Air mass flow estimation of diesel engines using neural network
•We examine changes of air intake in diesel engine variety of engine speed.•Experimental studies are not enough all speeds of engine.•Neural network (NN) is able to detect the amount of air required all engine speeds.•NN based model can be used as an alternative method for estimating the effects of...
Gespeichert in:
| Veröffentlicht in: | Fuel (Guildford) Jg. 117; S. 833 - 838 |
|---|---|
| 1. Verfasser: | |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Kidlington
Elsevier Ltd
01.01.2014
Elsevier |
| Schlagworte: | |
| ISSN: | 0016-2361, 1873-7153 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | •We examine changes of air intake in diesel engine variety of engine speed.•Experimental studies are not enough all speeds of engine.•Neural network (NN) is able to detect the amount of air required all engine speeds.•NN based model can be used as an alternative method for estimating the effects of diesel engine’s air intake mass flow.
Air mass management is one of major factors affecting the performance of diesel engines, where experimental studies play a significant role in the performance studies. However, the experimental studies are quite expensive and time consuming. Neural network’s (NN) have been used increasingly in a variety of engineering researches. NN based model are generally developed from experimental data. The objective of the study is to investigate the adequacy of neural networks (NN) as a quicker, more secure and more robust method to determine the effects of intercooling process on performance charged diesel engine’s air intake mass flow. In this study, a NN model has been developed configured tested for this purpose. The training and test data is obtained from real experimental work delivered earlier. Further details of development of NN are also demonstrated. |
|---|---|
| AbstractList | Air mass management is one of major factors affecting the performance of diesel engines, where experimental studies play a significant role in the performance studies. However, the experimental studies are quite expensive and time consuming. Neural network's (NN) have been used increasingly in a variety of engineering researches. NN based model are generally developed from experimental data. The objective of the study is to investigate the adequacy of neural networks (NN) as a quicker, more secure and more robust method to determine the effects of intercooling process on performance charged diesel engine's air intake mass flow. In this study, a NN model has been developed configured tested for this purpose. The training and test data is obtained from real experimental work delivered earlier. Further details of development of NN are also demonstrated. Air mass management is one of major factors affecting the performance of diesel engines, where experimental studies play a significant role in the performance studies. However, the experimental studies are quite expensive and time consuming. Neural networkas (NN) have been used increasingly in a variety of engineering researches. NN based model are generally developed from experimental data. The objective of the study is to investigate the adequacy of neural networks (NN) as a quicker, more secure and more robust method to determine the effects of intercooling process on performance charged diesel engineas air intake mass flow. In this study, a NN model has been developed configured tested for this purpose. The training and test data is obtained from real experimental work delivered earlier. Further details of development of NN are also demonstrated. •We examine changes of air intake in diesel engine variety of engine speed.