
crossref_primary_10_1177_14727978251380837
crossref_primary_10_1016_j_ifacol_2023_10_566
crossref_primary_10_1109_LRA_2023_3300251
crossref_primary_10_1007_s40313_025_01150_z
crossref_primary_10_1109_ACCESS_2025_3557961
crossref_primary_10_3390_fermentation9040394
crossref_primary_10_1016_j_conengprac_2024_105841
crossref_primary_10_1016_j_cherd_2024_09_014
crossref_primary_10_1109_LCSYS_2023_3252162
crossref_primary_10_1016_j_anucene_2025_111416
crossref_primary_10_1016_j_isatra_2023_03_036
crossref_primary_10_1080_0305215X_2024_2434201
crossref_primary_10_1016_j_bprint_2024_e00331
crossref_primary_10_1016_j_ijrefrig_2024_05_018
crossref_primary_10_1002_asjc_3549
crossref_primary_10_3390_wevj15120557
crossref_primary_10_1016_j_neucom_2025_131073
crossref_primary_10_1177_14750902241227301
crossref_primary_10_1007_s11432_023_4115_1
crossref_primary_10_1016_j_oceaneng_2024_120067
crossref_primary_10_1016_j_jmsy_2024_08_024
crossref_primary_10_1007_s00170_024_14960_3
crossref_primary_10_3390_act14030134
crossref_primary_10_1007_s11044_023_09884_x
crossref_primary_10_1007_s40435_023_01311_5
crossref_primary_10_1016_j_prime_2025_101029
crossref_primary_10_1016_j_conengprac_2022_105101
crossref_primary_10_1016_j_fbp_2023_02_004
crossref_primary_10_1016_j_compchemeng_2024_108790
crossref_primary_10_1155_2024_9967121
crossref_primary_10_3390_en16237724
crossref_primary_10_3390_s24216926
crossref_primary_10_1016_j_ymssp_2025_113128
crossref_primary_10_1016_j_chaos_2025_117108
crossref_primary_10_1016_j_cherd_2025_04_035
crossref_primary_10_1002_advs_202413153
crossref_primary_10_1016_j_ifacol_2025_08_143
crossref_primary_10_1080_21642583_2023_2188401
crossref_primary_10_1109_LRA_2025_3536297
crossref_primary_10_3390_designs9010024
crossref_primary_10_1016_j_coche_2024_101038
crossref_primary_10_1016_j_conengprac_2023_105737
crossref_primary_10_1038_s41598_024_66104_y
crossref_primary_10_1080_00207721_2025_2475361
crossref_primary_10_1177_15485129251346806
crossref_primary_10_3390_app15168966
crossref_primary_10_3390_s25123805
crossref_primary_10_3390_electronics14163296
crossref_primary_10_1016_j_rineng_2024_102678
crossref_primary_10_1016_j_est_2025_117565
crossref_primary_10_1016_j_isatra_2025_08_052
crossref_primary_10_3390_batteries11050179
crossref_primary_10_3390_electronics11203383
crossref_primary_10_1016_j_isatra_2025_08_051
crossref_primary_10_1109_TCSI_2023_3323454
crossref_primary_10_1186_s10033_025_01191_0
crossref_primary_10_1016_j_compchemeng_2023_108386
crossref_primary_10_1016_j_compchemeng_2024_108689
crossref_primary_10_3390_math13121952
crossref_primary_10_1109_TIM_2023_3338722
crossref_primary_10_1371_journal_pwat_0000361
crossref_primary_10_1109_JAS_2025_125222
crossref_primary_10_1049_cth2_12786
crossref_primary_10_1109_TAC_2024_3466869
crossref_primary_10_1016_j_conengprac_2025_106246
crossref_primary_10_1016_j_apenergy_2024_124680
crossref_primary_10_1080_00207721_2025_2469821
crossref_primary_10_1177_01423312241241361
crossref_primary_10_1109_LCSYS_2024_3514977
crossref_primary_10_3390_pr13030672
crossref_primary_10_3390_pr13030792
crossref_primary_10_1016_j_addma_2024_104592
crossref_primary_10_1016_j_mechmachtheory_2023_105258
crossref_primary_10_1080_23307706_2023_2288639
crossref_primary_10_3390_computers14030104
crossref_primary_10_1016_j_conengprac_2025_106480
crossref_primary_10_1016_j_ijthermalsci_2024_109654
crossref_primary_10_3390_pr13051498
crossref_primary_10_1049_cth2_12611
crossref_primary_10_1109_TASE_2024_3490620
crossref_primary_10_1016_j_engappai_2024_109360
crossref_primary_10_1016_j_ifacol_2024_12_032
crossref_primary_10_1109_ACCESS_2025_3555245
crossref_primary_10_1007_s10489_025_06704_x
crossref_primary_10_1109_ACCESS_2025_3577056
crossref_primary_10_1002_oca_3318
crossref_primary_10_1007_s40435_023_01118_4
crossref_primary_10_3390_math11132844
crossref_primary_10_1109_ACCESS_2025_3582523
crossref_primary_10_3390_jmse13010132
crossref_primary_10_1109_ACCESS_2022_3227864
crossref_primary_10_1360_SSPMA_2024_0285
crossref_primary_10_2166_hydro_2025_019
crossref_primary_10_1016_j_jhydrol_2024_132204
crossref_primary_10_3390_s25020515
crossref_primary_10_1109_ACCESS_2023_3342024
crossref_primary_10_1016_j_jprocont_2025_103542
crossref_primary_10_1016_j_jfranklin_2025_108037
crossref_primary_10_1016_j_jprocont_2023_103067
crossref_primary_10_1016_j_ifacol_2025_06_003
crossref_primary_10_1088_1741_2552_ad731f
crossref_primary_10_3390_computation12100196
crossref_primary_10_1109_ACCESS_2025_3591697
crossref_primary_10_1016_j_apenergy_2022_120302
crossref_primary_10_3390_s25041206
crossref_primary_10_1016_j_ces_2024_120000
crossref_primary_10_1109_JESTPE_2024_3507798
crossref_primary_10_1109_ACCESS_2022_3191343
crossref_primary_10_1007_s12555_024_0784_5
crossref_primary_10_1038_s41598_025_89205_8
crossref_primary_10_3389_fphy_2023_1253642
crossref_primary_10_3390_electricity5030031
crossref_primary_10_1016_j_ifacol_2025_07_167
crossref_primary_10_1016_j_arcontrol_2023_03_013
crossref_primary_10_1016_j_jprocont_2025_103413
crossref_primary_10_1109_ACCESS_2025_3537859
crossref_primary_10_1016_j_prime_2025_101098
crossref_primary_10_1007_s00202_024_02346_3
crossref_primary_10_1051_itmconf_20257803028
crossref_primary_10_1016_j_ijrefrig_2024_07_023
crossref_primary_10_3390_en16165909
crossref_primary_10_1109_LRA_2025_3589162
crossref_primary_10_3390_a18060322
crossref_primary_10_1016_j_ecmx_2025_100939
crossref_primary_10_1016_j_actaastro_2025_08_034
crossref_primary_10_3390_fractalfract9010021
crossref_primary_10_1007_s10845_022_01931_2
crossref_primary_10_1177_03611981241279305
crossref_primary_10_1038_s41598_025_17141_8
crossref_primary_10_1007_s00170_023_12059_9
crossref_primary_10_1016_j_dche_2025_100249
crossref_primary_10_1016_j_eswa_2024_125946
crossref_primary_10_1016_j_tra_2025_104380
crossref_primary_10_1007_s00202_023_01924_1
crossref_primary_10_1007_s40192_025_00401_w
crossref_primary_10_1016_j_mineng_2025_109278
crossref_primary_10_1007_s10462_025_11278_8
crossref_primary_10_1109_JIOT_2025_3573692
crossref_primary_10_3390_info16060511
crossref_primary_10_1007_s11044_025_10095_9
crossref_primary_10_1080_21642583_2024_2364035
crossref_primary_10_1016_j_apenergy_2024_123429
crossref_primary_10_1016_j_energy_2022_126177
crossref_primary_10_1016_j_seta_2024_103952
crossref_primary_10_3390_aerospace9120798
crossref_primary_10_1016_j_gloei_2024_12_003
crossref_primary_10_3390_machines13020165
crossref_primary_10_1007_s10489_025_06243_5
crossref_primary_10_1021_acs_iecr_5c01048
crossref_primary_10_1134_S0005117924700085
crossref_primary_10_1016_j_cherd_2025_01_024
crossref_primary_10_1016_j_conengprac_2024_106179
crossref_primary_10_1016_j_apenergy_2025_126091
crossref_primary_10_1016_j_rineng_2025_106813
crossref_primary_10_1038_s41597_023_02808_6
crossref_primary_10_3390_en15176238
crossref_primary_10_1016_j_oceaneng_2025_122137
crossref_primary_10_1016_j_nucengdes_2025_114163
crossref_primary_10_1016_j_cjche_2025_07_011
crossref_primary_10_1109_LCSYS_2024_3359068
crossref_primary_10_3390_jmse13010034
crossref_primary_10_1007_s11367_024_02390_y
crossref_primary_10_1155_er_9088459
crossref_primary_10_1007_s40435_025_01590_0
crossref_primary_10_3390_pr12010229
crossref_primary_10_3390_s22155807
crossref_primary_10_1177_14680874241296932
crossref_primary_10_1016_j_conengprac_2025_106523
crossref_primary_10_1109_LRA_2024_3431912
crossref_primary_10_1016_j_asoc_2025_113674
crossref_primary_10_3390_s25113534
crossref_primary_10_1145_3730848
crossref_primary_10_2478_amns_2023_2_01247
crossref_primary_10_1016_j_renene_2024_121847
crossref_primary_10_3390_en16176279
crossref_primary_10_1109_ACCESS_2025_3571222
crossref_primary_10_1016_j_cherd_2024_06_017
crossref_primary_10_1016_j_cherd_2025_08_023
crossref_primary_10_3390_en16020868
crossref_primary_10_3390_math13020244
crossref_primary_10_1002_cjce_25097
crossref_primary_10_1016_j_conengprac_2024_106114
crossref_primary_10_12677_sea_2025_142014
crossref_primary_10_3390_pr11123293
crossref_primary_10_1007_s11071_024_10080_5
crossref_primary_10_1080_10643389_2025_2557306
crossref_primary_10_1109_ACCESS_2022_3202020
crossref_primary_10_3390_app15126477
crossref_primary_10_1016_j_chroma_2022_463420
crossref_primary_10_1016_j_compind_2024_104131
crossref_primary_10_14232_actacyb_295044
crossref_primary_10_3390_e26080653
crossref_primary_10_1016_j_apenergy_2023_121630
crossref_primary_10_1177_09544070251366344
crossref_primary_10_1038_s41598_025_13899_z
crossref_primary_10_3390_aerospace10110951
crossref_primary_10_1016_j_compchemeng_2022_107869
crossref_primary_10_1016_j_ecmx_2025_101129
crossref_primary_10_31857_S0005117924070088
crossref_primary_10_1109_TGCN_2024_3379289
crossref_primary_10_1016_j_ifacol_2024_09_018
crossref_primary_10_3390_asi5060118
crossref_primary_10_1016_j_apenergy_2022_120028
crossref_primary_10_1039_D3RE00544E
crossref_primary_10_3390_app12105016
crossref_primary_10_1016_j_conengprac_2025_106438
crossref_primary_10_1109_TASE_2025_3546734
crossref_primary_10_3389_fnetp_2025_1521963
crossref_primary_10_1016_j_jfranklin_2024_107171
crossref_primary_10_1016_j_rineng_2025_105374
crossref_primary_10_1109_LRA_2025_3568686
crossref_primary_10_1002_rnc_70102
crossref_primary_10_3390_electronics14173503
crossref_primary_10_1109_ACCESS_2022_3223298
crossref_primary_10_1016_j_rcim_2025_103137
crossref_primary_10_1155_jcse_5062783
crossref_primary_10_1016_j_renene_2025_123954
crossref_primary_10_1016_j_rineng_2025_104567
crossref_primary_10_3390_electricity5040049
crossref_primary_10_1007_s40435_025_01755_x
crossref_primary_10_3390_machines12110773
crossref_primary_10_1016_j_procs_2024_09_033
crossref_primary_10_3390_en18112681
crossref_primary_10_1016_j_csbj_2023_07_003
crossref_primary_10_1109_OJCOMS_2025_3564069
