An extension of beta function, its statistical distribution, and associated fractional operator

Recently, various forms of extended beta function have been proposed and presented by many researchers. The principal goal of this paper is to present another expansion of beta function using Appell series and Lauricella function and examine various properties like integral representation and summat...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Advances in difference equations Ročník 2020; číslo 1; s. 1 - 17
Hlavní autoři: Chandola, Ankita, Mishra Pandey, Rupakshi, Agarwal, Ritu, Dutt Purohit, Sunil
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cham Springer International Publishing 04.12.2020
Springer Nature B.V
SpringerOpen
Témata:
ISSN:1687-1847, 1687-1839, 1687-1847
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Recently, various forms of extended beta function have been proposed and presented by many researchers. The principal goal of this paper is to present another expansion of beta function using Appell series and Lauricella function and examine various properties like integral representation and summation formula. Statistical distribution for the above extension of beta function has been defined, and the mean, variance, moment generating function and cumulative distribution function have been obtained. Using the newly defined extension of beta function, we build up the extension of hypergeometric and confluent hypergeometric functions and discuss their integral representations and differentiation formulas. Further, we define a new extension of Riemann–Liouville fractional operator using Appell series and Lauricella function and derive its various properties using the new extension of beta function.
AbstractList Recently, various forms of extended beta function have been proposed and presented by many researchers. The principal goal of this paper is to present another expansion of beta function using Appell series and Lauricella function and examine various properties like integral representation and summation formula. Statistical distribution for the above extension of beta function has been defined, and the mean, variance, moment generating function and cumulative distribution function have been obtained. Using the newly defined extension of beta function, we build up the extension of hypergeometric and confluent hypergeometric functions and discuss their integral representations and differentiation formulas. Further, we define a new extension of Riemann–Liouville fractional operator using Appell series and Lauricella function and derive its various properties using the new extension of beta function.
Abstract Recently, various forms of extended beta function have been proposed and presented by many researchers. The principal goal of this paper is to present another expansion of beta function using Appell series and Lauricella function and examine various properties like integral representation and summation formula. Statistical distribution for the above extension of beta function has been defined, and the mean, variance, moment generating function and cumulative distribution function have been obtained. Using the newly defined extension of beta function, we build up the extension of hypergeometric and confluent hypergeometric functions and discuss their integral representations and differentiation formulas. Further, we define a new extension of Riemann–Liouville fractional operator using Appell series and Lauricella function and derive its various properties using the new extension of beta function.