•Experimental studies are not enough all speeds of engine.•Neural network (NN) is able to detect the amount of air required all engine speeds.•NN based model can be used as an alternative method for estimating the effects of diesel engine’s air intake mass flow. Air mass management is one of major factors affecting the performance of diesel engines, where experimental studies play a significant role in the performance studies. However, the experimental studies are quite expensive and time consuming. Neural network’s (NN) have been used increasingly in a variety of engineering researches. NN based model are generally developed from experimental data. The objective of the study is to investigate the adequacy of neural networks (NN) as a quicker, more secure and more robust method to determine the effects of intercooling process on performance charged diesel engine’s air intake mass flow. In this study, a NN model has been developed configured tested for this purpose. The training and test data is obtained from real experimental work delivered earlier. Further details of development of NN are also demonstrated. |
| Author | Uzun, Abdullah |
| Author_xml | – sequence: 1 givenname: Abdullah surname: Uzun fullname: Uzun, Abdullah email: abdullahuzunoglu@gmail.com organization: Sakarya Vocational School, Automotive Programming, Sakarya University, 54187 Sakarya, Turkey |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28355650$$DView record in Pascal Francis |
| BookMark | eNqNkU9r3DAQxUVJIZu0XyAnXwq92Bn9s2UIhBDSNhDIpT0LWR4FbbVSKtkN-fbVdtNLDyGngZnfewzvnZCjmCISckaho0D7823nVgwdA8o7GDsY1DuyoWrg7UAlPyIbqFTLeE-PyUkpW4CKSLEhl1c-NztTSuNCemqwLH5nFp9ik1wzeywYGowPPmJp1uLjQxNxzSbUsTyl_PMDee9MKPjxZZ6SH19uvl9_a-_uv95eX921VrBxaY3i0zQP0I9c8mmY5WSU45N0loMY68KpwSC4erTYz3KcgArJUAkFUnDBT8nng-9jTr_W-qbe-WIxBBMxrUXTXlIhBGNvQKWkIJhk6g0o9HxUdOgr-ukFNcWa4LKJ1hf9mGte-VlXMyl7CZVTB87mVEpGp61f_ia6ZOODpqD3jemt3jem941pGHWto0rZf9J_7q-KLg4irOn_9ph1sR6jxdlntIuek39N_gc9Ha_n |
| CitedBy_id | crossref_primary_10_1016_j_flowmeasinst_2019_01_014 crossref_primary_10_1016_j_fuel_2019_01_182 crossref_primary_10_4271_2017_01_0794 crossref_primary_10_3390_fluids9100239 crossref_primary_10_1007_s12239_022_0018_x crossref_primary_10_1155_2016_5072404 crossref_primary_10_3390_en12142823 crossref_primary_10_1016_j_apenergy_2014_10_088 crossref_primary_10_3390_app12042246 crossref_primary_10_1007_s00500_017_2873_3 crossref_primary_10_1016_j_applthermaleng_2017_05_087 crossref_primary_10_1016_j_enconman_2019_112407 |
| Cites_doi | 10.1016/j.ymssp.2007.07.015 10.1016/j.fuel.2011.11.004 10.1016/j.apenergy.2004.03.004 10.1016/j.apenergy.2003.08.001 10.1016/j.applthermaleng.2005.10.006 10.1016/j.energy.2009.08.034 10.1016/j.ast.2009.08.001 10.1016/j.expthermflusci.2009.08.009 10.1016/j.conbuildmat.2009.06.002 10.1016/j.applthermaleng.2009.06.015 10.4271/2006-01-1085 10.1016/j.ins.2009.06.009 10.1016/S0967-0661(03)00120-5 10.1016/S0893-6080(05)80056-5 10.1016/j.jcsr.2005.09.011 10.1016/j.apenergy.2004.08.003 10.4271/2001-01-0262 |
| ContentType | Journal Article |
| Copyright | 2013 Elsevier Ltd 2015 INIST-CNRS |
| Copyright_xml | – notice: 2013 Elsevier Ltd – notice: 2015 INIST-CNRS |
| DBID | AAYXX CITATION IQODW 7SC 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7QO P64 |
| DOI | 10.1016/j.fuel.2013.09.078 |
| DatabaseName | CrossRef Pascal-Francis Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology Research Abstracts Biotechnology and BioEngineering Abstracts |
| DatabaseTitle | CrossRef Aerospace Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional Biotechnology Research Abstracts Biotechnology and BioEngineering Abstracts |
