Air mass flow estimation of diesel engines using neural network

•We examine changes of air intake in diesel engine variety of engine speed.•Experimental studies are not enough all speeds of engine.•Neural network (NN) is able to detect the amount of air required all engine speeds.•NN based model can be used as an alternative method for estimating the effects of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fuel (Guildford) Jg. 117; S. 833 - 838
1. Verfasser: Uzun, Abdullah
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Kidlington Elsevier Ltd 01.01.2014
Elsevier
Schlagworte:
ISSN:0016-2361, 1873-7153
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •We examine changes of air intake in diesel engine variety of engine speed.•Experimental studies are not enough all speeds of engine.•Neural network (NN) is able to detect the amount of air required all engine speeds.•NN based model can be used as an alternative method for estimating the effects of diesel engine’s air intake mass flow. Air mass management is one of major factors affecting the performance of diesel engines, where experimental studies play a significant role in the performance studies. However, the experimental studies are quite expensive and time consuming. Neural network’s (NN) have been used increasingly in a variety of engineering researches. NN based model are generally developed from experimental data. The objective of the study is to investigate the adequacy of neural networks (NN) as a quicker, more secure and more robust method to determine the effects of intercooling process on performance charged diesel engine’s air intake mass flow. In this study, a NN model has been developed configured tested for this purpose. The training and test data is obtained from real experimental work delivered earlier. Further details of development of NN are also demonstrated.
AbstractList Air mass management is one of major factors affecting the performance of diesel engines, where experimental studies play a significant role in the performance studies. However, the experimental studies are quite expensive and time consuming. Neural network's (NN) have been used increasingly in a variety of engineering researches. NN based model are generally developed from experimental data. The objective of the study is to investigate the adequacy of neural networks (NN) as a quicker, more secure and more robust method to determine the effects of intercooling process on performance charged diesel engine's air intake mass flow. In this study, a NN model has been developed configured tested for this purpose. The training and test data is obtained from real experimental work delivered earlier. Further details of development of NN are also demonstrated.
Air mass management is one of major factors affecting the performance of diesel engines, where experimental studies play a significant role in the performance studies. However, the experimental studies are quite expensive and time consuming. Neural networkas (NN) have been used increasingly in a variety of engineering researches. NN based model are generally developed from experimental data. The objective of the study is to investigate the adequacy of neural networks (NN) as a quicker, more secure and more robust method to determine the effects of intercooling process on performance charged diesel engineas air intake mass flow. In this study, a NN model has been developed configured tested for this purpose. The training and test data is obtained from real experimental work delivered earlier. Further details of development of NN are also demonstrated.
•We examine changes of air intake in diesel engine variety of engine speed.•Experimental studies are not enough all speeds of engine.•Neural network (NN) is able to detect the amount of air required all engine speeds.•NN based model can be used as an alternative method for estimating the effects of diesel engine’s air intake mass flow. Air mass management is one of major factors affecting the performance of diesel engines, where experimental studies play a significant role in the performance studies. However, the experimental studies are quite expensive and time consuming. Neural network’s (NN) have been used increasingly in a variety of engineering researches. NN based model are generally developed from experimental data. The objective of the study is to investigate the adequacy of neural networks (NN) as a quicker, more secure and more robust method to determine the effects of intercooling process on performance charged diesel engine’s air intake mass flow. In this study, a NN model has been developed configured tested for this purpose. The training and test data is obtained from real experimental work delivered earlier. Further details of development of NN are also demonstrated.