ArticleNumber 684
Author Mishra Pandey, Rupakshi
Dutt Purohit, Sunil
Chandola, Ankita
Agarwal, Ritu
Author_xml – sequence: 1
  givenname: Ankita
  surname: Chandola
  fullname: Chandola, Ankita
  organization: Amity Institute of Applied Sciences, Amity University
– sequence: 2
  givenname: Rupakshi
  surname: Mishra Pandey
  fullname: Mishra Pandey, Rupakshi
  email: rmpandey@amity.edu
  organization: Amity Institute of Applied Sciences, Amity University
– sequence: 3
  givenname: Ritu
  surname: Agarwal
  fullname: Agarwal, Ritu
  organization: Malaviya National Institute of Technology
– sequence: 4
  givenname: Sunil
  surname: Dutt Purohit
  fullname: Dutt Purohit, Sunil
  organization: Rajasthan Technical University
BookMark eNp9kU1rVTEQhoNUsK3-AVcH3Hpsvk4-lqVoLRS60XWYnExKLtfkmuSC_nvTexTFRVcZZt5neCfvBTnLJSMhbxn9wJhRV40JpfhMOZ2pYJLP6gU5Z8romRmpz_6pX5GL1naUciuNOSfuOk_4o2NuqeSpxMljhyke89pH4_2Ueptah55aTyvspzCKmvxxm0IOE7RW1gQdwxQrnLChKwes0Et9TV5G2Dd88_u9JF8_ffxy83m-f7i9u7m-n1fJbZ_BLgqiRI42CIraWxF90D4MlzRSHrgFtSi1YBTco1ho9CZ4XLRedeAgLsndtjcU2LlDTd-g_nQFkjs1Sn10UMcJe3TSSq6oWQR4kIuyBqVgGlB6vfJo5dj1btt1qOX7EVt3u3Ks46rmuNRCcKUsHyqzqdZaWqsY3ZqePqrkXiHtHaPuKRq3ReNGNO4UjVMD5f-hfww_C4kNakOcH7H-dfUM9QtXAKPm
CitedBy_id crossref_primary_10_1142_S2661335223500090
crossref_primary_10_5269_bspm_63031
crossref_primary_10_32604_cmes_2022_016924
crossref_primary_10_3390_math12172709
crossref_primary_10_1515_anly_2021_1032
Cites_doi 10.1016/S0304-0208(06)80001-0
10.1016/j.amc.2003.09.017
10.1016/S0377-0427(96)00102-1
10.3389/fphy.2018.00079
10.5831/HMJ.2014.36.2.357
10.1002/mma.3986
10.2298/FIL1701125S
10.18576/amis/120113
ContentType Journal Article
Copyright The Author(s) 2020
The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2020
– notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
3V.
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOA
DOI 10.1186/s13662-020-03142-6
DatabaseName Springer Nature OA Free Journals (WRLC)
CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database (ProQuest)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList CrossRef
Publicly Available Content Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1687-1847
EndPage 17
ExternalDocumentID oai_doaj_org_article_494260853aba45698e4317ae4b7c2f94
10_1186_s13662_020_03142_6
GroupedDBID -A0
23M
2WC
3V.
4.4
40G
5GY
5VS
6J9
8FE
8FG
8R4
8R5
AAFWJ
AAYZJ
ABDBF
ABJCF
ABUWG
ACGFO
ACGFS
ACIPV
ACIWK
ACUHS
ADBBV
ADINQ
AEGXH
AENEX
AFKRA
AFPKN
AHBYD
AHYZX
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
ARAPS
AZQEC
BAPOH
BCNDV
BENPR
BGLVJ
BPHCQ
C24
C6C
CCPQU
CS3
DWQXO
EBS
ESX
GNUQQ
GROUPED_DOAJ
HCIFZ
J9A
K6V
K7-
KQ8
L6V
M0N
M7S
M~E
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PTHSS
Q2X
REM
RHU
RNS
RSV
SMT
SOJ
TUS
U2A
UPT
~8M
AAYXX
CITATION
OVT
7SC
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
KR7
L7M
L~C
L~D
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQUKI
PRINS
PUEGO
Q9U
ID FETCH-LOGICAL-c429t-a956af4e2e9d30e7b93fbd7bd9480f02d29a65665ef32be350fb8dbe577c7d2a3
IEDL.DBID DOA
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000596390500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1687-1847
1687-1839
IngestDate Tue Oct 14 19:08:31 EDT 2025
Tue Sep 30 18:43:28 EDT 2025
Tue Nov 18 21:41:36 EST 2025
Sat Nov 29 01:43:49 EST 2025
Fri Feb 21 02:36:09 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Extended beta function
Extended confluent hypergeometric function
Statistical distribution
Riemann–Liouville fractional operator