crossref_primary_10_1016_j_jclepro_2022_135049
crossref_primary_10_1080_00207543_2022_2120922
crossref_primary_10_1002_bit_28236
crossref_primary_10_3390_act14080369
crossref_primary_10_1002_acs_3737
crossref_primary_10_1002_aic_18909
crossref_primary_10_1007_s40815_025_02085_y
crossref_primary_10_1016_j_iswa_2023_200191
crossref_primary_10_1109_ACCESS_2023_3342034
crossref_primary_10_1061_JAEEEZ_ASENG_5646
crossref_primary_10_1109_TRO_2023_3319895
crossref_primary_10_3390_s23218679
crossref_primary_10_1016_j_enbuild_2024_114650
crossref_primary_10_1016_j_lssr_2025_06_001
crossref_primary_10_1016_j_apm_2024_01_002
crossref_primary_10_1016_j_cep_2023_109548
crossref_primary_10_1109_TIE_2024_3462976
crossref_primary_10_17979_ja_cea_2025_46_12205
crossref_primary_10_1016_j_jclepro_2023_138668
crossref_primary_10_1002_rob_22283
crossref_primary_10_1088_1742_6596_2665_1_012016
crossref_primary_10_3390_inventions8050119
crossref_primary_10_1109_TIA_2024_3427049
crossref_primary_10_1007_s40435_024_01426_3
crossref_primary_10_3390_act12060220
crossref_primary_10_1016_j_actaastro_2024_09_054
crossref_primary_10_3390_robotics12030067
crossref_primary_10_1115_1_4068695
crossref_primary_10_1109_TCYB_2024_3390729
crossref_primary_10_3390_a15050157
crossref_primary_10_1080_23744731_2023_2196910
crossref_primary_10_1016_j_apenergy_2023_121677
crossref_primary_10_3390_electronics14102048
crossref_primary_10_1016_j_cherd_2024_12_028
crossref_primary_10_1016_j_ifacol_2024_08_428
crossref_primary_10_1109_TCST_2025_3561501
crossref_primary_10_1109_JAS_2023_123135
crossref_primary_10_1007_s41660_025_00562_3
crossref_primary_10_1016_j_enconman_2023_117133
crossref_primary_10_1109_TMECH_2024_3452509
crossref_primary_10_1007_s41237_022_00176_w
crossref_primary_10_3390_robotics12010007
crossref_primary_10_1016_j_isatra_2023_08_011
crossref_primary_10_1016_j_isatra_2024_01_029
crossref_primary_10_1109_TMECH_2024_3483222
crossref_primary_10_1109_TCYB_2025_3562032
Cites_doi 10.1109/ACC.2000.876624
10.1109/CCDC.2009.5192458
10.1007/3-540-45802-6
10.23919/ECC.2019.8795871
10.1109/TIE.2016.2625238
10.1109/TSMC.2015.2465352
10.1080/00207178708933912
10.1109/TCST.2011.2124461
10.1109/TIE.2019.2910034
10.1007/s11740-017-0721-z
10.1109/TIE.2017.2779442
10.1109/TVT.2016.2555853
10.3182/20140824-6-ZA-1003.02505
10.1016/j.enbuild.2017.02.012
10.1016/j.rser.2017.09.102
10.1109/ICECE.2018.8636741
10.1016/j.automatica.2014.10.128
10.1109/PESC.2005.1581874
10.1007/BFb0109870
10.1016/S0005-1098(99)00214-9
10.1109/LRA.2020.2964159
10.1109/TII.2019.2953275
10.1016/j.apenergy.2015.10.152
10.1109/TIE.2018.2844836
10.23919/ACC.2019.8814335
10.1016/j.enbuild.2016.09.044
10.1016/0005-1098(93)90049-Y
10.1109/CDC.2018.8619572
10.1109/TII.2012.2223222
10.1016/j.automatica.2015.07.030
10.1115/1.4046278
10.1016/j.apenergy.2018.12.032
10.1007/s00170-019-04335-4
10.1016/j.jprocont.2007.01.001
10.1109/CCDC.2013.6561735
10.1109/MIE.2013.2290138
10.1016/j.jprocont.2016.04.007
10.1109/9.262032
10.1016/S0098-1354(98)00260-9
10.1109/TPEL.2019.2906805
10.1109/TIE.2017.2772154
10.1016/j.compchemeng.2006.05.044
10.1016/j.ifacol.2016.07.542
10.1016/S0005-1098(01)00083-8
10.1109/TPEL.2017.2744986
10.1109/TIE.2008.2008349
10.1007/978-3-0348-8407-5
10.1109/IJCNN.2018.8489446
10.1021/ie900323c
10.1109/ICMICA48462.2020.9242772
10.1016/0005-1098(82)90069-3
10.1016/j.jobe.2020.101692
10.1016/S0005-1098(00)00173-4
10.1145/2785956.2787486
10.1109/LRA.2020.2975727
10.1016/0005-1098(89)90002-2
10.1109/TIE.2008.2007032
10.1016/j.scs.2018.05.035
10.23919/ACC45564.2020.9147625
10.1002/aic.16615
10.1016/0005-1098(87)90087-2
10.1002/aic.690451016
10.1016/S0005-1098(01)00115-7
10.1109/tcst.2005.847331
10.2478/v10006-007-0020-5
10.3390/en11030631
10.3182/20090712-4-TR-2008.00014
10.1016/j.ifacol.2019.11.094
10.1115/1.4038074
10.1016/j.asoc.2015.09.022
10.1016/j.techfore.2006.06.001
10.1109/ACC.2010.5530680
10.1038/530144a
10.1002/(SICI)1099-1239(19991230)9:15<1117::AID-RNC447>3.0.CO;2-I
10.18154/RWTH-2020-02766
10.1080/00207179.2016.1222553
10.23919/ACC45564.2020.9147465
10.1016/j.automatica.2016.12.008
10.1016/S0005-1098(02)00012-2
10.1016/j.jclepro.2020.124124
10.1016/j.buildenv.2014.09.011
10.1016/j.ijmachtools.2015.01.002
10.1109/RTEICT42901.2018.9012517
10.1007/s00170-020-05719-7
10.1016/j.ifacol.2019.11.462
10.23919/ChiCC.2019.8865797
10.1016/j.enbuild.2011.09.022
10.1016/0005-1098(78)90001-8
10.1109/IROS.2009.5354018
10.1111/j.1934-6093.1999.tb00002.x
10.1016/0005-1098(87)90088-4
10.1109/TIE.2008.2007547
10.1109/MED.2018.8442437
10.1109/LCSYS.2018.2843682
10.1109/9.486649
10.1109/ISGT-Asia.2019.8881147
10.1016/j.mineng.2013.07.012
10.1109/TCST.2006.880199
10.1109/JACC.1980.4232010
10.1016/S0098-1354(98)00301-9
10.1016/j.ifacol.2017.08.2336
10.1109/TCST.2010.2049203
10.1021/acs.iecr.6b03275
10.1016/s1474-6670(17)57870-2
10.1109/MERCon.2019.8818777
10.1109/TCST.2013.2266662
10.1109/9.467664
10.1016/0005-1098(94)90159-7
10.1016/j.enbuild.2016.07.036
10.1016/j.ifacol.2015.09.022
10.3182/20110828-6-IT-1002.00579
10.1109/TITS.2019.2928217
10.1109/MIE.2016.2615127
10.23919/ACC45564.2020.9147360
10.1016/j.jprocont.2020.03.013
10.1109/TIA.2018.2801838
10.1016/S0167-6911(00)00084-0
10.1016/j.enbuild.2017.04.027
10.1016/j.rser.2015.01.046
10.1109/LRA.2019.2901638
10.1115/MSEC2011-50154
10.1016/S0967-0661(02)00186-7
10.1016/j.ifacol.2020.12.1930
10.1016/j.ifacol.2016.07.242
10.1016/j.mineng.2014.03.029
10.1109/CDC.2006.377490
10.1016/j.ifacol.2020.12.546
10.23919/ECC.2019.8795826
10.1109/TIE.2008.2007030
10.1016/j.ifacol.2019.11.459
10.23919/ChiCC.2018.8483834
10.1021/i200017a016
10.1109/37.845037
10.1109/ICHR.2006.321375
10.1109/37.845038
10.1007/s10845-019-01506-8
10.1109/CCTA.2019.8920461
10.1109/TAC.2000.881002
ContentType Journal Article
Copyright The Author(s) 2021
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1007/s00170-021-07682-3
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
ProQuest One Academic
Technology collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection (ProQuest)
DatabaseTitle CrossRef
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (New)
Engineering Collection
ProQuest One Academic (New)
DatabaseTitleList Engineering Database
CrossRef

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest One Academic
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1433-3015
EndPage 1349
ExternalDocumentID 10_1007_s00170_021_07682_3
GrantInformation_xml – fundername: German Reserach Foundation (DFG)
  grantid: 390621612
– fundername: RWTH Aachen University (3131)
GroupedDBID -5B
-5G
-BR
-EM
-XW
-XX
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
1N0
1SB
203
28-
29J
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
9M8
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADQRH
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EAS
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
L6V
LAS
LLZTM
M4Y
M7S
MA-
ML~
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P9P
PF0
PT4
PT5
PTHSS
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8V
Z8W
Z8Z
Z92
ZMTXR
ZY4
_50
~8M
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c429t-b9378284f408fb4533bfd9069fd2fb4807c5dacb907092fd09093da377da0cee3
IEDL.DBID M7S
ISICitedReferencesCount 576
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000684098200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0268-3768
IngestDate Tue Nov 04 22:27:28 EST 2025
Sat Nov 29 03:17:00 EST 2025
Tue Nov 18 22:33:53 EST 2025
Fri Feb 21 02:47:33 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5-6
Keywords Model predictive control
MPC
Stability
Computation
Robustness
Application
Optimization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c429t-b9378284f408fb4533bfd9069fd2fb4807c5dacb907092fd09093da377da0cee3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3422-8631
OpenAccessLink https://link.springer.com/10.1007/s00170-021-07682-3
PQID 2582658788
PQPubID 2044010
PageCount 23
ParticipantIDs proquest_journals_2582658788
crossref_primary_10_1007_s00170_021_07682_3
crossref_citationtrail_10_1007_s00170_021_07682_3
springer_journals_10_1007_s00170_021_07682_3
PublicationCentury 2000
PublicationDate 2021-11-01
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle International journal of advanced manufacturing technology
PublicationTitleAbbrev Int J Adv Manuf Technol
PublicationYear 2021
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References Ay M, Stemmler S, Schwenzer M, Abel D, Bergs T (2019) Model predictive control in milling based on support vector machines. IFAC-PapersOnLine 52(13):1797–1802, https://doi.org/10.1016/j.ifacol.2019.11.462
Garnier A, Eynard J, Caussanel M, Grieu S (2015) Predictive control of multizone heating, ventilation and air-conditioning systems in non-residential buildings. Applied Soft Computing 37:847–862, https://doi.org/10.1016/j.asoc.2015.09.022
Li Z, Deng J, Lu R, Xu Y, Bai J, Su CY (2016c) Trajectory-tracking control of mobile robot systems incorporating neural-dynamic optimized model predictive approach. IEEE Transactions on Systems, Man, and Cybernetics: Systems 46(6):740–749, https://doi.org/10.1109/TSMC.2015.2465352
Lee KS, Chin IS, Lee HJ, Lee JH (1999) Model predictive control technique combined with iterative learning for batch processes. AIChE Journal 45(10):2175–2187, https://doi.org/10.1002/aic.690451016
Wu Z, Rincon D, Christofides PD (2020) Process structure-based recurrent neural network modeling for model predictive control of nonlinear processes. Journal of Process Control 89:74–84, https://doi.org/10.1016/j.jprocont.2020.03.013. https://linkinghub.elsevier.com/retrieve/pii/S095915241930825X
Magni L, Nicolao G, Magnani L, Scattolini R (2001) A stabilizing model-based predictive control algorithm for nonlinear systems. Automatica 37(9):1351–1362, https://doi.org/10.1016/S0005-1098(01)00083-8