Author Uzun, Abdullah
Author_xml – sequence: 1
  givenname: Abdullah
  surname: Uzun
  fullname: Uzun, Abdullah
  email: abdullahuzunoglu@gmail.com
  organization: Sakarya Vocational School, Automotive Programming, Sakarya University, 54187 Sakarya, Turkey
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28355650$$DView record in Pascal Francis
BookMark eNqNkU9r3DAQxUVJIZu0XyAnXwq92Bn9s2UIhBDSNhDIpT0LWR4FbbVSKtkN-fbVdtNLDyGngZnfewzvnZCjmCISckaho0D7823nVgwdA8o7GDsY1DuyoWrg7UAlPyIbqFTLeE-PyUkpW4CKSLEhl1c-NztTSuNCemqwLH5nFp9ik1wzeywYGowPPmJp1uLjQxNxzSbUsTyl_PMDee9MKPjxZZ6SH19uvl9_a-_uv95eX921VrBxaY3i0zQP0I9c8mmY5WSU45N0loMY68KpwSC4erTYz3KcgArJUAkFUnDBT8nng-9jTr_W-qbe-WIxBBMxrUXTXlIhBGNvQKWkIJhk6g0o9HxUdOgr-ukFNcWa4LKJ1hf9mGte-VlXMyl7CZVTB87mVEpGp61f_ia6ZOODpqD3jemt3jem941pGHWto0rZf9J_7q-KLg4irOn_9ph1sR6jxdlntIuek39N_gc9Ha_n
CitedBy_id crossref_primary_10_1016_j_flowmeasinst_2019_01_014
crossref_primary_10_1016_j_fuel_2019_01_182
crossref_primary_10_4271_2017_01_0794
crossref_primary_10_3390_fluids9100239
crossref_primary_10_1007_s12239_022_0018_x
crossref_primary_10_1155_2016_5072404
crossref_primary_10_3390_en12142823
crossref_primary_10_1016_j_apenergy_2014_10_088
crossref_primary_10_3390_app12042246
crossref_primary_10_1007_s00500_017_2873_3
crossref_primary_10_1016_j_applthermaleng_2017_05_087
crossref_primary_10_1016_j_enconman_2019_112407
Cites_doi 10.1016/j.ymssp.2007.07.015
10.1016/j.fuel.2011.11.004
10.1016/j.apenergy.2004.03.004
10.1016/j.apenergy.2003.08.001
10.1016/j.applthermaleng.2005.10.006
10.1016/j.energy.2009.08.034
10.1016/j.ast.2009.08.001
10.1016/j.expthermflusci.2009.08.009
10.1016/j.conbuildmat.2009.06.002
10.1016/j.applthermaleng.2009.06.015
10.4271/2006-01-1085
10.1016/j.ins.2009.06.009
10.1016/S0967-0661(03)00120-5
10.1016/S0893-6080(05)80056-5
10.1016/j.jcsr.2005.09.011
10.1016/j.apenergy.2004.08.003
10.4271/2001-01-0262
ContentType Journal Article
Copyright 2013 Elsevier Ltd
2015 INIST-CNRS
Copyright_xml – notice: 2013 Elsevier Ltd
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7SC
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7QO
P64
DOI 10.1016/j.fuel.2013.09.078
DatabaseName CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology Research Abstracts
Biotechnology and BioEngineering Abstracts
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
Biotechnology Research Abstracts
Biotechnology and BioEngineering Abstracts
DatabaseTitleList Aerospace Database
Aerospace Database

Engineering Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1873-7153
EndPage 838
ExternalDocumentID 28355650
10_1016_j_fuel_2013_09_078
S0016236113009319
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AARLI
AAXUO
ABFNM
ABJNI
ABMAC
ABNUV
ABXDB
ABYKQ
ACDAQ
ACIWK
ACNCT
ACPRK
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AFZHZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJSZI
AKIFW
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SSJ
SSK
SSR
SSZ
T5K
TWZ
WH7
ZMT
~02
~G-
29H
8WZ
9DU
A6W
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDEX
ABEFU
ABWVN
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HVGLF
HZ~
H~9
R2-
SAC
SCB
SEW
VH1
WUQ
XPP
ZY4
~HD
ABTAH
BNPGV
IQODW
SSH
7SC
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7QO
P64
ID FETCH-LOGICAL-c429t-a83bbd7069353b7d5ba8f3b5fc3049b7df87ae0f53bce6d59b01452e848054343
ISICitedReferencesCount 14