Extended hypergeometric function
Lauricella function
Appell series
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c429t-a956af4e2e9d30e7b93fbd7bd9480f02d29a65665ef32be350fb8dbe577c7d2a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doaj.org/article/494260853aba45698e4317ae4b7c2f94
PQID 2473326692
PQPubID 237355
PageCount 17
ParticipantIDs doaj_primary_oai_doaj_org_article_494260853aba45698e4317ae4b7c2f94
proquest_journals_2473326692
crossref_citationtrail_10_1186_s13662_020_03142_6
crossref_primary_10_1186_s13662_020_03142_6
springer_journals_10_1186_s13662_020_03142_6
PublicationCentury 2000
PublicationDate 2020-12-04
PublicationDateYYYYMMDD 2020-12-04
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-04
  day: 04
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: New York
PublicationTitle Advances in difference equations
PublicationTitleAbbrev Adv Differ Equ
PublicationYear 2020
Publisher Springer International Publishing
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
– name: SpringerOpen
References MubeenS.RahmanG.NisarK.S.ChoiJ.ArshadM.An extended beta function and its propertiesFar East J. Math. Sci.201710215451557
PuchetaP.I.An new extended beta functionInt. J. Math. Appl.201753-C255260
AgarwalR.JainS.AgarwalR.P.BaleanuD.A remark on the fractional integral operators and the image formulas of generalized Lommel–Wright functionFront. Phys.2018610.3389/fphy.2018.00079
ChoiJ.RathieA.K.ParmarR.K.Extension of extended beta, hypergeometric and confluent hypergeometric functionsHonam Math. J.2014362357385323550610.5831/HMJ.2014.36.2.357
SrivasatavaH.AgarwalR.JainS.Integral transform and fractional derivative formulas involving the extended generalized hypergeometric functions and probability distributionsMath. Methods Appl. Sci.2016401255273358305110.1002/mma.3986
RainvilleE.Special Functions1971New YorkChelsea0231.33001
KilbasA.A.SrivastavaH.M.TrujilloJ.J.Theory and Applications of Fractional Differential Equations2006AmsterdamElsevier10.1016/S0304-0208(06)80001-0
ChaudhryM.A.QadirA.RafiqueM.ZubairS.Extension of Euler’s beta functionJ. Comput. Appl. Math.19977811932143677810.1016/S0377-0427(96)00102-1
GoswamiA.JainS.AgarwalP.AraciS.A note on the new extended beta and Gauss hypergeometric functionsAppl. Math. Inf. Sci.2018121139144374789110.18576/amis/120113
ChaudhryM.A.QadirA.SrivastavaH.ParisR.Extended hypergeometric and confluent hypergeometric functionsAppl. Math. Comput.2004159258960220967261067.33001
ExtonH.Multiple Hypergeometric Functions and Applications1976ChichesterEllis Horwood0337.33001
ShadabM.JabeeS.ChoiJ.An extension of beta function and its applicationFar East J. Math. Sci.20181031235251
SrivasatavaR.AgarwalR.JainS.A family of the incomplete hypergeometric functions and associated integral transforms and fractional derivative formulasFilomat2017311125140361460610.2298/FIL1701125S
J. Choi (3142_CR8) 2014; 36
A. Goswami (3142_CR3) 2018; 12
P.I. Pucheta (3142_CR9) 2017; 5
R. Agarwal (3142_CR11) 2018; 6
S. Mubeen (3142_CR2) 2017; 102
M.A. Chaudhry (3142_CR7) 2004; 159
H. Exton (3142_CR4) 1976
R. Srivasatava (3142_CR13) 2017; 31
M.A. Chaudhry (3142_CR6) 1997; 78
A.A. Kilbas (3142_CR5) 2006
H. Srivasatava (3142_CR12) 2016; 40
E. Rainville (3142_CR1) 1971
M. Shadab (3142_CR10) 2018; 103
References_xml – reference: GoswamiA.JainS.AgarwalP.AraciS.A note on the new extended beta and Gauss hypergeometric functionsAppl. Math. Inf. Sci.2018121139144374789110.18576/amis/120113
– reference: KilbasA.A.SrivastavaH.M.TrujilloJ.J.Theory and Applications of Fractional Differential Equations2006AmsterdamElsevier10.1016/S0304-0208(06)80001-0
