Importance sampling for Ising computers using one-dimensional cellular automata

The authors demonstrate that one-dimensional (1-D) cellular automata (CA) form the basis of efficient VLSI architectures for computations involved in the Monte Carlo simulation of the two-dimensional (2-D) Ising model. It is shown that the time-intensive task of importance sampling the Ising configu...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on computers Ročník 38; číslo 6; s. 769 - 774
Hlavní autoři: Hortensius, P.D., Card, H.C., McLeod, R.D., Pries, W.
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York, NY IEEE 01.06.1989
Institute of Electrical and Electronics Engineers
Témata:
ISSN:0018-9340
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The authors demonstrate that one-dimensional (1-D) cellular automata (CA) form the basis of efficient VLSI architectures for computations involved in the Monte Carlo simulation of the two-dimensional (2-D) Ising model. It is shown that the time-intensive task of importance sampling the Ising configurations is expedited by the inherent parallelism in this approach. The CA architecture further provides a spatially distributed set of pseudorandom numbers that are required in the local nondeterministic decisions at the various sites in the array. The novel approach taken to random-number generation can also be applied to a variety of other highly nondeterministic algorithms from many fields, such as computational geometry, pattern recognition, and artificial intelligence.< >
Bibliografie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0018-9340
DOI:10.1109/12.24285