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000327766900094&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0016-2361
IngestDate Sat Sep 27 22:23:35 EDT 2025
Tue Oct 07 09:56:59 EDT 2025
Sun Sep 28 01:35:47 EDT 2025
Wed Apr 02 07:37:50 EDT 2025
Tue Nov 18 22:40:02 EST 2025
Sat Nov 29 01:47:05 EST 2025
Fri Feb 23 02:18:36 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Scaled Conjugate Gradient Algorithm
Diesel engine
Neural networks
Air mass flow
Intercooling
Air flow
Neural network
Algorithm
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c429t-a83bbd7069353b7d5ba8f3b5fc3049b7df87ae0f53bce6d59b01452e848054343
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PQID 1506398176
PQPubID 23500
PageCount 6
ParticipantIDs proquest_miscellaneous_1651444224
proquest_miscellaneous_1551042528
proquest_miscellaneous_1506398176
pascalfrancis_primary_28355650
crossref_citationtrail_10_1016_j_fuel_2013_09_078
crossref_primary_10_1016_j_fuel_2013_09_078
elsevier_sciencedirect_doi_10_1016_j_fuel_2013_09_078
PublicationCentury 2000
PublicationDate 2014-01-01
PublicationDateYYYYMMDD 2014-01-01
PublicationDate_xml – month: 01
  year: 2014
  text: 2014-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Fuel (Guildford)
PublicationYear 2014
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Kiani Deh Kiani, Ghobadian, Tavakoli, Nikbakht, Najafi (b0070) 2010; 35
Litak, Longwic (b0035) 2009; 29
Caglar (b0080) 2009; 23
Perez, Boehman (b0020) 2010; 14
Arcaklıoglu, Cavusoglu, Erisen (b0055) 2004; 78
Otosan Ford Cargo Maintenance book. 1992.
Celik, Arcaklioglu (b0040) 2005; 81
Andersson P, Eriksson L. Air-to-cylinder observer on a turbocharged SI engine with wastegate. In: Proc of the SAE Conference 2001; No. 2001-01-0262.
Chauvin J, Corde G, Vigild C, Petit N, Rouchon P. Air path estimation on diesel HCCI engine. In: Proc of the SAE Conference 2006; No. 2006-01-1085.
Sen, Longwic, Litak, Gorski (b0030) 2008; 22
Desantes, Galindo, Guardiola, Dolz (b0065) 2010; 34
Pala (b0085) 2006; 62
Parlak, Islamoglu, Yasar, Egrisogut (b0060) 2006; 26
Uzun (b0095) 2012; 93
Nieto, Salcedo, Martínez, Laurí (b0025) 2009; 179
Moller (b0090) 1993; 6
Uzun A. Effects of intercooling on performance of a turbocharged diesel engine. PhD thesis, Sakarya University, Science Institute 1998.
Arcaklıoglu, Celikten (b0050) 2005; 80
Nyberg, Stutte (b0015) 2004; 12
10.1016/j.fuel.2013.09.078_b0045
Caglar (10.1016/j.fuel.2013.09.078_b0080) 2009; 23
10.1016/j.fuel.2013.09.078_b0010
10.1016/j.fuel.2013.09.078_b0075
Nieto (10.1016/j.fuel.2013.09.078_b0025) 2009; 179
Kiani Deh Kiani (10.1016/j.fuel.2013.09.078_b0070) 2010; 35
Uzun (10.1016/j.fuel.2013.09.078_b0095) 2012; 93
10.1016/j.fuel.2013.09.078_b0005
Pala (10.1016/j.fuel.2013.09.078_b0085) 2006; 62
Nyberg (10.1016/j.fuel.2013.09.078_b0015) 2004; 12
Arcaklıoglu (10.1016/j.fuel.2013.09.078_b0050) 2005; 80
Moller (10.1016/j.fuel.2013.09.078_b0090) 1993; 6
Desantes (10.1016/j.fuel.2013.09.078_b0065) 2010; 34
Perez (10.1016/j.fuel.2013.09.078_b0020) 2010; 14
Celik (10.1016/j.fuel.2013.09.078_b0040) 2005; 81
Arcaklıoglu (10.1016/j.fuel.2013.09.078_b0055) 2004; 78
Litak (10.1016/j.fuel.2013.09.078_b0035) 2009; 29
Sen (10.1016/j.fuel.2013.09.078_b0030) 2008; 22
Parlak (10.1016/j.fuel.2013.09.078_b0060) 2006; 26
References_xml – volume: 81
  start-page: 247
  year: 2005
  end-page: 259
  ident: b0040
  article-title: Performance maps of the diesel engine