– reference: SrivasatavaH.AgarwalR.JainS.Integral transform and fractional derivative formulas involving the extended generalized hypergeometric functions and probability distributionsMath. Methods Appl. Sci.2016401255273358305110.1002/mma.3986
– reference: RainvilleE.Special Functions1971New YorkChelsea0231.33001
– reference: AgarwalR.JainS.AgarwalR.P.BaleanuD.A remark on the fractional integral operators and the image formulas of generalized Lommel–Wright functionFront. Phys.2018610.3389/fphy.2018.00079
– reference: ExtonH.Multiple Hypergeometric Functions and Applications1976ChichesterEllis Horwood0337.33001
– reference: MubeenS.RahmanG.NisarK.S.ChoiJ.ArshadM.An extended beta function and its propertiesFar East J. Math. Sci.201710215451557
– reference: ShadabM.JabeeS.ChoiJ.An extension of beta function and its applicationFar East J. Math. Sci.20181031235251
– reference: ChoiJ.RathieA.K.ParmarR.K.Extension of extended beta, hypergeometric and confluent hypergeometric functionsHonam Math. J.2014362357385323550610.5831/HMJ.2014.36.2.357
– reference: ChaudhryM.A.QadirA.RafiqueM.ZubairS.Extension of Euler’s beta functionJ. Comput. Appl. Math.19977811932143677810.1016/S0377-0427(96)00102-1
– reference: PuchetaP.I.An new extended beta functionInt. J. Math. Appl.201753-C255260
– reference: SrivasatavaR.AgarwalR.JainS.A family of the incomplete hypergeometric functions and associated integral transforms and fractional derivative formulasFilomat2017311125140361460610.2298/FIL1701125S
– reference: ChaudhryM.A.QadirA.SrivastavaH.ParisR.Extended hypergeometric and confluent hypergeometric functionsAppl. Math. Comput.2004159258960220967261067.33001
– volume-title: Theory and Applications of Fractional Differential Equations
  year: 2006
  ident: 3142_CR5
  doi: 10.1016/S0304-0208(06)80001-0
– volume: 159
  start-page: 589
  issue: 2
  year: 2004
  ident: 3142_CR7
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2003.09.017
– volume: 78
  start-page: 19
  issue: 1
  year: 1997
  ident: 3142_CR6
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/S0377-0427(96)00102-1
– volume: 6
  year: 2018
  ident: 3142_CR11
  publication-title: Front. Phys.
  doi: 10.3389/fphy.2018.00079
– volume: 36
  start-page: 357
  issue: 2
  year: 2014
  ident: 3142_CR8
  publication-title: Honam Math. J.
  doi: 10.5831/HMJ.2014.36.2.357
– volume: 5
  start-page: 255
  issue: 3-C
  year: 2017
  ident: 3142_CR9
  publication-title: Int. J. Math. Appl.
– volume: 40
  start-page: 255
  issue: 1
  year: 2016
  ident: 3142_CR12
  publication-title: Math. Methods Appl. Sci.
  doi: 10.1002/mma.3986
– volume: 31
  start-page: 125
  issue: 1
  year: 2017
  ident: 3142_CR13
  publication-title: Filomat
  doi: 10.2298/FIL1701125S
– volume-title: Special Functions
  year: 1971
  ident: 3142_CR1
– volume: 102
  start-page: 1545
  year: 2017
  ident: 3142_CR2
  publication-title: Far East J. Math. Sci.
– volume-title: Multiple Hypergeometric Functions and Applications
  year: 1976
  ident: 3142_CR4
– volume: 103
  start-page: 235
  issue: 1
  year: 2018
  ident: 3142_CR10
  publication-title: Far East J. Math. Sci.
– volume: 12
  start-page: 139
  issue: 1
  year: 2018
  ident: 3142_CR3
  publication-title: Appl. Math. Inf. Sci.
  doi: 10.18576/amis/120113
SSID ssj0029488
Score 2.2793946
Snippet Recently, various forms of extended beta function have been proposed and presented by many researchers. The principal goal of this paper is to present another...