Zhongjun X, Mengxiao W (2009) Time-delay process Multivariable model predictive function control for basis weight & moisture content control system. In: 2009 Chinese Control and Decision Conference, IEEE, Guilin, China, pp 4089–4093, https://doi.org/10.1109/CCDC.2009.5192458. http://ieeexplore.ieee.org/document/5192458
Zhang X, Bujarbaruah M, Borrelli F (2019) Safe and near-optimal policy learning for model predictive control using primal-dual neural networks. arXiv:190608257 [cs, eess, stat]
Schwenzer M, Adams O, Klocke F, Stemmler S, Abel D (2017) Model-based predictive force control in milling: determination of reference trajectory. Prod Eng 11(2):107–115, https://doi.org/10.1007/s11740-017-0721-z
Wieber Pb (2006) Trajectory free linear model predictive control for stable walking in the presence of strong perturbations. 2006 6th IEEE-RAS Int Conf Humanoid Robots pp 137–142, https://doi.org/10.1109/ICHR.2006.321375
Li D, Xi Y, Lu J, Gao F (2016a) Synthesis of real-time-feedback-based 2d iterative learning control–model predictive control for constrained batch processes with unknown input nonlinearity. Industrial & Engineering Chemistry Research 55(51):13074–13084, https://doi.org/10.1021/acs.iecr.6b03275
Mora A, Cardenas-Dobson R, Aguilera RP, Angulo A, Donoso F, Rodriguez J (2019) Computationally efficient cascaded optimal switching sequence MPC for grid-connected three-Level NPC converters. IEEE Transactions on Power Electronics 34(12):12464–12475, https://doi.org/10.1109/TPEL.2019.2906805. https://ieeexplore.ieee.org/document/8672506
SchwenzerMClosing the loop of model predictive force control in milling with ensemble Kalman filtering. PhD thesis RWTH Aachen University2021GermanyAachen
Forbes MG, Patwardhan RS, Hamadah H, Gopaluni RB (2015) Model predictive control in industry: challenges and opportunities. IFAC-PapersOnLine 48(8):531–538, https://doi.org/10.1016/j.ifacol.2015.09.022
Cataldo A, Morescalchi M, Scattolini R (2019) Fault-tolerant model predictive control of a de-manufacturing plant. The International Journal of Advanced Manufacturing Technology 104 (9-12):4803–4812, https://doi.org/10.1007/s00170-019-04335-4. http://link.springer.com/10.1007/s00170-019-04335-4
Allgöwer F, Zheng A (2000) Nonlinear model predictive control. Birkhauser Basel̈, Basel, https://doi.org/10.1007/978-3-0348-8407-5
Rawlings JB (2000) Tutorial overview of model predictive control. IEEE Control Sys 20(3):38–52, https://doi.org/10.1109/37.845037
Morari M, Lee JH (1999) Model predictive control: past, present and future. Comp & Chem Eng 23(4–5):667–682, https://doi.org/10.1016/S0098-1354(98)00301-9
Luis CE, Vukosavljev M, Schoellig AP (2020) Online trajectory generation with distributed model predictive control for multi-robot motion planning. IEEE Robotics and Autom Lett 5(2):604–611, https://doi.org/10.1109/LRA.2020.2964159
Koller T, Berkenkamp F, Turchetta M, Krause A (2018) Learning-based Model Predictive Control for Safe Exploration. arXiv:1803.08287[cs]
de Nicolao G, Magni L, Scattolini R (1996) On the robustness of receding-horizon control with terminal constraints. IEEE Trans Autom Control 41(3):451–453, https://doi.org/10.1109/9.486649
Stemmler S, Ay M, Vukovic M, Abel D, Heinisch J, Hopmann C (2019) Cross-phase model-based predictive cavity pressure control in injection molding. In: 2019 IEEE Conf. Control Technol. Appl. (CCTA), IEEE, Hong Kong, China, pp 360–367, https://doi.org/10.1109/CCTA.2019.8920461
Cuzzola FA, Geromel JC, Morari M (2002) An improved approach for constrained robust model predictive control. Automatica 38(7):1183–1189, https://doi.org/10.1016/S0005-1098(02)00012-2
Laughlin DL, Morari M (1987) Smith predictor design for robust performance. Am Control Conf, 1987 pp 637–642, https://doi.org/10.1080/00207178708933912
Serale G, Fiorentini M, Capozzoli A, Bernardini D, Bemporad A (2018) Model Predictive Control (MPC) for Enhancing Building and HVAC System Energy Efficiency: Problem Formulation, Applications and Opportunities. Energies 11(3):631, https://doi.org/10.3390/en11030631. http://www.mdpi.com/1996-1073/11/3/631
Mayne DQ, Rawlings JB, Rao CV, Scokaert P (2000) Constrained model predictive control: Stability and optimality. Automatica 36(6):789–814, https://doi.org/10.1016/S0005-1098(99)00214-9
Linder A, Kennel R (2005) Model predictive control for electrical drives. 2005 IEEE 36th Power Electronics Specialists Conference pp 1793–1799, https://doi.org/10.1109/PESC.2005.1581874
Salazar JL, Valdes-Gonzalez H, Vyhmesiter E, Cubillos F (2014) Model predictive control of semiautogenous mills (sag). Minerals Eng 64:92–96, https://doi.org/10.1016/j.mineng.2014.03.029
Michalska H, Mayne DQ (1993) Robust receding horizon control of constrained nonlinear systems. IEEE Trans Autom Control 38(11):1623–1633, https://doi.org/10.1109/9.262032
Gilbert EG, Kolmanovsky I (1999) Fast reference governors for systems with state and control constraints and disturbance inputs. Int J of Robust and Nonlinear Control 9(15):1117–1141, https://doi.org/10.1002/(SICI)1099-1239(19991230)9:15<1117::AID-RNC447>3.0.CO;2-I
Shen C, Shi Y, Buckham B (2018) Trajectory tracking control of an autonomous underwater vehicle using Lyapunov-based model predictive control. IEEE Transactions on Industrial Electronics 65(7):5796–5805, https://doi.org/10.1109/TIE.2017.2779442. http://ieeexplore.ieee.org/document/8126875
MaciejowskiJMPredictive control: with constraints2002HarlowPrentice Hall0978.93002
Vahidi A, Stefanopoulou A, Peng H (2006) Current management in a hybrid fuel cell power system: A model-predictive control approach. IEEE Trans Control Sys Technol 14(6):1047–1057, https://doi.org/10.1109/TCST.2006.880199
Bemporad A, Morari M (1999) Robust model predictive control: a survey. In: Garulli A, Tesi A (eds) Robustness in identification and control, Springer London, London, pp 207–226, https://doi.org/10.1007/BFb0109870
Mayne D, Rawlings J (2001) Correction to “constrained model predictive control: stability and optimality”. Automatica 37(3):483, https://doi.org/10.1016/S0005-1098(00)00173-4
Li L, You S, Yang C, Yan B, Song J, Chen Z (2016b) Driving-behavior-aware stochastic model predictive control for plug-in hybrid electric buses. Applied Energy 162:868–879, https://doi.org/10.1016/j.apenergy.2015.10.152
Gros S, Zanon M, Quirynen R, Bemporad A, Diehl M (2020) From linear to nonlinear MPC: bridging the gap via the real-time iteration. International Journal of Control 93(1):62–80, https://doi.org/10.1080/00207179.2016.1222553. https://www.tandfonline.com/doi/full/10.1080/00207179.2016.1222553
Le Roux JD, Olivier LE, Naidoo MA, Padhi R, Craig IK (2016) Throughput and product quality control for a grinding mill circuit using non-linear mpc. Journal of Process Control 42:35–50, https://doi.org/10.1016/j.jprocont.2016.04.007
Qin S, Badgwell TA (2003) A survey of industrial model predictive control technology. Control Eng Pract 11(7):733–764, https://doi.org/10.1016/S0967-0661(02)00186-7
Rao CV, Rawlings JB, Lee JH (2001) Constrained linear state estimation—a moving horizon approach. Automatica 37(10):1619–1628, https://doi.org/10.1016/S0005-1098(01)00115-7
Stemmler S, Abel D, Schwenzer M, Adams O, Klocke F (2017) Model predictive control for force control in milling. IFAC-PapersOnLine 50(1):15871–15876, https://doi.org/10.1016/j.ifacol.2017.08.2336
Djurdjanovic D, Mears L, Niaki FA, Haq AU, Li L (2018) State of the art review on process, system, and operations control in modern manufacturing. J Manuf Sci Eng 140(061010), https://doi.org/10.1115/1.4038074
Li S, Jiang P, Han K (2019) RBF neural network based model predictive control algorithm and its application to a CSTR process. In: 2019 Chinese Control Conference (CCC), IEEE, Guangzhou, China, pp 2948–2952, https://doi.org/10.23919/ChiCC.2019.8865797. https://ieeexplore.ieee.org/document/8865797
Oldewurtel F, Parisio A, Jones CN, Gyalistras D, Gwerder M, Stauch V, Lehmann B, Morari M (2012) Use of model predictive control and weather forecasts for energy efficient building climate control. Energy and Buildings 45:15–27, https://doi.org/10.1016/j.enbuild.2011.09.022
Reiter M, Stemmler S, Hopmann C, Ressmann A, Abel D (2014) Model predictive control of cavity pressure in an injection moulding process. IFAC Proc Vol 47(3):4358–4363, https://doi.org/10.3182/20140824-6-ZA-1003.02505
Atam E (2016) New paths toward energy-efficient buildings: a multiaspect discussion of advanced model-based control. IEEE Ind Electron Mag 10(4):50–66, https://doi.org/10.1109/MIE.2016.2615127
Olivier LE, Craig IK (2016) Fault-tolerant nonlinear mpc using
7682_CR14
7682_CR15
7682_CR16
7682_CR10
7682_CR98
7682_CR11
7682_CR99
7682_CR12
7682_CR13
7682_CR94
7682_CR95
7682_CR96
7682_CR97
7682_CR2
7682_CR90
7682_CR1
7682_CR91
7682_CR4
7682_CR92
7682_CR3
7682_CR93
7682_CR102
7682_CR103
7682_CR100
7682_CR101
JM Maciejowski (7682_CR70) 2002
7682_CR87
7682_CR88
7682_CR89
7682_CR83
7682_CR84
7682_CR85
7682_CR86
7682_CR80
7682_CR81
7682_CR82
EF Camacho (7682_CR17) 2004
M Schwenzer (7682_CR111) 2021
7682_CR36
7682_CR37
7682_CR38
7682_CR39
7682_CR32
7682_CR33
7682_CR34
7682_CR35
7682_CR30
7682_CR31
PJ Campo (7682_CR18) 1986; 1986
7682_CR29
7682_CR148
7682_CR25
7682_CR26
7682_CR27
7682_CR28
7682_CR21
7682_CR22
7682_CR23
PJ Campo (7682_CR19) 1987; 1987
7682_CR20
CR Cutler (7682_CR24) 1980; 17
7682_CR139
7682_CR137
7682_CR138
7682_CR58
7682_CR59
7682_CR54
7682_CR55
7682_CR56
7682_CR57
7682_CR50
7682_CR51
7682_CR52
7682_CR53
7682_CR142
7682_CR143
7682_CR140
7682_CR141
7682_CR146
7682_CR147
7682_CR144
7682_CR145
7682_CR128
7682_CR129
7682_CR126
7682_CR127
7682_CR47
7682_CR48
7682_CR49
7682_CR43
7682_CR44
7682_CR45
7682_CR46
