Octonion quadratic-phase Fourier transform: inequalities, uncertainty principles, and examples

In this article, we define the octonion quadratic-phase Fourier transform (OQPFT) and derive its inversion formula, including its fundamental properties such as linearity, parity, modulation, and shifting. We also establish its relationship with the quaternion quadratic-phase Fourier transform (QQPF...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of inequalities and applications Ročník 2024; číslo 1; s. 134 - 52
Hlavní autoři: Kumar, Manish, Bhawna
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cham Springer International Publishing 16.10.2024
Springer Nature B.V
SpringerOpen
Témata:
ISSN:1029-242X, 1025-5834, 1029-242X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this article, we define the octonion quadratic-phase Fourier transform (OQPFT) and derive its inversion formula, including its fundamental properties such as linearity, parity, modulation, and shifting. We also establish its relationship with the quaternion quadratic-phase Fourier transform (QQPFT). Further, we derive the Parseval formula and the Riemann–Lebesgue lemma using this transform. Furthermore, we formulate two important inequalities (sharp Pitt’s and sharp Hausdorff–Young’s inequalities) and three main uncertainty principles (logarithmic, Donoho–Stark’s, and Heisenberg’s uncertainty principles) for the OQPFT. To complete our investigation, we construct three elementary examples of signal theory with graphical interpretations to illustrate the use of OQPFT and discuss their particular cases.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1029-242X
1025-5834
1029-242X
DOI:10.1186/s13660-024-03213-2