Octonion quadratic-phase Fourier transform: inequalities, uncertainty principles, and examples
In this article, we define the octonion quadratic-phase Fourier transform (OQPFT) and derive its inversion formula, including its fundamental properties such as linearity, parity, modulation, and shifting. We also establish its relationship with the quaternion quadratic-phase Fourier transform (QQPF...
Gespeichert in:
| Veröffentlicht in: | Journal of inequalities and applications Jg. 2024; H. 1; S. 134 - 52 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Cham
Springer International Publishing
16.10.2024
Springer Nature B.V SpringerOpen |
| Schlagworte: | |
| ISSN: | 1029-242X, 1025-5834, 1029-242X |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | In this article, we define the octonion quadratic-phase Fourier transform (OQPFT) and derive its inversion formula, including its fundamental properties such as linearity, parity, modulation, and shifting. We also establish its relationship with the quaternion quadratic-phase Fourier transform (QQPFT). Further, we derive the Parseval formula and the Riemann–Lebesgue lemma using this transform. Furthermore, we formulate two important inequalities (sharp Pitt’s and sharp Hausdorff–Young’s inequalities) and three main uncertainty principles (logarithmic, Donoho–Stark’s, and Heisenberg’s uncertainty principles) for the OQPFT. To complete our investigation, we construct three elementary examples of signal theory with graphical interpretations to illustrate the use of OQPFT and discuss their particular cases. |
|---|---|
| AbstractList | In this article, we define the octonion quadratic-phase Fourier transform (OQPFT) and derive its inversion formula, including its fundamental properties such as linearity, parity, modulation, and shifting. We also establish its relationship with the quaternion quadratic-phase Fourier transform (QQPFT). Further, we derive the Parseval formula and the Riemann–Lebesgue lemma using this transform. Furthermore, we formulate two important inequalities (sharp Pitt’s and sharp Hausdorff–Young’s inequalities) and three main uncertainty principles (logarithmic, Donoho–Stark’s, and Heisenberg’s uncertainty principles) for the OQPFT. To complete our investigation, we construct three elementary examples of signal theory with graphical interpretations to illustrate the use of OQPFT and discuss their particular cases. Abstract In this article, we define the octonion quadratic-phase Fourier transform (OQPFT) and derive its inversion formula, including its fundamental properties such as linearity, parity, modulation, and shifting. We also establish its relationship with the quaternion quadratic-phase Fourier transform (QQPFT). Further, we derive the Parseval formula and the Riemann–Lebesgue lemma using this transform. Furthermore, we formulate two important inequalities (sharp Pitt’s and sharp Hausdorff–Young’s inequalities) and three main uncertainty principles (logarithmic, Donoho–Stark’s, and Heisenberg’s uncertainty principles) for the OQPFT. To complete our investigation, we construct three elementary examples of signal theory with graphical interpretations to illustrate the use of OQPFT and discuss their particular cases. |
| ArticleNumber | 134 |
| Author | Bhawna Kumar, Manish |
| Author_xml | – sequence: 1 givenname: Manish surname: Kumar fullname: Kumar, Manish email: manishkumar@hyderabad.bits-pilani.ac.in organization: Department of Mathematics, Birla Institute of Technology and Science-Pilani – sequence: 2 surname: Bhawna fullname: Bhawna organization: Department of Mathematics, Birla Institute of Technology and Science-Pilani |