| DatabaseTitleList | Aerospace Database Aerospace Database Engineering Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Applied Sciences |
| EISSN | 1873-7153 |
| EndPage | 838 |
| ExternalDocumentID | 28355650 10_1016_j_fuel_2013_09_078 S0016236113009319 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AARLI AAXUO ABFNM ABJNI ABMAC ABNUV ABXDB ABYKQ ACDAQ ACIWK ACNCT ACPRK ACRLP ADBBV ADECG ADEWK ADEZE AEBSH AEKER AENEX AFKWA AFRAH AFTJW AFXIZ AFZHZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHIDL AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AJSZI AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SSG SSJ SSK SSR SSZ T5K TWZ WH7 ZMT ~02 ~G- 29H 8WZ 9DU A6W AAQXK AATTM AAXKI AAYWO AAYXX ABDEX ABEFU ABWVN ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB G-2 HVGLF HZ~ H~9 R2- SAC SCB SEW VH1 WUQ XPP ZY4 ~HD ABTAH BNPGV IQODW SSH 7SC 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7QO P64 |
| ID | FETCH-LOGICAL-c429t-a83bbd7069353b7d5ba8f3b5fc3049b7df87ae0f53bce6d59b01452e848054343 |
| ISICitedReferencesCount | 14 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000327766900094&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0016-2361 |
| IngestDate | Sat Sep 27 22:23:35 EDT 2025 Tue Oct 07 09:56:59 EDT 2025 Sun Sep 28 01:35:47 EDT 2025 Wed Apr 02 07:37:50 EDT 2025 Tue Nov 18 22:40:02 EST 2025 Sat Nov 29 01:47:05 EST 2025 Fri Feb 23 02:18:36 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Scaled Conjugate Gradient Algorithm Diesel engine Neural networks Air mass flow Intercooling Air flow Neural network Algorithm |
| Language | English |
| License | CC BY 4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c429t-a83bbd7069353b7d5ba8f3b5fc3049b7df87ae0f53bce6d59b01452e848054343 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
| PQID | 1506398176 |
| PQPubID | 23500 |
| PageCount | 6 |
| ParticipantIDs | proquest_miscellaneous_1651444224 proquest_miscellaneous_1551042528 proquest_miscellaneous_1506398176 pascalfrancis_primary_28355650 crossref_citationtrail_10_1016_j_fuel_2013_09_078 crossref_primary_10_1016_j_fuel_2013_09_078 elsevier_sciencedirect_doi_10_1016_j_fuel_2013_09_078 |
| PublicationCentury | 2000 |
| PublicationDate | 2014-01-01 |
| PublicationDateYYYYMMDD | 2014-01-01 |
| PublicationDate_xml | – month: 01 year: 2014 text: 2014-01-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Kidlington |
| PublicationPlace_xml | – name: Kidlington |
| PublicationTitle | Fuel (Guildford) |
| PublicationYear | 2014 |
| Publisher | Elsevier Ltd Elsevier |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
| References | Kiani Deh Kiani, Ghobadian, Tavakoli, Nikbakht, Najafi (b0070) 2010; 35 Litak, Longwic (b0035) 2009; 29 Caglar (b0080) 2009; 23 Perez, Boehman (b0020) 2010; 14 Arcaklıoglu, Cavusoglu, Erisen (b0055) 2004; 78 Otosan Ford Cargo Maintenance book. 1992. Celik, Arcaklioglu (b0040) 2005; 81 Andersson P, Eriksson L. Air-to-cylinder observer on a turbocharged SI engine with wastegate. In: Proc of the SAE Conference 2001; No. 2001-01-0262. Chauvin J, Corde G, Vigild C, Petit N, Rouchon P. Air path estimation on diesel HCCI engine. In: Proc of the SAE Conference 2006; No. 2006-01-1085. Sen, Longwic, Litak, Gorski (b0030) 2008; 22 Desantes, Galindo, Guardiola, Dolz (b0065) 2010; 34 Pala (b0085) 2006; 62 Parlak, Islamoglu, Yasar, Egrisogut (b0060) 2006; 26 Uzun (b0095) 2012; 93 Nieto, Salcedo, Martínez, Laurí (b0025) 2009; 179 Moller (b0090) 1993; 6 Uzun A. Effects of intercooling on performance of a turbocharged diesel engine. PhD thesis, Sakarya University, Science Institute 1998. Arcaklıoglu, Celikten (b0050) 2005; 80 Nyberg, Stutte (b0015) 2004; 12 10.1016/j.fuel.2013.09.078_b0045 Caglar (10.1016/j.fuel.2013.09.078_b0080) 2009; 23 10.1016/j.fuel.2013.09.078_b0010 10.1016/j.fuel.2013.09.078_b0075 Nieto (10.1016/j.fuel.2013.09.078_b0025) 2009; 179 Kiani Deh Kiani (10.1016/j.fuel.2013.09.078_b0070) 2010; 35 Uzun (10.1016/j.fuel.2013.09.078_b0095) 2012; 93 10.1016/j.fuel.2013.09.078_b0005 Pala (10.1016/j.fuel.2013.09.078_b0085) 2006; 62 Nyberg (10.1016/j.fuel.2013.09.078_b0015) 2004; 12 Arcaklıoglu (10.1016/j.fuel.2013.09.078_b0050) 2005; 80 Moller (10.1016/j.fuel.2013.09.078_b0090) 1993; 6 Desantes (10.1016/j.fuel.2013.09.078_b0065) 2010; 34 Perez (10.1016/j.fuel.2013.09.078_b0020) 2010; 14 Celik (10.1016/j.fuel.2013.09.078_b0040) 2005; 81 Arcaklıoglu (10.1016/j.fuel.2013.09.078_b0055) 2004; 78 Litak (10.1016/j.fuel.2013.09.078_b0035) 2009; 29 Sen (10.1016/j.fuel.2013.09.078_b0030) 2008; 22 Parlak (10.1016/j.fuel.2013.09.078_b0060) 2006; 26 |
| References_xml | – volume: 81 start-page: 247 year: 2005 end-page: 259 ident: b0040 article-title: Performance maps of the diesel engine publication-title: Appl Energy – volume: 22 start-page: 362 year: 2008 end-page: 373 ident: b0030 article-title: Analysis of cycle-to-cycle pressure oscillations in a diesel engine publication-title: Mech Syst Signal Process – volume: 80 start-page: 11 year: 2005 end-page: 12 ident: b0050 article-title: A diesel engine’s performance and exhaust emissions publication-title: Appl Energy – volume: 78 start-page: 219 year: 2004 end-page: 320 ident: b0055 article-title: Thermodynamic analyses of refrigerant mixtures using artificial neural-networks publication-title: Appl Energy – reference: Andersson P, Eriksson L. Air-to-cylinder observer on a turbocharged SI engine with wastegate. In: Proc of the SAE Conference 2001; No. 2001-01-0262. – volume: 12 start-page: 513 year: 2004 end-page: 525 ident: b0015 article-title: Model based diagnosis of the air path of an automotive diesel engine publication-title: Control Eng Pract – volume: 34 start-page: 37 year: 2010 end-page: 47 ident: b0065 article-title: Air mass flow estimation in turbocharged diesel engines from in-cylinder pressure measurement publication-title: Exp Therm Fluid Sci – volume: 62 start-page: 716 year: 2006 end-page: 722 ident: b0085 article-title: A new formulation for distortional buckling stress in cold-formed steel members publication-title: J Constr Steel Res – volume: 6 start-page: 525 year: 1993 end-page: 533 ident: b0090 article-title: A scaled conjugate gradient algorithm for fast supervised learning publication-title: Neural Networks – reference: Uzun A. Effects of intercooling on performance of a turbocharged diesel engine. PhD thesis, Sakarya University, Science Institute 1998. – volume: 14 start-page: 83 year: 2010 end-page: 94 ident: b0020 article-title: Performance of a single-cylinder diesel engine using oxygen-enriched intake air at simulated high-altitude conditions publication-title: Aerospace Sci Technol – volume: 35 start-page: 65 year: 2010 end-page: 69 ident: b0070 article-title: Application of artificial neural networks for the prediction of performance and exhaust emissions in SI engine using ethanol – gasoline blends publication-title: Energy – volume: 93 start-page: 189 year: 2012 end-page: 199 ident: b0095 article-title: A parametric study for specific fuel consumption of an intercooled diesel engine using a neural network publication-title: Fuel – volume: 26 start-page: 824 year: 2006 end-page: 828 ident: b0060 article-title: Application of artifical neural network to predict specific fuel consumption and exhaust temperature for a diesel engine publication-title: Appl Therm Eng – volume: 179 start-page: 3392 year: 2009 end-page: 3409 ident: b0025 article-title: Air management in a diesel engine using fuzzy control techniques publication-title: Inf Sci – volume: 23 start-page: 3225 year: 2009 end-page: 3232 ident: b0080 article-title: Neural network based approach for determining the shear strength of circular reinforced concrete columns publication-title: Constr Building Mater – volume: 29 start-page: 3574 year: 2009 ident: b0035 article-title: Analysis of repeatability of diesel engine acceleration publication-title: Appl Therm Eng – reference: Otosan Ford Cargo Maintenance book. 1992. – reference: Chauvin J, Corde G, Vigild C, Petit N, Rouchon P. Air path estimation on diesel HCCI engine. In: Proc of the SAE Conference 2006; No. 2006-01-1085. – volume: 22 start-page: 362 year: 2008 ident: 10.1016/j.fuel.2013.09.078_b0030 article-title: Analysis of cycle-to-cycle pressure oscillations in a diesel engine publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2007.07.015 – volume: 93 start-page: 189 year: 2012 ident: 10.1016/j.fuel.2013.09.078_b0095 article-title: A parametric study for specific fuel consumption of an intercooled diesel engine using a neural network publication-title: Fuel doi: 10.1016/j.fuel.2011.11.004 – volume: 80 start-page: 11 year: 2005 ident: 10.1016/j.fuel.2013.09.078_b0050 article-title: A diesel engine’s performance and exhaust emissions publication-title: Appl Energy doi: 10.1016/j.apenergy.2004.03.004 – volume: 78 start-page: 219 year: 2004 ident: 10.1016/j.fuel.2013.09.078_b0055 article-title: Thermodynamic analyses of refrigerant mixtures using artificial neural-networks publication-title: Appl Energy doi: 10.1016/j.apenergy.2003.08.001 – volume: 26 start-page: 824 year: 2006 ident: 10.1016/j.fuel.2013.09.078_b0060 article-title: Application of artifical neural network to predict specific fuel consumption and exhaust temperature for a diesel engine publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2005.10.006 – volume: 35 start-page: 65 issue: 1 year: 2010 ident: 10.1016/j.fuel.2013.09.078_b0070 article-title: Application of artificial neural networks for the prediction of performance and exhaust emissions in SI engine using ethanol – gasoline blends publication-title: Energy doi: 10.1016/j.energy.2009.08.034 – volume: 14 start-page: 83 year: 2010 ident: 10.1016/j.fuel.2013.09.078_b0020 article-title: Performance of a single-cylinder diesel engine using oxygen-enriched intake air at simulated high-altitude conditions publication-title: Aerospace Sci Technol doi: 10.1016/j.ast.2009.08.001 – volume: 34 start-page: 37 year: 2010 ident: 10.1016/j.fuel.2013.09.078_b0065 article-title: Air mass flow estimation in turbocharged diesel engines from in-cylinder pressure measurement publication-title: Exp Therm Fluid Sci doi: 10.1016/j.expthermflusci.2009.08.009 – volume: 23 start-page: 3225 year: 2009 ident: 10.1016/j.fuel.2013.09.078_b0080 article-title: Neural network based approach for determining the shear strength of circular reinforced concrete columns publication-title: Constr Building Mater doi: 10.1016/j.conbuildmat.2009.06.002 – ident: 10.1016/j.fuel.2013.09.078_b0045 – volume: 29 start-page: 3574 year: 2009 ident: 10.1016/j.fuel.2013.09.078_b0035 article-title: Analysis of repeatability of diesel engine acceleration publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2009.06.015 – ident: 10.1016/j.fuel.2013.09.078_b0005 doi: 10.4271/2006-01-1085 – volume: 179 start-page: 3392 year: 2009 ident: 10.1016/j.fuel.2013.09.078_b0025 article-title: Air management in a diesel engine using fuzzy control techniques publication-title: Inf Sci doi: 