Abstract Recently, various forms of extended beta function have been proposed and presented by many researchers. The principal goal of this paper is to present...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Analysis
Appell series
Applications
Difference and Functional Equations
Distribution functions
Extended beta function
Extended confluent hypergeometric function
Extended hypergeometric function
Functional Analysis
Hypergeometric functions
Integrals
Lauricella function
Mathematics
Mathematics and Statistics
Methods
Operators (mathematics)
Ordinary Differential Equations
Partial Differential Equations
Probability distribution
Representations
Statistical distribution
Topics in Special Functions and q-Special Functions: Theory
SummonAdditionalLinks – databaseName: Computer Science Database
  dbid: K7-
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PbxQhFH7R6kEP1p9xazUcvLmkM8DCcGqqaWNi0njQpDcCw8OYmJnt7urfXx7LbG0Te_E6A4TwPXgfD_gewHvMmGZWEXmSXlAKM8u9NZKLNqnU-k4l35RkE-b8vLu4sF9rwG1dr1VOa2JZqOPYU4z8SCgjM9XQVhwvLzlljaLT1ZpC4z48aIVoyc6_GL7bcFlV8k62Ok8kYgLTo5lOH61bqbXgtHkiAXfB9Q3HVPT7b5DOW-ekxf2c7f9vx5_Ck0o82cnWUp7BPRyew-O_5AhfgDsZWAmKUwSNjYkF3HhGno_Qm7OfmzWjB0hF2zm3FUl0t-bLmjM_ROYr2BhZWm2fTORy4xLLYf5L-H52-u3TZ14TMPA-u6lNRm2hfVIo0EbZoAlWphBNiHlgm9SIKKwnPrjAJEVAuWhS6GLAhTG9icLLV7A3jAO-BpbrZibZpV4EpVQurbXPXKLrkUJ7AWfQTqPv-qpOTkkyfrmyS-m02yLmMmKuIOb0DD7s6iy32hx3lv5IoO5Kkq52-TCufrg6TZ2ypNifKYwPPlNL2yERLI8qmF4kq2ZwOIHs6mRfu2uEZzCfzOT697-7dHB3a2_gkSADpcsz6hD2Nqvf-BYe9n8yzqt3xdSvAIL6AoU
  priority: 102
  providerName: ProQuest
Title An extension of beta function, its statistical distribution, and associated fractional operator
URI https://link.springer.com/article/10.1186/s13662-020-03142-6
https://www.proquest.com/docview/2473326692
https://doaj.org/article/494260853aba45698e4317ae4b7c2f94
Volume 2020
WOSCitedRecordID wos000596390500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1687-1847
  dateEnd: 20221231
  omitProxy: false
  ssIdentifier: ssj0029488
  issn: 1687-1847
  databaseCode: DOA
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB1VbQ9wQFBALLQrH3rrRs3ajh0f26oVCLGKCpVaLpYd2xISyla7C7-fGScpLVLhwiWHeBxZbyZ64683AIcRfYpZRSiScJxKmJnCGS0KPk8yzV0tkytzsQm9WNTX16a5V-qLzoT18sA9cMfSkIY6korzDsne1JEoz0XpdcuTyUqgmPWMk6lhqmUwLscrMrU6Xs-FUrygqRLJtfNCPaChrNb_IMX8Y1c0k83Fc3g2ZInspB_dC9iK3R48vacd-BLsScfyCjYtd7FlYj5uHCOaIqhn7Ntmzei2UBZixm8FUsgdilvNmOsCc4NnYmBp1d9vQLvlbcw776_g6uL8y9n7YqiWULTIKRuEuFIuycijCaKM2huRfNA-IBZlKnngxlHyVsUkuI-iKpOvg4-V1q0O3InXsN0tu_gGGPbFtK9OLfdSSrRWyiHx122kdTgfJzAfwbPtICVOFS2-2zylqJXtAbcIuM2AWzWBo7s-t72Qxl-tT8knd5Ykgp1fYGjYITTsv0JjAvujR-3wZ64tl1pgyqoMn8Bs9PLv5seH9PZ_DOkdPOEUhXQeRu7D9mb1Ix7AbvsTo2E1hZ3T80VzOc2xjM-PupjSYdTP-Gyqr9jefPjU3PwCOzj33Q