| BookMark | eNp9UU1P3DAUtCoqFWj_QE-ReiXFX3Hi3hCCgoTEhUNPtV7sF-pV1l5srwT_HocUUfXAyfbTzLzxzBE5CDEgIV8Z_c7YoE4zE0rRlnLZUsGZaPkHcsgo1y2X_NfBP_dP5CjnDaUVNMhD8vvWlhh8DM3DHlyC4m27-wMZm8u4Tx5TUxKEPMW0_dH4gBU1--IxnzT7YDEV8KE8Nbvkg_W7eZlDcA0-wnZ5fSYfJ5gzfvl7HpO7y4u786v25vbn9fnZTWsl16WFvvp3tO-hR-mGDsBqartpUKOWk0MUdtRcKaktAxgtjoh6EkINTtlOiWNyvcq6CBtTzWwhPZkI3rwMYro3kOrXZjRjB0idlFQoLlndhMMgeUctpxoc2Kr1bdXapfiwx1zMpiYRqnsjGOtZrxVbNg4ryqaYc8LJWF9qejHUvPxsGDVLMWYtxtRizEsxhlcq_4_6avhdklhJeYn6HtObq3dYz5l6pGM |
| CitedBy_id | crossref_primary_10_1186_s13660_025_03277_8 |
| Cites_doi | 10.3390/math11194101 10.1002/mma.8667 10.1007/s11868-024-00590-6 10.1016/j.image.2021.116574 10.1049/iet-ipr.2018.5440 10.1016/j.sigpro.2008.04.012 10.1002/mma.5353 10.3390/math11133002 10.1016/j.jmaa.2014.10.003 10.1016/j.prime.2023.100162 10.1080/10652469.2015.1114482 10.1007/s40819-020-00917-z 10.3390/math11030677 10.3390/math11122742 10.1186/1687-6180-2012-120 10.1002/9781118930908 10.1016/j.sigpro.2021.108233 10.1201/9781439864180 10.1007/BF02649110 10.1007/s00009-023-02403-4 10.1142/8456 10.3390/math11051158 10.1002/mma.6018 10.1002/mma.7692 10.1002/mma.7417 10.1007/s00006-018-0828-0 10.1016/j.jmaa.2015.09.068 10.1515/gmj-2022-2158 10.1016/j.ijleo.2016.09.069 10.1109/LSP.2009.2026107 10.1007/BF02384339 10.1364/JOSAA.25.000647 10.1007/s00006-022-01244-w 10.1186/s13660-022-02873-2 10.1016/j.optcom.2011.10.019 10.1016/j.sigpro.2008.09.002 10.1007/s40314-020-01373-7 10.1201/9781420003451 10.3390/math11051235 10.1002/mma.4271 10.1137/1033097 10.1137/0149053 10.1016/j.jmaa.2019.123730 10.3390/math11020344 10.1007/s00034-018-0863-z 10.1017/CBO9780511524479 10.1007/s43034-023-00280-2 10.1007/s00006-019-1020-x 10.2298/FIL2313155P 10.1016/j.sigpro.2016.11.021 10.1016/j.sigpro.2019.06.015 10.1007/s11868-012-0047-8 10.1080/10652469.2019.1707816 10.1007/s11760-016-0965-7 10.1063/1.1665805 10.1002/mma.9440 10.1002/mma.9126 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2024 The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2024 – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION 7TB 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V M7S P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS DOA |
| DOI | 10.1186/s13660-024-03213-2 |
| DatabaseName | Springer Nature OA/Free Journals CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Mathematics |
| EISSN | 1029-242X |
| EndPage | 52 |
| ExternalDocumentID | oai_doaj_org_article_b5ae0d440362415aae884250c209adac 10_1186_s13660_024_03213_2 |
| GrantInformation_xml | – fundername: Birla Institute of Technology and Science, Pilani grantid: 2022PHXF0424H funderid: http://dx.doi.org/10.13039/501100006464 – fundername: National Board for Higher Mathematics grantid: 02011/40/2023/NBHM/R&D-II/13349 funderid: http://dx.doi.org/10.13039/501100005276 – fundername: Birla Institute of Technology and Science, Pilani |
| GroupedDBID | -A0 0R~ 29K 2WC 4.4 40G 5GY 5VS 8FE 8FG 8R4 8R5 AAFWJ AAJSJ AAKKN ABDBF ABEEZ ABFTD ABJCF ACACY ACGFO ACGFS ACIPV ACIWK ACUHS ACULB ADBBV ADINQ AENEX AFGXO AFKRA AFPKN AHBYD AHYZX AIAGR ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH ARAPS BCNDV BENPR BGLVJ C24 C6C CCPQU CS3 D-I DU5 EBLON EBS ESX GROUPED_DOAJ HCIFZ J9A K6V K7- KQ8 L6V M7S M~E OK1 P2P P62 PIMPY PROAC PTHSS Q2X REM RHU RNS RSV SMT SOJ TUS U2A ~8M AASML AAYXX AFFHD AMVHM CITATION OVT PHGZM PHGZT PQGLB 7TB 8FD ABUWG AZQEC DWQXO FR3 GNUQQ JQ2 KR7 PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c429t-a7136d077a7e4d85aac90c5f86b94fdee3cb926649c1aabcebee9f3368d6c563 |