  publication-title: Appl Energy
– volume: 22
  start-page: 362
  year: 2008
  end-page: 373
  ident: b0030
  article-title: Analysis of cycle-to-cycle pressure oscillations in a diesel engine
  publication-title: Mech Syst Signal Process
– volume: 80
  start-page: 11
  year: 2005
  end-page: 12
  ident: b0050
  article-title: A diesel engine’s performance and exhaust emissions
  publication-title: Appl Energy
– volume: 78
  start-page: 219
  year: 2004
  end-page: 320
  ident: b0055
  article-title: Thermodynamic analyses of refrigerant mixtures using artificial neural-networks
  publication-title: Appl Energy
– reference: Andersson P, Eriksson L. Air-to-cylinder observer on a turbocharged SI engine with wastegate. In: Proc of the SAE Conference 2001; No. 2001-01-0262.
– volume: 12
  start-page: 513
  year: 2004
  end-page: 525
  ident: b0015
  article-title: Model based diagnosis of the air path of an automotive diesel engine
  publication-title: Control Eng Pract
– volume: 34
  start-page: 37
  year: 2010
  end-page: 47
  ident: b0065
  article-title: Air mass flow estimation in turbocharged diesel engines from in-cylinder pressure measurement
  publication-title: Exp Therm Fluid Sci
– volume: 62
  start-page: 716
  year: 2006
  end-page: 722
  ident: b0085
  article-title: A new formulation for distortional buckling stress in cold-formed steel members
  publication-title: J Constr Steel Res
– volume: 6
  start-page: 525
  year: 1993
  end-page: 533
  ident: b0090
  article-title: A scaled conjugate gradient algorithm for fast supervised learning
  publication-title: Neural Networks
– reference: Uzun A. Effects of intercooling on performance of a turbocharged diesel engine. PhD thesis, Sakarya University, Science Institute 1998.
– volume: 14
  start-page: 83
  year: 2010
  end-page: 94
  ident: b0020
  article-title: Performance of a single-cylinder diesel engine using oxygen-enriched intake air at simulated high-altitude conditions
  publication-title: Aerospace Sci Technol
– volume: 35
  start-page: 65
  year: 2010
  end-page: 69
  ident: b0070
  article-title: Application of artificial neural networks for the prediction of performance and exhaust emissions in SI engine using ethanol – gasoline blends
  publication-title: Energy
– volume: 93
  start-page: 189
  year: 2012
  end-page: 199
  ident: b0095
  article-title: A parametric study for specific fuel consumption of an intercooled diesel engine using a neural network
  publication-title: Fuel
– volume: 26
  start-page: 824
  year: 2006
  end-page: 828
  ident: b0060
  article-title: Application of artifical neural network to predict specific fuel consumption and exhaust temperature for a diesel engine
  publication-title: Appl Therm Eng
– volume: 179
  start-page: 3392
  year: 2009
  end-page: 3409
  ident: b0025
  article-title: Air management in a diesel engine using fuzzy control techniques
  publication-title: Inf Sci
– volume: 23
  start-page: 3225
  year: 2009
  end-page: 3232
  ident: b0080
  article-title: Neural network based approach for determining the shear strength of circular reinforced concrete columns
  publication-title: Constr Building Mater
– volume: 29
  start-page: 3574
  year: 2009
  ident: b0035
  article-title: Analysis of repeatability of diesel engine acceleration
  publication-title: Appl Therm Eng
– reference: Otosan Ford Cargo Maintenance book. 1992.
