An extension of beta function, its statistical distribution, and associated fractional operator

Recently, various forms of extended beta function have been proposed and presented by many researchers. The principal goal of this paper is to present another expansion of beta function using Appell series and Lauricella function and examine various properties like integral representation and summat...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Advances in difference equations Ročník 2020; číslo 1; s. 1 - 17
Hlavní autori: Chandola, Ankita, Mishra Pandey, Rupakshi, Agarwal, Ritu, Dutt Purohit, Sunil
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Cham Springer International Publishing 04.12.2020
Springer Nature B.V
SpringerOpen
Predmet:
ISSN:1687-1847, 1687-1839, 1687-1847
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Recently, various forms of extended beta function have been proposed and presented by many researchers. The principal goal of this paper is to present another expansion of beta function using Appell series and Lauricella function and examine various properties like integral representation and summation formula. Statistical distribution for the above extension of beta function has been defined, and the mean, variance, moment generating function and cumulative distribution function have been obtained. Using the newly defined extension of beta function, we build up the extension of hypergeometric and confluent hypergeometric functions and discuss their integral representations and differentiation formulas. Further, we define a new extension of Riemann–Liouville fractional operator using Appell series and Lauricella function and derive its various properties using the new extension of beta function.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1687-1847
1687-1839
1687-1847
DOI:10.1186/s13662-020-03142-6