7682_CR40
7682_CR41
7682_CR42
7682_CR131
7682_CR132
7682_CR130
7682_CR135
7682_CR136
7682_CR133
7682_CR134
7682_CR117
7682_CR118
7682_CR115
7682_CR116
7682_CR119
7682_CR76
7682_CR77
7682_CR78
7682_CR79
7682_CR72
7682_CR73
7682_CR74
7682_CR75
7682_CR71
7682_CR120
7682_CR121
7682_CR124
7682_CR125
7682_CR122
7682_CR123
7682_CR106
7682_CR107
7682_CR104
7682_CR105
7682_CR69
7682_CR108
7682_CR109
7682_CR65
7682_CR9
7682_CR66
7682_CR67
7682_CR68
7682_CR6
7682_CR61
7682_CR5
7682_CR62
7682_CR8
7682_CR63
7682_CR7
7682_CR64
7682_CR60
7682_CR110
7682_CR113
7682_CR114
7682_CR112
References_xml – reference: Rao CV, Rawlings JB, Lee JH (2001) Constrained linear state estimation—a moving horizon approach. Automatica 37(10):1619–1628, https://doi.org/10.1016/S0005-1098(01)00115-7
– reference: Mehta P, Mears L (2011) Model based prediction and control of machining deflection error in turning slender bars. In: Proceedings of the ASME International Manufacturing Science and Engineering Conference–2011: presented at ASME 2011 International Manufacturing Science and Engineering Conference, June 13-17, 2011, Corvallis, Oregon, USA, Amer Soc Mechanical Engineers, Corvallis, Oregon, USA, vol 2, pp 263–271, https://doi.org/10.1115/MSEC2011-50154
– reference: Piche S, Sayyar-Rodsari B, Johnson D, Gerules M (2000) Nonlinear model predictive control using neural networks. IEEE Control Sys 20(3):53–62, https://doi.org/10.1109/37.845038
– reference: Steyn CW, Sandrock C (2013) Benefits of optimisation and model predictive control on a fully autogenous mill with variable speed. Minerals Eng 53:113–123, https://doi.org/10.1016/j.mineng.2013.07.012
– reference: Garnier A, Eynard J, Caussanel M, Grieu S (2015) Predictive control of multizone heating, ventilation and air-conditioning systems in non-residential buildings. Applied Soft Computing 37:847–862, https://doi.org/10.1016/j.asoc.2015.09.022
– reference: Michalska H, Mayne DQ (1993) Robust receding horizon control of constrained nonlinear systems. IEEE Trans Autom Control 38(11):1623–1633, https://doi.org/10.1109/9.262032
– reference: Cagienard R, Grieder P, Kerrigan EC, Morari M (2007) Move blocking strategies in receding horizon control. Journal of Process Control 17(6):563–570, https://doi.org/10.1016/j.jprocont.2007.01.001
– reference: Zheng A, Morari M (1995) Stability of model predictive control with mixed constraints. IEEE Trans Autom Control 40(10):1818–1823, https://doi.org/10.1109/9.467664
– reference: Li D, Xi Y, Lu J, Gao F (2016a) Synthesis of real-time-feedback-based 2d iterative learning control–model predictive control for constrained batch processes with unknown input nonlinearity. Industrial & Engineering Chemistry Research 55(51):13074–13084, https://doi.org/10.1021/acs.iecr.6b03275
– reference: Froisy JB (2006) Model predictive control—building a bridge between theory and practice. Comp & Chem Eng 30(10–12):1426–1435, https://doi.org/10.1016/j.compchemeng.2006.05.044
– reference: Prasad GM, Kedia V, Rao AS (2020) Multi-model predictive control (MMPC) for non-linear systems with time delay: an experimental investigation. In: 2020 First IEEE International Conference on Measurement, Instrumentation, Control and Automation (ICMICA), IEEE, Kurukshetra, India, pp 1–5, https://doi.org/10.1109/ICMICA48462.2020.9242772. https://ieeexplore.ieee.org/document/9242772/
– reference: Chavan S, Birnale N, Deshpande AS (2018) Design and simulation of model predictive control for multivariable distillation column. In: 2018 3rd IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT), IEEE, Bangalore, India, pp 764–768, https://doi.org/10.1109/RTEICT42901.2018.9012517, https://ieeexplore.ieee.org/document/9012517/
– reference: Li D, He S, Xi Y, Liu T, Gao F, Wang Y, Lu J (2020) Synthesis of ilc–mpc controller with data-driven approach for constrained batch processes. IEEE Trans Ind Electron 67(4):3116–3125, https://doi.org/10.1109/TIE.2019.2910034
– reference: Le Roux JD, Olivier LE, Naidoo MA, Padhi R, Craig IK (2016) Throughput and product quality control for a grinding mill circuit using non-linear mpc. Journal of Process Control 42:35–50, https://doi.org/10.1016/j.jprocont.2016.04.007
– reference: Liu YK, Zhang YM (2014) Model-based predictive control of weld penetration in gas tungsten arc welding. IEEE Trans Control Sys Technol 22(3):955–966, https://doi.org/10.1109/TCST.2013.2266662
– reference: Yoon S, Jeon H, Kum D (2019) Predictive cruise control using radial basis function network-based vehicle motion prediction and chance constrained model predictive control. IEEE Transactions on Intelligent Transportation Systems 20(10):3832–3843, https://doi.org/10.1109/TITS.2019.2928217. https://ieeexplore.ieee.org/document/8792151/
– reference: Garriga JL, Soroush M (2010) Model predictive control tuning methods: a review. Industrial & Engineering Chemistry Research 49(8):3505–3515, https://doi.org/10.1021/ie900323c
– reference: Bemporad A, Morari M (1999) Robust model predictive control: a survey. In: Garulli A, Tesi A (eds) Robustness in identification and control, Springer London, London, pp 207–226, https://doi.org/10.1007/BFb0109870
– reference: MaciejowskiJMPredictive control: with constraints2002HarlowPrentice Hall0978.93002
– reference: Mayne D, Rawlings J (2001) Correction to “constrained model predictive control: stability and optimality”. Automatica 37(3):483, https://doi.org/10.1016/S0005-1098(00)00173-4
– reference: Linder A, Kennel R (2005) Model predictive control for electrical drives. 2005 IEEE 36th Power Electronics Specialists Conference pp 1793–1799, https://doi.org/10.1109/PESC.2005.1581874
– reference: Cuzzola FA, Geromel JC, Morari M (2002) An improved approach for constrained robust model predictive control. Automatica 38(7):1183–1189, https://doi.org/10.1016/S0005-1098(02)00012-2
– reference: Barisa T, Iles S, Sumina D, Matusko J (2018) Model predictive direct current control of a permanent magnet synchronous generator based on flexible Lyapunov function Ccnsidering converter dead time. IEEE Transactions on Industry Applications 54(3):2899–2912, https://doi.org/10.1109/TIA.2018.2801838, https://ieeexplore.ieee.org/document/8281032/
– reference: Geyer T, Papafotiou G, Morari M (2009) Model predictive direct torque control—part i: concept, algorithm, and analysis. IEEE Trans Ind Electron 56(6):1894–1905, https://doi.org/10.1109/TIE.2008.2007030
– reference: Margolis BWL, Farouki RT (2020) Inverse dynamics toolpath compensation for CNC machines based on model predictive control. The International Journal of Advanced Manufacturing Technology 109(7-8):2155–2172, https://doi.org/10.1007/s00170-020-05719-7. http://link.springer.com/10.1007/s00170-020-05719-7
– reference: Stemmler S, Abel D, Schwenzer M, Adams O, Klocke F (2017) Model predictive control for force control in milling. IFAC-PapersOnLine 50(1):15871–15876, https://doi.org/10.1016/j.ifacol.2017.08.2336
– reference: CamachoEFBordonsCModel predictive control Advanced textbooks in control and signal processing2004London and New YorkSpringer1080.93001
– reference: Richalet J, Rault A, Testud JL, Papon J (1978) Model predictive heuristic control. Automatica 14(5):413–428, https://doi.org/10.1016/0005-1098(78)90001-8
– reference: Wu Z, Rincon D, Christofides PD (2020) Process structure-based recurrent neural network modeling for model predictive control of nonlinear processes. Journal of Process Control 89:74–84, https://doi.org/10.1016/j.jprocont.2020.03.013. https://linkinghub.elsevier.com/retrieve/pii/S095915241930825X
– reference: Akter F, Alam KS, Akter MP (2018) Simplified model predictive control of four-leg inverters for stand-alone power systems. In: 2018 10th International Conference on Electrical and Computer Engineering (ICECE), IEEE, Dhaka, Bangladesh, pp 261–264, https://doi.org/10.1109/ICECE.2018.8636741. https://ieeexplore.ieee.org/document/8636741/
– reference: Oldewurtel F, Parisio A, Jones CN, Morari M, Gyalistras D, Gwerder M, Stauch V, Lehmann B, Wirth K (2010) Energy efficient building climate control using stochastic model predictive control and weather predictions. Proc of the 2010 Am Control Conf pp 5100–5105, https://doi.org/10.1109/ACC.2010.5530680
– reference: Olivier LE, Craig IK (2016) Fault-tolerant nonlinear mpc using particle filtering. IFAC-PapersOnLine 49(7):177–182, https://doi.org/10.1016/j.ifacol.2016.07.242
– reference: Cataldo A, Morescalchi M, Scattolini R (2019) Fault-tolerant model predictive control of a de-manufacturing plant. The International Journal of Advanced Manufacturing Technology 104 (9-12):4803–4812, https://doi.org/10.1007/s00170-019-04335-4. http://link.springer.com/10.1007/s00170-019-04335-4
– reference: Nunez F, Langarica S, Diaz P, Torres M, Salas JC (2020) Neural network-based model predictive control of a paste thickener over an industrial Internet platform. IEEE Transactions on Industrial Informatics 16(4):2859–2867, https://doi.org/10.1109/TII.2019.2953275. https://ieeexplore.ieee.org/document/8897590/
– reference: Stephens MA, Manzie C, Good MC (2013) Model predictive control for reference tracking on an industrial machine tool servo drive. IEEE Trans Ind Inform 9(2):808–816, https://doi.org/10.1109/TII.2012.2223222
– reference: Luis CE, Vukosavljev M, Schoellig AP (2020) Online trajectory generation with distributed model predictive control for multi-robot motion planning. IEEE Robotics and Autom Lett 5(2):604–611, https://doi.org/10.1109/LRA.2020.2964159
– reference: Waldrop MM (2016) The chips are down for moore’s law. Nature 530(7589):144–147, https://doi.org/10.1038/530144a