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VggQcylcrlhbwAU5s1KzjteNDhcpH1WrLikORejN2bCOkKll2FxB_it_YGSfZUiR664FrYltO_Dx-HnvmAbwIOKbIKnwWC8tJwkxnVqsi46Mo4siWIto8iU2o6bQ8PdUf1-B3HwtD1yp7m5gMtW8q8pHvcqEKpBpS89ezbxmpRtHpai-h0cJiEn79xC3bYu_oHY7vS84P3p-8Pcw6VYGsQtu7xK6MpY0i8KB9kQfldBGdV85rUeYx555rSyRnHGLBXSjGeXSld2GsVKU8twW2ewNuCvxGytU_Udlqg4ctpNA7iROXmEcfpFPK3cWokJJntFmjhPE8k5cWwqQXcInk_nUum5a7g3v_24-6DxsdsWb77Ux4AGuhfgh3_0i3-AjMfs2S0588hKyJzIWlZbSyEzqH7OtywSjAKuWuxrY8JRXu9MCGzNae2Q7MwbM4b0NCsFwzC-mywiZ8upYv3IL1uqnDY2BYF5lyGSvuhBBYWkqLXKmsArkuXRjAqB9tU3XZ10kE5MykXVgpTYsQgwgxCSFGDuDVqs6szT1yZek3BKJVScobnh408y-mM0NGaFIkQIpmnUXqrMtABNIG4VTFoxYD2OlBZTpjtjAXiBrAsIflxet_d-nJ1a09h9uHJx-OzfHRdLINdzhNDrooJHZgfTn_Hp7CreoHjvn8WZpmDD5fN1zPAZ9KYas
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VghAc-CxioYAPcGKjzTqOHR8QKpQV1aJVDyD1ZuzYRkgoWXYXEH-NX8eMk2wpEr31wDWxLSd-M37-mHkATwOOKbIKn8XCcpIw05nVqsj4NIo4tZWINk9iE2qxqE5O9PEO_BpiYeha5eATk6P2bU175BMuVIFUQ2o-if21iOPD2cvl14wUpOikdZDT6CAyDz9_4PJt_eLoEMf6GeezN-9fv816hYGsRj-8wW6V0kYReNC-yINyuojOK-e1qPKYc8-1JcJThlhwF4oyj67yLpRK1cpzW2C7l-AyzsIl2dhcZdvFHraQwvAkGjGxkCFgp5KT9bSQkme0cKPk8TyTZybFpB1whvD-dUabpr7Zzf_5p92CGz3hZgedhdyGndDcget_pGG8C-agYekwgHYOWRuZCxvLaMYn1I7Z582aUeBVymmNbXlKNtzrhI2ZbTyzPciDZ3HVhYpguXYZ0iWGPfhwIV94D3abtgn3gWFdZNBVrLkTQmBpKS1yqKoOtKXpwgimw8ibus_KTuIgX0xanVXSdGgxiBaT0GLkCJ5v6yy7nCTnln5FgNqWpHzi6UG7-mR692SEJqUCpG7WWaTUugpELG0QTtU8ajGC_QFgpndya3OKrhGMB4ievv53lx6c39oTuIooNe-OFvOHcI2TndD9IbEPu5vVt_AIrtTfcchXj5PFMfh40Wj9DUYlamU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+extension+of+beta+function%2C+its+statistical+distribution%2C+and+associated+fractional+operator&rft.jtitle=Advances+in+difference+equations&rft.au=Ankita+Chandola&rft.au=Rupakshi+Mishra+Pandey&rft.au=Ritu+Agarwal&rft.au=Sunil+Dutt+Purohit&rft.date=2020-12-04&rft.pub=SpringerOpen&rft.eissn=1687-1847&rft.volume=2020&rft.issue=1&rft.spage=1&rft.epage=17&rft_id=info:doi/10.1186%2Fs13662-020-03142-6&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_494260853aba45698e4317ae4b7c2f94
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-1847&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-1847&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-1847&client=summon