– reference: Chauvin J, Corde G, Vigild C, Petit N, Rouchon P. Air path estimation on diesel HCCI engine. In: Proc of the SAE Conference 2006; No. 2006-01-1085.
– volume: 22
  start-page: 362
  year: 2008
  ident: 10.1016/j.fuel.2013.09.078_b0030
  article-title: Analysis of cycle-to-cycle pressure oscillations in a diesel engine
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2007.07.015
– volume: 93
  start-page: 189
  year: 2012
  ident: 10.1016/j.fuel.2013.09.078_b0095
  article-title: A parametric study for specific fuel consumption of an intercooled diesel engine using a neural network
  publication-title: Fuel
  doi: 10.1016/j.fuel.2011.11.004
– volume: 80
  start-page: 11
  year: 2005
  ident: 10.1016/j.fuel.2013.09.078_b0050
  article-title: A diesel engine’s performance and exhaust emissions
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2004.03.004
– volume: 78
  start-page: 219
  year: 2004
  ident: 10.1016/j.fuel.2013.09.078_b0055
  article-title: Thermodynamic analyses of refrigerant mixtures using artificial neural-networks
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2003.08.001
– volume: 26
  start-page: 824
  year: 2006
  ident: 10.1016/j.fuel.2013.09.078_b0060
  article-title: Application of artifical neural network to predict specific fuel consumption and exhaust temperature for a diesel engine
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2005.10.006
– volume: 35
  start-page: 65
  issue: 1
  year: 2010
  ident: 10.1016/j.fuel.2013.09.078_b0070
  article-title: Application of artificial neural networks for the prediction of performance and exhaust emissions in SI engine using ethanol – gasoline blends
  publication-title: Energy
  doi: 10.1016/j.energy.2009.08.034
– volume: 14
  start-page: 83
  year: 2010
  ident: 10.1016/j.fuel.2013.09.078_b0020
  article-title: Performance of a single-cylinder diesel engine using oxygen-enriched intake air at simulated high-altitude conditions
  publication-title: Aerospace Sci Technol
  doi: 10.1016/j.ast.2009.08.001
– volume: 34
  start-page: 37
  year: 2010
  ident: 10.1016/j.fuel.2013.09.078_b0065
  article-title: Air mass flow estimation in turbocharged diesel engines from in-cylinder pressure measurement
  publication-title: Exp Therm Fluid Sci
  doi: 10.1016/j.expthermflusci.2009.08.009
– volume: 23
  start-page: 3225
  year: 2009
  ident: 10.1016/j.fuel.2013.09.078_b0080
  article-title: Neural network based approach for determining the shear strength of circular reinforced concrete columns
  publication-title: Constr Building Mater
  doi: 10.1016/j.conbuildmat.2009.06.002
– ident: 10.1016/j.fuel.2013.09.078_b0045
– volume: 29
  start-page: 3574
  year: 2009
  ident: 10.1016/j.fuel.2013.09.078_b0035
  article-title: Analysis of repeatability of diesel engine acceleration
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2009.06.015
– ident: 10.1016/j.fuel.2013.09.078_b0005
  doi: 10.4271/2006-01-1085
– volume: 179
  start-page: 3392
  year: 2009
  ident: 10.1016/j.fuel.2013.09.078_b0025
  article-title: Air management in a diesel engine using fuzzy control techniques
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2009.06.009
– volume: 12
  start-page: 513
  year: 2004
  ident: 10.1016/j.fuel.2013.09.078_b0015
  article-title: Model based diagnosis of the air path of an automotive diesel engine
  publication-title: Control Eng Pract
  doi: 10.1016/S0967-0661(03)00120-5
– volume: 6
  start-page: 525
  year: 1993
  ident: 10.1016/j.fuel.2013.09.078_b0090
  article-title: A scaled conjugate gradient algorithm for fast supervised learning
  publication-title: Neural Networks
  doi: 10.1016/S0893-6080(05)80056-5
– volume: 62
  start-page: 716
  year: 2006
  ident: 10.1016/j.fuel.2013.09.078_b0085
  article-title: A new formulation for distortional buckling stress in cold-formed steel members
  publication-title: J Constr Steel Res
  doi: 10.1016/j.jcsr.2005.09.011
– volume: 81
  start-page: 247
  year: 2005
  ident: 10.1016/j.fuel.2013.09.078_b0040
  article-title: Performance maps of the diesel engine
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2004.08.003
– ident: 10.1016/j.fuel.2013.09.078_b0010
  doi: 10.4271/2001-01-0262
– ident: 10.1016/j.fuel.2013.09.078_b0075
SSID ssj0007854
Score 2.1723945
Snippet •We examine changes of air intake in diesel engine variety of engine speed.•Experimental studies are not enough all speeds of engine.•Neural network (NN) is...