– reference: Mariano-Hernández D, Hernández-Callejo L, Zorita-Lamadrid A, Duque-Pérez O, Santos García F (2021) A review of strategies for building energy management system: Model predictive control, demand side management, optimization, and fault detect & diagnosis. Journal of Building Engineering 33:101692, https://doi.org/10.1016/j.jobe.2020.101692, https://linkinghub.elsevier.com/retrieve/pii/S2352710220310627
– reference: Ma Y, Borrelli F, Hencey B, Coffey B, Bengea S, Haves P (2012) Model predictive control for the operation of building cooling systems. IEEE Trans Control Sys Technol 20(3):796–803, https://doi.org/10.1109/TCST.2011.2124461
– reference: Vallon C, Borrelli F (2020) Task decomposition for iterative learning model predictive control. 2020 Am Control Conf (ACC), Denver, CO, USA pp 2024–2029, https://doi.org/10.23919/ACC45564.2020.9147625
– reference: Yin X, Wang X, Liu X, Chi R, Lin M, Wang Y (2018) An iterative learning model predictive control strategy for evaporator. In: 2018 37th Chinese Control Conference (CCC), IEEE, Wuhan, pp 3652–3656, https://doi.org/10.23919/ChiCC.2018.8483834. https://ieeexplore.ieee.org/document/8483834/
– reference: Maddalena E, da S Moraes C, Waltrich G, Jones C (2020) A neural network architecture to learn explicit MPC controllers from data. IFAC-PapersOnLine 53(2):11362–11367, https://doi.org/10.1016/j.ifacol.2020.12.546. https://linkinghub.elsevier.com/retrieve/pii/S2405896320308442
– reference: Zou C, Hu X, Wei Z, Wik T, Egardt B (2018) Electrochemical estimation and control for lithium-ion battery health-aware fast charging. IEEE Trans Ind Electron 65(8):6635–6645, https://doi.org/10.1109/TIE.2017.2772154
– reference: Gong Z, Wu X, Dai P, Zhu R (2019) Modulated model predictive control for mmc-based active front-end rectifiers under unbalanced grid conditions. IEEE Trans Ind Electron 66(3):2398–2409, https://doi.org/10.1109/TIE.2018.2844836
– reference: Kouro S, Cortes P, Vargas R, Ammann U, Rodriguez J (2009) Model predictive control—a simple and powerful method to control power converters. IEEE Trans Ind Electron 56(6):1826–1838, https://doi.org/10.1109/TIE.2008.2008349
– reference: Yin X, Jindal A, Sekar V, Sinopoli B (2015) A control-theoretic approach for dynamic adaptive video streaming over http. In: Proc. 2015 ACM Conf. Special Interest Group on Data Com. - SIGCOMM ’15, ACM Press, London, United Kingdom, pp 325–338, https://doi.org/10.1145/2785956.2787486
– reference: Rawlings JB (2000) Tutorial overview of model predictive control. IEEE Control Sys 20(3):38–52, https://doi.org/10.1109/37.845037
– reference: Visioli A (2006) Practical PID Control. Springer-Verlag GmbH. https://www.ebook.de/de/product/11430954/antonio_visioli_practical_pid_control.html
– reference: García CE, Prett DM, Morari M (1989) Model predictive control: theory and practice—a survey. Automatica 25(3):335–348, https://doi.org/10.1016/0005-1098(89)90002-2
– reference: Schubert P, Stemmler S, Abel D (2019) Towards predictive anti-sway control of hanging loads: model-based controller design for a knuckle boom crane. In: 2019 18th European Control Conference (ECC), IEEE, Naples, Italy, pp 2276–2282, https://doi.org/10.23919/ECC.2019.8795871
– reference: Serale G, Fiorentini M, Capozzoli A, Bernardini D, Bemporad A (2018) Model Predictive Control (MPC) for Enhancing Building and HVAC System Energy Efficiency: Problem Formulation, Applications and Opportunities. Energies 11(3):631, https://doi.org/10.3390/en11030631. http://www.mdpi.com/1996-1073/11/3/631
– reference: Afram A, Janabi-Sharifi F, Fung AS, Raahemifar K (2017) Artificial neural network (ann) based model predictive control (mpc) and optimization of hvac systems: a state of the art review and case study of a residential hvac system. Energy and Buildings 141:96–113, https://doi.org/10.1016/j.enbuild.2017.02.012
– reference: Wieber Pb (2006) Trajectory free linear model predictive control for stable walking in the presence of strong perturbations. 2006 6th IEEE-RAS Int Conf Humanoid Robots pp 137–142, https://doi.org/10.1109/ICHR.2006.321375
– reference: Zinober A, Owens DH (2003) Nonlinear and adaptive control: NCN4 2001. Lect. Notes Control Inform. Sci., Springer Berlin Heidelberg, https://books.google.de/books?id=KcxrCQAAQBAJ
– reference: Nubert J, Köhler J, Berenz V, Allgöwer F, Trimpe S (2020) Safe and fast tracking on a robot manipulator: Robust mpc and neural network control. IEEE Robotics and Autom Lett 5(2):3050–3057, https://doi.org/10.1109/LRA.2020.2975727
– reference: Bemporad A, Morari M, Dua V, Pistikopoulos EN (2000) The explicit solution of model predictive control via multiparametric quadratic programming. Proc of the 2010 Am Control Conf 2:872–876 vol.2, https://doi.org/10.1109/ACC.2000.876624
– reference: Richalet J (1993) Industrial applications of model based predictive control. Automatica 29(5):1251–1274, https://doi.org/10.1016/0005-1098(93)90049-Y
– reference: Forbes MG, Patwardhan RS, Hamadah H, Gopaluni RB (2015) Model predictive control in industry: challenges and opportunities. IFAC-PapersOnLine 48(8):531–538, https://doi.org/10.1016/j.ifacol.2015.09.022
– reference: Sun X, Liao K, Yang J, He Z (2019) Model predictive control based load frequency control for power systems with wind turbine generators. In: 2019 IEEE Innovative Smart Grid Technologies - Asia (ISGT Asia), IEEE, Chengdu, China, pp 1387–1392, https://doi.org/10.1109/ISGT-Asia.2019.8881147, https://ieeexplore.ieee.org/document/8881147/
– reference: Reiter M, Stemmler S, Hopmann C, Ressmann A, Abel D (2014) Model predictive control of cavity pressure in an injection moulding process. IFAC Proc Vol 47(3):4358–4363, https://doi.org/10.3182/20140824-6-ZA-1003.02505
– reference: Mayne DQ (2014) Model predictive control: Recent developments and future promise. Automatica 50(12):2967–2986, https://doi.org/10.1016/j.automatica.2014.10.128
– reference: Schmitt L, Keller M, Albin T, Abel D (2020) Real-time nonlinear model predictive control for the energy management of hybrid electric vehicles in a hierarchical framework*. 2020 Am Control Conf (ACC), Denver, CO, USA pp 1961–1967, https://doi.org/10.23919/ACC45564.2020.9147465
– reference: Zhang HT, Wu Y, He D, Zhao H (2015) Model predictive control to mitigate chatters in milling processes with input constraints. Int J Machine Tools Manuf 91:54–61, https://doi.org/10.1016/j.ijmachtools.2015.01.002
– reference: Djurdjanovic D, Mears L, Niaki FA, Haq AU, Li L (2018) State of the art review on process, system, and operations control in modern manufacturing. J Manuf Sci Eng 140(061010), https://doi.org/10.1115/1.4038074
– reference: Shekhar RC, Manzie C (2015) Optimal move blocking strategies for model predictive control. Automatica 61:27–34, https://doi.org/10.1016/j.automatica.2015.07.030
– reference: Salakij S, Yu N, Paolucci S, Antsaklis P (2016) Model-based predictive control for building energy management. i: Energy modeling and optimal control. Energy and Buildings 133:345–358, https://doi.org/10.1016/j.enbuild.2016.09.044
– reference: Yu N, Salakij S, Chavez R, Paolucci S, Sen M, Antsaklis P (2017) Model-based predictive control for building energy management: Part ii – experimental validations. Energy and Buildings 146:19–26, https://doi.org/10.1016/j.enbuild.2017.04.027
– reference: Stemmler S, Ay M, Vukovic M, Abel D, Heinisch J, Hopmann C (2019) Cross-phase model-based predictive cavity pressure control in injection molding. In: 2019 IEEE Conf. Control Technol. Appl. (CCTA), IEEE, Hong Kong, China, pp 360–367, https://doi.org/10.1109/CCTA.2019.8920461
– reference: Mendis P, Wickramasinghe C, Narayana M, Bayer C (2019) Adaptive model predictive control with successive linearization for distillate composition control in batch distillation. In: 2019 Moratuwa Engineering Research Conference (MERCon), IEEE, Moratuwa, Sri Lanka, pp 366–369, https://doi.org/10.1109/MERCon.2019.8818777, https://ieeexplore.ieee.org/document/8818777/
– reference: Schwenzer M, Adams O, Klocke F, Stemmler S, Abel D (2017) Model-based predictive force control in milling: determination of reference trajectory. Prod Eng 11(2):107–115, https://doi.org/10.1007/s11740-017-0721-z
– reference: Tavakoli M, Shokridehaki F, Marzband M, Godina R, Pouresmaeil E (2018) A two stage hierarchical control approach for the optimal energy management in commercial building microgrids based on local wind power and pevs. Sustain Cities Soc 41:332–340, https://doi.org/10.1016/j.scs.2018.05.035
– reference: de Nicolao G, Magni L, Scattolini R (1996) On the robustness of receding-horizon control with terminal constraints. IEEE Trans Autom Control 41(3):451–453, https://doi.org/10.1109/9.486649
– reference: Ay M, Stemmler S, Schwenzer M, Abel D, Bergs T (2019) Model predictive control in milling based on support vector machines. IFAC-PapersOnLine 52(13):1797–1802, https://doi.org/10.1016/j.ifacol.2019.11.462
– reference: Zou S, Wang Z, Hu S, Wang W, Cao Y (2020) Control of weld penetration depth using relative fluctuation coefficient as feedback. J Intell Manuf 31(5):1203–1213, https://doi.org/10.1007/s10845-019-01506-8
– reference: Ławryńczuk M (2007) A family of model predictive control algorithms with artificial neural networks. International Journal of Applied Mathematics and Computer Science 17(2):217–232, https://doi.org/10.2478/v10006-007-0020-5. https://content.sciendo.com/doi/10.2478/v10006-007-0020-5
– reference: Vahidi A, Stefanopoulou A, Peng H (2006) Current management in a hybrid fuel cell power system: A model-predictive control approach. IEEE Trans Control Sys Technol 14(6):1047–1057, https://doi.org/10.1109/TCST.2006.880199
– reference: Li S, Li K, Rajamani R, Wang J (2011) Model predictive multi-objective vehicular adaptive cruise control. IEEE Trans Control Sys Technol 19(3):556–566, https://doi.org/10.1109/TCST.2010.2049203
