An extension of beta function, its statistical distribution, and associated fractional operator
Recently, various forms of extended beta function have been proposed and presented by many researchers. The principal goal of this paper is to present another expansion of beta function using Appell series and Lauricella function and examine various properties like integral representation and summat...
Gespeichert in:
| Veröffentlicht in: | Advances in difference equations Jg. 2020; H. 1; S. 1 - 17 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Cham
Springer International Publishing
04.12.2020
Springer Nature B.V SpringerOpen |
| Schlagworte: | |
| ISSN: | 1687-1847, 1687-1839, 1687-1847 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | Recently, various forms of extended beta function have been proposed and presented by many researchers. The principal goal of this paper is to present another expansion of beta function using Appell series and Lauricella function and examine various properties like integral representation and summation formula. Statistical distribution for the above extension of beta function has been defined, and the mean, variance, moment generating function and cumulative distribution function have been obtained. Using the newly defined extension of beta function, we build up the extension of hypergeometric and confluent hypergeometric functions and discuss their integral representations and differentiation formulas. Further, we define a new extension of Riemann–Liouville fractional operator using Appell series and Lauricella function and derive its various properties using the new extension of beta function. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1687-1847 1687-1839 1687-1847 |
| DOI: | 10.1186/s13662-020-03142-6 |