10.1016/j.ins.2009.06.009 – volume: 12 start-page: 513 year: 2004 ident: 10.1016/j.fuel.2013.09.078_b0015 article-title: Model based diagnosis of the air path of an automotive diesel engine publication-title: Control Eng Pract doi: 10.1016/S0967-0661(03)00120-5 – volume: 6 start-page: 525 year: 1993 ident: 10.1016/j.fuel.2013.09.078_b0090 article-title: A scaled conjugate gradient algorithm for fast supervised learning publication-title: Neural Networks doi: 10.1016/S0893-6080(05)80056-5 – volume: 62 start-page: 716 year: 2006 ident: 10.1016/j.fuel.2013.09.078_b0085 article-title: A new formulation for distortional buckling stress in cold-formed steel members publication-title: J Constr Steel Res doi: 10.1016/j.jcsr.2005.09.011 – volume: 81 start-page: 247 year: 2005 ident: 10.1016/j.fuel.2013.09.078_b0040 article-title: Performance maps of the diesel engine publication-title: Appl Energy doi: 10.1016/j.apenergy.2004.08.003 – ident: 10.1016/j.fuel.2013.09.078_b0010 doi: 10.4271/2001-01-0262 – ident: 10.1016/j.fuel.2013.09.078_b0075 |
| SSID | ssj0007854 |
| Score | 2.1723945 |
| Snippet | •We examine changes of air intake in diesel engine variety of engine speed.•Experimental studies are not enough all speeds of engine.•Neural network (NN) is... Air mass management is one of major factors affecting the performance of diesel engines, where experimental studies play a significant role in the performance... |
| SourceID | proquest pascalfrancis crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 833 |
| SubjectTerms | Adequacy Air intakes Air mass flow Air masses Applied sciences Charging Diesel Diesel engine Diesel engines Energy Energy. Thermal use of fuels Engineering research Engines and turbines Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc Exact sciences and technology Fuels Intercooling Neural networks Scaled Conjugate Gradient Algorithm |
| Title | Air mass flow estimation of diesel engines using neural network |
| URI | https://dx.doi.org/10.1016/j.fuel.2013.09.078 https://www.proquest.com/docview/1506398176 https://www.proquest.com/docview/1551042528 https://www.proquest.com/docview/1651444224 |
| Volume | 117 |
| WOSCitedRecordID | wos000327766900094&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-7153 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007854 issn: 0016-2361 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fa9swEBZbu4eVMfaTZt2KBmMvxsOOLUt-KmEkbCNke0ggb8KyJWhJnSyO27K_fneW7CYrC93DXkyiyJa5T7k7nU7fEfKBiSDRGKjKQNf5sUiFL3Qe-almgQGPlIWqqVoy5pOJmM_TH67kZdWUE-BlKW5u0tV_hRraAGw8OvsPcHcPhQb4DKDDFWCH672AH5yvvUtwiT2zWF57SKJx2bmFmDKoF55uSAgrr24CBUhpCUCVNiF821sd1dAZ4whYO9tmwXdxg9mv2rIPqAJWsS6q7MIHYbwVPnAqMUx8ZGDZUYn2PKVTasJSVbT20bKx3FG9Ngpw8cnAq2HKXNTwx9r6PLs815PvcjQbj-V0OJ9-XP30sQQYbpW7eigPyWGfsxRU1OHg63D-rTOsXDBLqu3e2J2Bsul6fw77Nz_jySqrYPYbW7bkjgVu3IrpM_LUrQfowOL4nDzQ5QtytMUS-ZKcAaIUEaWIKL1FlC4NtYhShyhtEKUWUeoQfUVmo-H08xff1b3wc_AONn4mIqUKHiRpxCLFC6YyYSLFTI57otBgBM90YODHXCcFSxXuDfe1iEXQnBR-TQ7KZamPCeXc6EIolUUiilUgMhYk8JWzjBUMJNojYSslmTtSeKxNspBt9t-FRMlKlKwMUgmS7RGvu2dlKVH29mat8KVz6qyzJmHi7L3vdAepbigkCIRVSNAj71voJKhE3OfKSr2sK4mkmVEqQp7s6wPGCOxVX-zpk8BqIo7ByX1zj7FOyOPb_9dbcrBZ1_odeZRfbc6r9amby78BaReY_A |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Air+mass+flow+estimation+of+diesel+engines+using+neural+network&rft.jtitle=Fuel+%28Guildford%29&rft.au=Uzun%2C+Abdullah&rft.date=2014-01-01&rft.issn=0016-2361&rft.volume=117&rft.spage=833&rft.epage=838&rft_id=info:doi/10.1016%2Fj.fuel.2013.09.078&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-2361&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-2361&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-2361&client=summon |