– reference: Zhongjun X, Mengxiao W (2009) Time-delay process Multivariable model predictive function control for basis weight & moisture content control system. In: 2009 Chinese Control and Decision Conference, IEEE, Guilin, China, pp 4089–4093, https://doi.org/10.1109/CCDC.2009.5192458. http://ieeexplore.ieee.org/document/5192458/
– reference: Allgöwer F, Zheng A (2000) Nonlinear model predictive control. Birkhauser Basel̈, Basel, https://doi.org/10.1007/978-3-0348-8407-5
– reference: Liu C, Atkeson CG (2009) Standing balance control using a trajectory library. 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, St Louis, MO pp 3031–3036, https://doi.org/10.1109/IROS.2009.5354018
– reference: Hillerström G, Walgama K (1996) Repetitive control theory and applications - a survey. IFAC Proc Vol 29(1):1446–1451, https://doi.org/10.1016/s1474-6670(17)57870-2
– reference: Koller T, Berkenkamp F, Turchetta M, Krause A (2018) Learning-based Model Predictive Control for Safe Exploration. arXiv:1803.08287[cs]
– reference: Salazar JL, Valdes-Gonzalez H, Vyhmesiter E, Cubillos F (2014) Model predictive control of semiautogenous mills (sag). Minerals Eng 64:92–96, https://doi.org/10.1016/j.mineng.2014.03.029
– reference: Rouhani R, Mehra RK (1982) Model algorithmic control (mac); basic theoretical properties. Automatica 18(4):401–414, https://doi.org/10.1016/0005-1098(82)90069-3
– reference: Gros S, Zanon M, Quirynen R, Bemporad A, Diehl M (2020) From linear to nonlinear MPC: bridging the gap via the real-time iteration. International Journal of Control 93(1):62–80, https://doi.org/10.1080/00207179.2016.1222553. https://www.tandfonline.com/doi/full/10.1080/00207179.2016.1222553
– reference: Lee JH, Morari M, Garcia CE (1994) State-space interpretation of model predictive control. Automatica 30(4):707–717, https://doi.org/10.1016/0005-1098(94)90159-7
– reference: Li S, Jiang P, Han K (2019) RBF neural network based model predictive control algorithm and its application to a CSTR process. In: 2019 Chinese Control Conference (CCC), IEEE, Guangzhou, China, pp 2948–2952, https://doi.org/10.23919/ChiCC.2019.8865797. https://ieeexplore.ieee.org/document/8865797/
– reference: Morari M, Lee JH (1999) Model predictive control: past, present and future. Comp & Chem Eng 23(4–5):667–682, https://doi.org/10.1016/S0098-1354(98)00301-9
– reference: Vazquez S, Leon JI, Franquelo LG, Rodriguez J, Young HA, Marquez A, Zanchetta P (2014) Model predictive control: A review of its applications in power electronics. IEEE Ind Electron Mag 8(1):16–31, https://doi.org/10.1109/MIE.2013.2290138
– reference: Darby ML, Harmse M, Nikolaou M (2009) MPC: current practice and challenges. IFAC Proc Vol 42(11):86–98, https://doi.org/10.3182/20090712-4-TR-2008.00014, https://linkinghub.elsevier.com/retrieve/pii/S1474667015302573
– reference: Ang KH, Chong G, Li Y (2005) Pid control system analysis, design, and technology. IEEE Trans Control Sys Technol 13(4):559–576, https://doi.org/10.1109/tcst.2005.847331
– reference: Ferreau HJ, Potschka A, Kirches C (2017) qpoasis
– reference: CutlerCRRamakerBLDynamic matrix control - a computer control algorithmJt Autom Control Conf19801772
– reference: Xie S, Hu X, Xin Z, Brighton J (2019) Pontryagin’s Minimum Principle based model predictive control of energy management for a plug-in hybrid electric bus. Applied Energy 236:893–905, https://doi.org/10.1016/j.apenergy.2018.12.032. https://linkinghub.elsevier.com/retrieve/pii/S0306261918318518
– reference: Lee KS, Chin IS, Lee HJ, Lee JH (1999) Model predictive control technique combined with iterative learning for batch processes. AIChE Journal 45(10):2175–2187, https://doi.org/10.1002/aic.690451016
– reference: Dragicevic T (2018) Model predictive control of power converters for robust and fast pperation of AC microgrids. IEEE Transactions on Power Electronics 33(7):6304–6317, https://doi.org/10.1109/TPEL.2017.2744986. http://ieeexplore.ieee.org/document/8016597/
– reference: Mirakhorli A, Dong B (2016) Occupancy behavior based model predictive control for building indoor climate—a critical review. Energy and Buildings 129:499–513, https://doi.org/10.1016/j.enbuild.2016.07.036
– reference: Wehr M, Schatzler S, Abel D, Hirt G (2020) Model predictive control of an overactuated roll gap with a moving manipulated variable. 2020 Am Control Conf (ACC), Denver, CO, USA pp 1931–1936, https://doi.org/10.23919/ACC45564.2020.9147360
– reference: Dickler S, Wiens M, Thonnissen F, Jassmann U, Abel D (2019) Requirements on super-short-term wind speed predictions for model predictive wind turbine control. 2019 18th European Control Conference (ECC), Naples, Italy pp 3346–3352, https://doi.org/10.23919/ECC.2019.8795826
– reference: Papafotiou G, Kley J, Papadopoulos KG, Bohren P, Morari M (2009) Model predictive direct torque control—part ii: implementation and experimental evaluation. IEEE Trans Ind Electron 56(6):1906–1915, https://doi.org/10.1109/TIE.2008.2007032
– reference: Morari M (1994) Model predictive control: multivariable control technique of choice in the 1990s? In: Clarke DW (ed) Advances in model-based predictive control, Oxford science publications, Oxford University Press, Oxford and New York, pp 22–37. http://resolver.caltech.edu/CaltechCDSTR:1993.024
– reference: Rawlings JB, Maravelias CT (2019) Bringing new technologies and approaches to the operation and control of chemical process systems. AIChE Journal 65(6), https://doi.org/10.1002/aic.16615, https://onlinelibrary.wiley.com/doi/10.1002/aic.16615
– reference: Koh H, Magee CL (2006) A functional approach for studying technological progress: application to information technology. Technological Forecasting and Social Change 73(9):1061–1083, https://doi.org/10.1016/j.techfore.2006.06.001
– reference: Zhang X, Bujarbaruah M, Borrelli F (2019) Safe and near-optimal policy learning for model predictive control using primal-dual neural networks. arXiv:190608257 [cs, eess, stat]
– reference: Beaudin M, Zareipour H (2015) Home energy management systems: a review of modelling and complexity. Renew and Sustain Energy Rev 45:318–335, https://doi.org/10.1016/j.rser.2015.01.046
– reference: Qin S, Badgwell TA (2003) A survey of industrial model predictive control technology. Control Eng Pract 11(7):733–764, https://doi.org/10.1016/S0967-0661(02)00186-7
– reference: Gunay HB, Bursill J, Huchuk B, O’Brien W, Beausoleil-Morrison I (2014) Shortest-prediction-horizon model-based predictive control for individual offices. Build and Environ 82:408–419, https://doi.org/10.1016/j.buildenv.2014.09.011
– reference: CampoPJMorariM$\infty $∞-norm formulation of model predictive control problemsAm Control Conf19861986339343
– reference: Vazquez S, Rodriguez J, Rivera M, Franquelo LG, Norambuena M (2017) Model predictive control for power converters and drives: Advances and trends. IEEE Trans Ind Electron 64(2):935–947, https://doi.org/10.1109/TIE.2016.2625238
– reference: Laughlin DL, Morari M (1987) Smith predictor design for robust performance. Am Control Conf, 1987 pp 637–642, https://doi.org/10.1080/00207178708933912
– reference: CampoPJMorariMRobust model predictive controlAm Control Conf1987198710211026
– reference: Bemporad A (2006) Model predictive control design: new trends and tools. Proceedings of the 45th IEEE Conference on Decision and Control pp 6678–6683, https://doi.org/10.1109/CDC.2006.377490
– reference: Stemmler S, Abel D, Adams O, Klocke F (2016) Model predictive feed rate control for a milling machine. IFAC-PapersOnLine 49(12):11–16, https://doi.org/10.1016/j.ifacol.2016.07.542
– reference: Prett DM, Gillette RD (1980) Optimization and constrained multivariable control of a catalytic cracking unit. Jt Autom Control Conf 17:73–78, https://doi.org/10.1109/JACC.1980.4232010
– reference: Morrison J, Nagamune R, Grebenyuk V (2020) An iterative learning approach to economic model predictive control for an integrated solar thermal system. IFAC-PapersOnLine 53(2):12777–12782, https://doi.org/10.1016/j.ifacol.2020.12.1930. https://linkinghub.elsevier.com/retrieve/pii/S2405896320325532
– reference: Garcia CE, Morari M (1982) Internal model control. 1. a unifying review and some new results. Industrial & Engineering Chemistry Process Design and Development 21(2):308–323, https://doi.org/10.1021/i200017a016
– reference: Oldewurtel F, Parisio A, Jones CN, Gyalistras D, Gwerder M, Stauch V, Lehmann B, Morari M (2012) Use of model predictive control and weather forecasts for energy efficient building climate control. Energy and Buildings 45:15–27, https://doi.org/10.1016/j.enbuild.2011.09.022
– reference: Husmann S, Stemmler S, Hähnel S, Vogelgesang S, Abel D, Bergs T (2019) Model predictive force control in grinding based on a lightweight robot. IFAC-PapersOnLine 52(13):1779–1784, https://doi.org/10.1016/j.ifacol.2019.11.459
– reference: Barancelli Schwedersky B, Costa Flesch RC, Sirino Dangui HA, Arrigoni Iervolino L (2018) Practical nonlinear model predictive control using an echo state network model. In: 2018 International Joint Conference on Neural Networks (IJCNN), IEEE, Rio de Janeiro, pp 1–8, https://doi.org/10.1109/IJCNN.2018.8489446, https://ieeexplore.ieee.org/document/8489446/
– reference: Shen C, Shi Y, Buckham B (2018) Trajectory tracking control of an autonomous underwater vehicle using Lyapunov-based model predictive control. IEEE Transactions on Industrial Electronics 65(7):5796–5805, https://doi.org/10.1109/TIE.2017.2779442. http://ieeexplore.ieee.org/document/8126875/
– reference: Lee KS, Lee JH (2000) Convergence of constrained model-based predictive control for batch processes. IEEE Trans Autom Control 45(10):1928–1932, https://doi.org/10.1109/TAC.2000.881002