Air mass management is one of major factors affecting the performance of diesel engines, where experimental studies play a significant role in the performance...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 833
SubjectTerms Adequacy
Air intakes
Air mass flow
Air masses
Applied sciences
Charging
Diesel
Diesel engine
Diesel engines
Energy
Energy. Thermal use of fuels
Engineering research
Engines and turbines
Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc
Exact sciences and technology
Fuels
Intercooling
Neural networks
Scaled Conjugate Gradient Algorithm
Title Air mass flow estimation of diesel engines using neural network
URI https://dx.doi.org/10.1016/j.fuel.2013.09.078
https://www.proquest.com/docview/1506398176
https://www.proquest.com/docview/1551042528
https://www.proquest.com/docview/1651444224
Volume 117
WOSCitedRecordID wos000327766900094&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-7153
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007854
  issn: 0016-2361
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fa9swEBZbu4eVMfaTZt2KBmMvxsOOLUt-KmEkbCNke0ggb8KyJWhJnSyO27K_fneW7CYrC93DXkyiyJa5T7k7nU7fEfKBiSDRGKjKQNf5sUiFL3Qe-almgQGPlIWqqVoy5pOJmM_TH67kZdWUE-BlKW5u0tV_hRraAGw8OvsPcHcPhQb4DKDDFWCH672AH5yvvUtwiT2zWF57SKJx2bmFmDKoF55uSAgrr24CBUhpCUCVNiF821sd1dAZ4whYO9tmwXdxg9mv2rIPqAJWsS6q7MIHYbwVPnAqMUx8ZGDZUYn2PKVTasJSVbT20bKx3FG9Ngpw8cnAq2HKXNTwx9r6PLs815PvcjQbj-V0OJ9-XP30sQQYbpW7eigPyWGfsxRU1OHg63D-rTOsXDBLqu3e2J2Bsul6fw77Nz_jySqrYPYbW7bkjgVu3IrpM_LUrQfowOL4nDzQ5QtytMUS-ZKcAaIUEaWIKL1FlC4NtYhShyhtEKUWUeoQfUVmo-H08xff1b3wc_AONn4mIqUKHiRpxCLFC6YyYSLFTI57otBgBM90YODHXCcFSxXuDfe1iEXQnBR-TQ7KZamPCeXc6EIolUUiilUgMhYk8JWzjBUMJNojYSslmTtSeKxNspBt9t-FRMlKlKwMUgmS7RGvu2dlKVH29mat8KVz6qyzJmHi7L3vdAepbigkCIRVSNAj71voJKhE3OfKSr2sK4mkmVEqQp7s6wPGCOxVX-zpk8BqIo7ByX1zj7FOyOPb_9dbcrBZ1_odeZRfbc6r9amby78BaReY_A
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Air+mass+flow+estimation+of+diesel+engines+using+neural+network&rft.jtitle=Fuel+%28Guildford%29&rft.au=Uzun%2C+Abdullah&rft.date=2014-01-01&rft.issn=0016-2361&rft.volume=117&rft.spage=833&rft.epage=838&rft_id=info:doi/10.1016%2Fj.fuel.2013.09.078&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-2361&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-2361&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-2361&client=summon