– reference: Shin Y, Smith R, Hwang S (2020) Development of model predictive control system using an artificial neural network: a case study with a distillation column. Journal of Cleaner Production 277:124124, https://doi.org/10.1016/j.jclepro.2020.124124. https://linkinghub.elsevier.com/retrieve/pii/S095965262034169X
– reference: Wu T, Kemper M, Stemmler S, Abel D, Gries T (2019) Model predictive control of the weft insertion in air-jet weaving. IFAC-PapersOnLine 52(13):630–635, https://doi.org/10.1016/j.ifacol.2019.11.094
– reference: Mayne DQ, Rawlings JB, Rao CV, Scokaert P (2000) Constrained model predictive control: Stability and optimality. Automatica 36(6):789–814, https://doi.org/10.1016/S0005-1098(99)00214-9
– reference: Mora A, Cardenas-Dobson R, Aguilera RP, Angulo A, Donoso F, Rodriguez J (2019) Computationally efficient cascaded optimal switching sequence MPC for grid-connected three-Level NPC converters. IEEE Transactions on Power Electronics 34(12):12464–12475, https://doi.org/10.1109/TPEL.2019.2906805. https://ieeexplore.ieee.org/document/8672506/
– reference: Park JY, Nagy Z (2018) Comprehensive analysis of the relationship between thermal comfort and building control research - a data-driven literature review. Renew and Sustain Energy Rev 82:2664–2679, https://doi.org/10.1016/j.rser.2017.09.102
– reference: Bolognani S, Peretti L, Zigliotto M (2009) Design and implementation of model predictive control for electrical motor drives. IEEE Trans Ind Electron 56(6):1925–1936, https://doi.org/10.1109/TIE.2008.2007547
– reference: Clarke DW, Mohtadi C, Tuffs PS (1987b) Generalized predictive control—part ii extensions and interpretations. Automatica 23(2):149–160, https://doi.org/10.1016/0005-1098(87)90088-4
– reference: Guicheng W, Jinjin M, Min Z, Zhansheng Z, Jinna L (2013) Model predictive control for fermentation process. In: 2013 25th Chinese Control and Decision Conference (CCDC), IEEE, Guiyang, China, pp 4445–4449, https://doi.org/10.1109/CCDC.2013.6561735. http://ieeexplore.ieee.org/document/6561735/
– reference: Primbs JA, Nevistić V, Doyle JC (1999) Nonlinear optimal control: a control lyapunov function and receding horizon perspective. Asian J of Control 1(1):14–24, https://doi.org/10.1111/j.1934-6093.1999.tb00002.x
– reference: Lazic N, Lu T, Boutilier C, Ryu MK, Wong EJ, Roy B, Imwalle G (2018) Data center cooling using model-predictive Control. In: Proceedings of the Thirty-second Conference on neural information processing systems (NeurIPS-18), Montreal, QC, pp 3818–3827. https://papers.nips.cc/paper/7638-data-center-cooling-using-model-predictive-control
– reference: Li Z, Deng J, Lu R, Xu Y, Bai J, Su CY (2016c) Trajectory-tracking control of mobile robot systems incorporating neural-dynamic optimized model predictive approach. IEEE Transactions on Systems, Man, and Cybernetics: Systems 46(6):740–749, https://doi.org/10.1109/TSMC.2015.2465352
– reference: Henson MA (1998) Nonlinear model predictive control: current status and future directions. Comp & Chem Eng 23(2):187–202, https://doi.org/10.1016/S0098-1354(98)00260-9
– reference: Atam E (2016) New paths toward energy-efficient buildings: a multiaspect discussion of advanced model-based control. IEEE Ind Electron Mag 10(4):50–66, https://doi.org/10.1109/MIE.2016.2615127
– reference: Korda M, Jones CN (2017) Stability and performance verification of optimization-based controllers. Automatica 78:34–45, https://doi.org/10.1016/j.automatica.2016.12.008, https://linkinghub.elsevier.com/retrieve/pii/S0005109816305003
– reference: Shaltout ML, Alhneaish MM, Metwalli SM (2020) An Economic Model Predictive Control Approach for Wind Power Smoothing and Tower Load Mitigation. Journal of Dynamic Systems, Measurement, and Control 142(6):061005, https://doi.org/10.1115/1.4046278. https://asmedigitalcollection.asme.org/dynamicsystems/article/doi/10.1115/1.4046278/1074358/An-Economic-Model-Predictive-Control-Approach-for
– reference: Magni L, Nicolao G, Magnani L, Scattolini R (2001) A stabilizing model-based predictive control algorithm for nonlinear systems. Automatica 37(9):1351–1362, https://doi.org/10.1016/S0005-1098(01)00083-8
– reference: McKinnon CD, Schoellig AP (2019) Learn fast, forget slow: Safe predictive learning control for systems with unknown and changing dynamics performing repetitive tasks. IEEE Robotics and Autom Lett 4(2):2180–2187, https://doi.org/10.1109/LRA.2019.2901638
– reference: Stephens MA, Manzie C, Good MC (2011) Explicit model predictive control for reference tracking on an industrial machine tool. IFAC Proc Vol 44(1):14513–14518, https://doi.org/10.3182/20110828-6-IT-1002.00579
– reference: Hertneck M, Köhler J, Trimpe S, Allgöwer F (2018) Learning an approximate model predictive controller with guarantees. IEEE Control Sys Letters 2(3):543–548, https://doi.org/10.1109/LCSYS.2018.2843682
– reference: SchwenzerMClosing the loop of model predictive force control in milling with ensemble Kalman filtering. PhD thesis RWTH Aachen University2021GermanyAachen
– reference: Ay M, Stemmler S, Abel D, Schwenzer M, Klocke F (2018) System identification of a cnc machining center with support vector machines. In: 2018 26th Mediterranean Conference on Control and Automation (MED), IEEE, Zadar, Croatia, pp 1–9, https://doi.org/10.1109/MED.2018.8442437
– reference: Clarke DW, Mohtadi C, Tuffs PS (1987a) Generalized predictive control—part i. the basic algorithm. Automatica 23(2):137–148, https://doi.org/10.1016/0005-1098(87)90087-2
– reference: Stemmler S (2020) Intelligente regelungsstrategien als schlüsseltechnologie selbstoptimierender fertigungssysteme. Dissertation, RWTH Aachen University, https://doi.org/10.18154/RWTH-2020-02766
– reference: Li L, You S, Yang C, Yan B, Song J, Chen Z (2016b) Driving-behavior-aware stochastic model predictive control for plug-in hybrid electric buses. Applied Energy 162:868–879, https://doi.org/10.1016/j.apenergy.2015.10.152
– reference: Gilbert EG, Kolmanovsky I (1999) Fast reference governors for systems with state and control constraints and disturbance inputs. Int J of Robust and Nonlinear Control 9(15):1117–1141, https://doi.org/10.1002/(SICI)1099-1239(19991230)9:15<1117::AID-RNC447>3.0.CO;2-I
– reference: Fontes FA (2001) A general framework to design stabilizing nonlinear model predictive controllers. Systems & Control Letters 42(2):127–143, https://doi.org/10.1016/S0167-6911(00)00084-0
– reference: Ji J, Khajepour A, Melek WW, Huang Y (2017) Path planning and tracking for vehicle collision avoidance based on model predictive control with multiconstraints. IEEE Transactions on Vehicular Technology 66(2):952–964, https://doi.org/10.1109/TVT.2016.2555853
– ident: 7682_CR14
  doi: 10.1109/ACC.2000.876624
– ident: 7682_CR145
  doi: 10.1109/CCDC.2009.5192458
– ident: 7682_CR146
  doi: 10.1007/3-540-45802-6
– ident: 7682_CR110
  doi: 10.23919/ECC.2019.8795871
– ident: 7682_CR130
  doi: 10.1109/TIE.2016.2625238
– ident: 7682_CR64
  doi: 10.1109/TSMC.2015.2465352
– ident: 7682_CR53
  doi: 10.1080/00207178708933912
– ident: 7682_CR69
  doi: 10.1109/TCST.2011.2124461
– ident: 7682_CR60
  doi: 10.1109/TIE.2019.2910034
– ident: 7682_CR112
  doi: 10.1007/s11740-017-0721-z
– ident: 7682_CR116
  doi: 10.1109/TIE.2017.2779442
– ident: 7682_CR48
  doi: 10.1109/TVT.2016.2555853
– ident: 7682_CR103
  doi: 10.3182/20140824-6-ZA-1003.02505
– ident: 7682_CR1
  doi: 10.1016/j.enbuild.2017.02.012
– ident: 7682_CR94
  doi: 10.1016/j.rser.2017.09.102
– ident: 7682_CR2
  doi: 10.1109/ICECE.2018.8636741
– ident: 7682_CR76
  doi: 10.1016/j.automatica.2014.10.128
– ident: 7682_CR65
  doi: 10.1109/PESC.2005.1581874
– ident: 7682_CR13
  doi: 10.1007/BFb0109870
– ident: 7682_CR77
  doi: 10.1016/S0005-1098(99)00214-9
– ident: 7682_CR68
  doi: 10.1109/LRA.2020.2964159
– ident: 7682_CR89
  doi: 10.1109/TII.2019.2953275
– ident: 7682_CR61
  doi: 10.1016/j.apenergy.2015.10.152
– ident: 7682_CR40
  doi: 10.1109/TIE.2018.2844836
– ident: 7682_CR143
  doi: 10.23919/ACC.2019.8814335
– ident: 7682_CR107
  doi: 10.1016/j.enbuild.2016.09.044
– ident: 7682_CR104
  doi: 10.1016/0005-1098(93)90049-Y
– ident: 7682_CR50
  doi: 10.1109/CDC.2018.8619572
– ident: 7682_CR123
  doi: 10.1109/TII.2012.2223222
– ident: 7682_CR115
  doi: 10.1016/j.automatica.2015.07.030
– ident: 7682_CR114
  doi: 10.1115/1.4046278
– ident: 7682_CR137
  doi: 10.1016/j.apenergy.2018.12.032
– ident: 7682_CR20
  doi: 10.1007/s00170-019-04335-4
– volume: 1987
  start-page: 1021
  year: 1987
  ident: 7682_CR19
  publication-title: Am Control Conf
– ident: 7682_CR30
– volume-title: Predictive control: with constraints
  year: 2002
  ident: 7682_CR70
– ident: 7682_CR16
  doi: 10.1016/j.jprocont.2007.01.001
– ident: 7682_CR42
  doi: 10.1109/CCDC.2013.6561735
– ident: 7682_CR129
  doi: 10.1109/MIE.2013.2290138
– ident: 7682_CR55
  doi: 10.1016/j.jprocont.2016.04.007
– ident: 7682_CR81
  doi: 10.1109/9.262032
– ident: 7682_CR44
  doi: 10.1016/S0098-1354(98)00260-9
– ident: 7682_CR83
  doi: 10.1109/TPEL.2019.2906805
– ident: 7682_CR147
  doi: 10.1109/TIE.2017.2772154
– ident: 7682_CR33
  doi: 10.1016/j.compchemeng.2006.05.044
– ident: 7682_CR119
  doi: 10.1016/j.ifacol.2016.07.542
– volume-title: Model predictive control Advanced textbooks in control and signal processing
  year: 2004
  ident: 7682_CR17
– ident: 7682_CR54
– ident: 7682_CR72
  doi: 10.1016/S0005-1098(01)00083-8
– ident: 7682_CR29
  doi: 10.1109/TPEL.2017.2744986
– ident: 7682_CR52
  doi: 10.1109/TIE.2008.2008349
– ident: 7682_CR3
  doi: 10.1007/978-3-0348-8407-5
– ident: 7682_CR9
  doi: 10.1109/IJCNN.2018.8489446
– ident: 7682_CR37
  doi: 10.1021/ie900323c
– ident: 7682_CR96
  doi: 10.1109/ICMICA48462.2020.9242772
– ident: 7682_CR106
  doi: 10.1016/0005-1098(82)90069-3
– ident: 7682_CR74
  doi: 10.1016/j.jobe.2020.101692
– ident: 7682_CR75
  doi: 10.1016/S0005-1098(00)00173-4
– ident: 7682_CR138
  doi: 10.1145/2785956.2787486
– ident: 7682_CR88
  doi: 10.1109/LRA.2020.2975727
– ident: 7682_CR35
  doi: 10.1016/0005-1098(89)90002-2
– ident: 7682_CR93
  doi: 10.1109/TIE.2008.2007032
– ident: 7682_CR126
  doi: 10.1016/j.scs.2018.05.035
– ident: 7682_CR128
  doi: 10.23919/ACC45564.2020.9147625
– ident: 7682_CR102
  doi: 10.1002/aic.16615
– ident: 7682_CR22
  doi: 10.1016/0005-1098(87)90087-2
– ident: 7682_CR58
  doi: 10.1002/aic.690451016
– ident: 7682_CR100
  doi: 10.1016/S0005-1098(01)00115-7
– ident: 7682_CR4
  doi: 10.1109/tcst.2005.847331
– ident: 7682_CR6
  doi: 10.2478/v10006-007-0020-5
– ident: 7682_CR113
  doi: 10.3390/en11030631
– ident: 7682_CR26
  doi: 10.3182/20090712-4-TR-2008.00014
– ident: 7682_CR84
– ident: 7682_CR135
  doi: 10.1016/j.ifacol.2019.11.094
– ident: 7682_CR28
  doi: 10.1115/1.4038074
– ident: 7682_CR36
  doi: 10.1016/j.asoc.2015.09.022
– ident: 7682_CR49
  doi: 10.1016/j.techfore.2006.06.001
– ident: 7682_CR90
  doi: 10.1109/ACC.2010.5530680
– ident: 7682_CR132
  doi: 10.1038/530144a
– ident: 7682_CR39
  doi: 10.1002/(SICI)1099-1239(19991230)9:15<1117::AID-RNC447>3.0.CO;2-I
– ident: 7682_CR118
  doi: 10.18154/RWTH-2020-02766
– volume: 1986
  start-page: 339
  year: 1986
  ident: 7682_CR18
  publication-title: Am Control Conf
– ident: 7682_CR41
  doi: 10.1080/00207179.2016.1222553
– ident: 7682_CR109
  doi: 10.23919/ACC45564.2020.9147465
– ident: 7682_CR51
  doi: 10.1016/j.automatica.2016.12.008
– ident: 7682_CR25
  doi: 10.1016/S0005-1098(02)00012-2
– ident: 7682_CR117
  doi: 10.1016/j.jclepro.2020.124124
– ident: 7682_CR131
– volume: 17
  start-page: 72
  year: 1980
  ident: 7682_CR24
  publication-title: Jt Autom Control Conf
– ident: 7682_CR43
  doi: 10.1016/j.buildenv.2014.09.011
– ident: 7682_CR142
  doi: 10.1016/j.ijmachtools.2015.01.002
– ident: 7682_CR21
  doi: 10.1109/RTEICT42901.2018.9012517
– ident: 7682_CR73
  doi: 10.1007/s00170-020-05719-7
– ident: 7682_CR8
  doi: 10.1016/j.ifacol.2019.11.462
– ident: 7682_CR63
  doi: 10.23919/ChiCC.2019.8865797
– ident: 7682_CR91
  doi: 10.1016/j.enbuild.2011.09.022
– ident: 7682_CR105
  doi: 10.1016/0005-1098(78)90001-8
– ident: 7682_CR66
  doi: 10.1109/IROS.2009.5354018
– ident: 7682_CR98
  doi: 10.1111/j.1934-6093.1999.tb00002.x
– ident: 7682_CR23
  doi: 10.1016/0005-1098(87)90088-4
– ident: 7682_CR15
  doi: 10.1109/TIE.2008.2007547
– ident: 7682_CR7
  doi: 10.1109/MED.2018.8442437
– ident: 7682_CR45
  doi: 10.1109/LCSYS.2018.2843682
– ident: 7682_CR87
  doi: 10.1109/9.486649
– ident: 7682_CR125
  doi: 10.1109/ISGT-Asia.2019.8881147
– ident: 7682_CR124
  doi: 10.1016/j.mineng.2013.07.012
– ident: 7682_CR127
  doi: 10.1109/TCST.2006.880199
– ident: 7682_CR97
  doi: 10.1109/JACC.1980.4232010
– ident: 7682_CR85
  doi: 10.1016/S0098-1354(98)00301-9
– ident: 7682_CR120
  doi: 10.1016/j.ifacol.2017.08.2336
– ident: 7682_CR62
  doi: 10.1109/TCST.2010.2049203
– ident: 7682_CR59
  doi: 10.1021/acs.iecr.6b03275
– ident: 7682_CR46
  doi: 10.1016/s1474-6670(17)57870-2
– ident: 7682_CR80
  doi: 10.1109/MERCon.2019.8818777
– ident: 7682_CR67
  doi: 10.1109/TCST.2013.2266662
– ident: 7682_CR144
  doi: 10.1109/9.467664
– ident: 7682_CR56
  doi: 10.1016/0005-1098(94)90159-7
– ident: 7682_CR82
  doi: 10.1016/j.enbuild.2016.07.036
– ident: 7682_CR32
  doi: 10.1016/j.ifacol.2015.09.022
– ident: 7682_CR122
  doi: 10.3182/20110828-6-IT-1002.00579
– ident: 7682_CR140
  doi: 10.1109/TITS.2019.2928217
– ident: 7682_CR5
  doi: 10.1109/MIE.2016.2615127
– ident: 7682_CR133
  doi: 10.23919/ACC45564.2020.9147360
– ident: 7682_CR136
  doi: 10.1016/j.jprocont.2020.03.013
– ident: 7682_CR10
  doi: 10.1109/TIA.2018.2801838
– ident: 7682_CR31
  doi: 10.1016/S0167-6911(00)00084-0
– ident: 7682_CR141
  doi: 10.1016/j.enbuild.2017.04.027
– ident: 7682_CR11
  doi: 10.1016/j.rser.2015.01.046
– ident: 7682_CR78
  doi: 10.1109/LRA.2019.2901638
– ident: 7682_CR79
  doi: 10.1115/MSEC2011-50154
– ident: 7682_CR99
  doi: 10.1016/S0967-0661(02)00186-7
– ident: 7682_CR86
  doi: 10.1016/j.ifacol.2020.12.1930
– ident: 7682_CR92
  doi: 10.1016/j.ifacol.2016.07.242
– ident: 7682_CR108
  doi: 10.1016/j.mineng.2014.03.029
– ident: 7682_CR12
  doi: 10.1109/CDC.2006.377490
– volume-title: Closing the loop of model predictive force control in milling with ensemble Kalman filtering. PhD thesis RWTH Aachen University
  year: 2021
  ident: 7682_CR111
– ident: 7682_CR71
  doi: 10.1016/j.ifacol.2020.12.546
– ident: 7682_CR27
  doi: 10.23919/ECC.2019.8795826
– ident: 7682_CR38
  doi: 10.1109/TIE.2008.2007030
– ident: 7682_CR47
  doi: 10.1016/j.ifacol.2019.11.459
– ident: 7682_CR139
  doi: 10.23919/ChiCC.2018.8483834
– ident: 7682_CR34
  doi: 10.1021/i200017a016
– ident: 7682_CR101
  doi: 10.1109/37.845037
– ident: 7682_CR134
  doi: 10.1109/ICHR.2006.321375
– ident: 7682_CR95
  doi: 10.1109/37.845038
– ident: 7682_CR148
  doi: 10.1007/s10845-019-01506-8
– ident: 7682_CR121
  doi: 10.1109/CCTA.2019.8920461
– ident: 7682_CR57
  doi: 10.1109/TAC.2000.881002
SSID ssj0016168
ssib034539549
ssib019759004
ssib029851711
Score 2.722929
SecondaryResourceType review_article
Snippet Model-based predictive control (MPC) describes a set of advanced control methods, which make use of a process model to predict the future behavior of the...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1327
SubjectTerms Advanced manufacturing technologies
CAE) and Design
Computer-Aided Engineering (CAD
Control algorithms
Control methods
Control systems design
Control theory
Critical Review
Design factors
Engineering
Feedback control
Industrial and Production Engineering
Mechanical Engineering
Media Management
Optimization
Predictive control
State-of-the-art reviews
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA46PejB3-J0Sg7eNJAm6ZJ4EEQcHmQI6tit5EcLgnRjm_79Jmnaqqigx9Kmpe-95OXjy_seAKferQ5VWCSFoojxfooUMxwxwqzUQioRtPRGd3w4FOOxvI9FYfP6tHtNSYaVuil2C1IvyB8p8OwRQXQZrKRebcZj9IdRHUWJ5L4TZhNlRPr2820UU5bSituKXEM_CQVzDowIP91ELK35_puf01e7J_1Co4bsNNj8339tgY24G4VXVfhsg6W83AHrHzQKd8FlxR7ASQlD1xw4nXlux6-SMJ5zv4CqhHk7CE7bCs498DS4eby-RbHpAjIuNS2QdvsVh8JYwbAotLMV1YWVuC8LS9y1wNykVhntQDWWpLBYYkmtopxbhV3GpfugU07K_ABAa70WjNFK8IIxIzR1eFgqnXNcYEuSLkhqW2YmKpL7xhgvWaOlHGyTOdtkwTYZ7YKzZsy00uP49ele7aIszs15RlIHqVLhsH8XnNcuaW___LbDvz1-BNaI92ooXOyBzmL2mh-DVfO2eJ7PTkLMvgMAX94f
  priority: 102
  providerName: Springer Nature
Title Review on model predictive control: an engineering perspective
URI https://link.springer.com/article/10.1007/s00170-021-07682-3
https://www.proquest.com/docview/2582658788
Volume 117
WOSCitedRecordID wos000684098200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1433-3015
  dateEnd: 20221231
  omitProxy: false
  ssIdentifier: ssj0016168
  issn: 0268-3768
  databaseCode: M7S
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest One Academic
  customDbUrl:
  eissn: 1433-3015
  dateEnd: 20221231
  omitProxy: false
  ssIdentifier: ssj0016168
  issn: 0268-3768
  databaseCode: BENPR
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1433-3015
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016168
  issn: 0268-3768
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZ4HeDAGzEYUw7cICJt0iXhAALExAFN0waIW5UmrYSEurENfj9Jlq6ABBculaomkWo7sR3bnwGOHVutV2GwFIpixtsJVkxzzGJmZCakEh5L7-med7vi-Vn2woXbJKRVVmeiP6jNULs78rM4sYZwIqzHdjl6w65rlIuuhhYai7DsUBIin7o3qOQpktz1xJzLWyxdI_panilL6CzKFaIO7ciXzlm3RLiNJ0KRjS-180Az2CU0uNhVjOl3RVZbpz8Cql5PdTb--4ebsB4sVHQ1E6ktWMjLbVj7glu4AxeziAIalsh30kGjsYv3uJMThdz3c6RKlNeT0Kiu6tyFx87tw80dDo0YsLbqaooza8NYz4wVjIgis1SjWWEkacvCxPZdEK4To3RmHW0i48IQSSQ1inJuFLFamO7BUjks831Axjh8GJ0pwQvGtMio9ZGlynJOCmLiqAFRRdVUB5Ry1yzjNZ3jK3tOpJYTqedEShtwMp8zmmF0_Dm6WZE_Dft1kta0b8BpxcD68--rHfy92iGsxk5mfPFiE5am4_f8CFb0x_RlMm7B8vVtt9dveam1z_7g6RMO_Osl
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3PT9swFH5iBWnbYTDYtA4GPozTsEhtp7aRBhoMBKJUCAHiljl2IiGhtGu7If6p_Y17dpKGIcGNw45REkfJ937m83sP4LOHFbMKR7UynArZjakRVlLBhNOp0kaFXnqXPdnvq6srfToDf-paGL-tsraJwVC7gfX_yDdZjIFwrDBj2xn-pH5qlGdX6xEapVgcZ3e3mLKNvx59R3zXGTvYP987pNVUAWrR9k5oig4Z0wyRi0jlqcBwJ82djro6dwyPVSRt7IxNMWuMNMtdpDHpd4ZL6UyELoXjui9gVnDRjVswu7vfPz2rJbijpZ_COZVwpjGgkY0GcXxcyatVPEe3E4r1MBFSXtVVVdYTivtCaxvqt1B4toxR_q_rbOLhBxRu8IwH8__bN12AN1UMTr6VSvMWZrJiEV7f68y4BNslZ0IGBQmzgshw5Bkt7xtItbt_i5iCZM1NZNjUrb6Di2d5gffQKgZF9gGIc74Djk2NkrkQVqWcY1Bo0kxGeeRYpw2dGsXEVn3Y_TiQm2TaQTognyDySUA-4W34Mr1nWHYhefLqlRrupLJI46TBug0btcA0px9f7ePTq63By8Pzk17SO-ofL8Mr5uU1lGquQGsy-pV9gjn7e3I9Hq1WukLgx3OL0l9UO0cq
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED90iuiD3-J0ah5802DapEvigyDqUBxj-DH2VtKmBUG6sU3_fpO0XaeoID6W5oPeXXo57n6_Azi2ajVRhcZSKIoZbwZYsZhj5jMtIyGVcFx6vTbvdES_L7szKH5X7V6mJHNMg2VpyiZnQ52eTYFvjvYF2_ICm0nyMZ2HBWb2tEVdD4-90qI8yW1XzKnF-dK2oq8smrKA5nmuIu_Q9Bx4zgQmwh49UcBsvt_zsyur7qdfUqrOU7XW_v-N67Ba3FLRZW5WGzCXZJuwMsNduAUXeVYBDTLkuumg4cjmfOzfExX17-dIZSipJqFhhezchufWzdPVLS6aMeDYuKwJjsw9xkRnLGVEpJGRG41SLUlTpto3z4LwONAqjkywTaSfaiKJpFpRzrUixhPTHahlgyzZBaS15YiJIyV4ylgsImriZKmihJOUaN-rg1fKNYwLpnLbMOM1nHIsO9mERjahk01I63AynTPMeTp-Hd0o1RUWZ3Yc-oEJtQLBhajDaame6vXPq-39bfgRLHWvW2H7rnO_D8u-VbDDNjagNhm9JQewGL9PXsajQ2fKH1Hl6ec
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Review+on+model+predictive+control%3A+an+engineering+perspective&rft.jtitle=International+journal+of+advanced+manufacturing+technology&rft.au=Schwenzer%2C+Max&rft.au=Ay%2C+Muzaffer&rft.au=Bergs%2C+Thomas&rft.au=Abel%2C+Dirk&rft.date=2021-11-01&rft.issn=0268-3768&rft.eissn=1433-3015&rft.volume=117&rft.issue=5-6&rft.spage=1327&rft.epage=1349&rft_id=info:doi/10.1007%2Fs00170-021-07682-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00170_021_07682_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0268-3768&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0268-3768&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0268-3768&client=summon