| IEDL.DBID | M7S |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001338741200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1029-242X 1025-5834 |
| IngestDate | Fri Oct 03 12:41:30 EDT 2025 Sat Oct 18 23:12:42 EDT 2025 Sat Nov 29 06:10:40 EST 2025 Tue Nov 18 21:24:21 EST 2025 Fri Feb 21 02:37:16 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | 26A42 Sharp inequalities Uncertainty principles 42B10 Octonion quadratic-phase Fourier transform Fourier transform 26D15 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c429t-a7136d077a7e4d85aac90c5f86b94fdee3cb926649c1aabcebee9f3368d6c563 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://www.proquest.com/docview/3117179616?pq-origsite=%requestingapplication% |
| PQID | 3117179616 |
| PQPubID | 237789 |
| PageCount | 52 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_b5ae0d440362415aae884250c209adac proquest_journals_3117179616 crossref_citationtrail_10_1186_s13660_024_03213_2 crossref_primary_10_1186_s13660_024_03213_2 springer_journals_10_1186_s13660_024_03213_2 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-10-16 |
| PublicationDateYYYYMMDD | 2024-10-16 |
| PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-16 day: 16 |
| PublicationDecade | 2020 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham – name: Heidelberg |
| PublicationTitle | Journal of inequalities and applications |
| PublicationTitleAbbrev | J Inequal Appl |
| PublicationYear | 2024 |
| Publisher | Springer International Publishing Springer Nature B.V SpringerOpen |
| Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V – name: SpringerOpen |
| References | Pathak, Prasad, Kumar (CR54) 2012; 3 Chen, Yu, Tian, Li, Wang, Sun (CR15) 2018; 12 Bas, Le Bihan, Chassery (CR8) 2003 Moshinsky, Quesne (CR48) 1971; 12 Chen, Kou, Liu (CR16) 2015; 423 Huo (CR34) 2019; 38 Prasad, Kumar, Choudhury (CR56) 2012; 285 Zhang, Li (CR72) 2018; 28 CR70 Mani, Gnanaprakasam, Guran, George, Mitrović (CR46) 2023; 11 Bhat, Dar, Zayed, Bhat (CR11) 2023; 11 Achak, Abouelaz, Daher, Safouane (CR1) 2019; 29 Gao, Li (CR23) 2021; 188 Shi, Han, Zhang (CR64) 2016; 10 Bansal, Kumar, Bansal (CR7) 2023; 14 Healy, Kutay, Ozaktas, Sheridan (CR31) 2015 Wei, Ran, Li, Ma, Tan (CR68) 2009; 16 CR2 Ell, Le Bihan, Sangwine (CR20) 2014 Okubo (CR50) 1995 Yang, Kou Kit (CR69) 2016; 27 Bailey, Swarztrauber (CR6) 1991; 33 Donoho, Stark (CR18) 1989; 49 Zhou, Yang (CR73) 2024; 44 Li, Bi, Li (CR41) 2012; 2012 Kou, Morais (CR36) 2014; 247 Mani, Haque, Gnanaprakasam, Ege, Mlaiki (CR47) 2023; 11 Guanlei, Xiaotong, Xiaogang (CR25) 2008; 88 Kumar (CR39) 2020; 6 Sharma, Prasad (CR62) 2022; 29 Gnanaprakasam, Mani, Ege, Aloqaily, Mlaiki (CR24) 2023; 11 Ozaktas, Kutay, Mendlovic (CR52) 1999 Lian (CR43) 2019; 164 Błaszczyk, Snopek (CR13) 2017; 136 Zhu, Zheng (CR74) 2021; 44 Huo, Sun, Xiao (CR35) 2019; 42 Błaszczyk (CR12) 2020; 39 Beckner (CR9) 1995; 123 Osgood (CR51) 2019 Nallaselli, Gnanaprakasam, Mani, Mitrović, Aloqaily, Mlaiki (CR49) 2023; 11 Ozaktas, Zalevsky, Kutay (CR53) 2001 Bhat, Dar (CR10) 2023; 4 Dray, Manogue (CR19) 2015 Zayed, Haoui Youssef (CR71) 2023; 46 Roopkumar (CR58) 2016; 127 Kou, Yang, Zou (CR38) 2017; 40 Boggiatto, Carypis, Oliaro (CR14) 2016; 434 Bahri, Shah, Tantary (CR5) 2020; 31 Mani, Gnanaprakasam, Ege, Aloqaily, Mlaiki (CR45) 2023; 11 Sneddon (CR65) 1995 Folland, Sitaram (CR21) 1997; 3 Conway, Smith (CR17) 2003 Bahri, Ashino (CR4) 2016 Sabinin, Sbitneva, Shestakov (CR59) 2006 Hörmander (CR33) 1991; 29 Shah, Nisar, Lone, Tantary (CR61) 2021; 44 Pradhana, Kumar (CR55) 2023; 37 Havin, Jöricke (CR30) 2012 CR29 Prasad, Sharma (CR57) 2020; 43 CR28 Titchmarsh (CR67) 1948 Hogan, Lakey (CR32) 2005 Kou, Ou, Morais (CR37) 2013 Shah, Lone, Nisar, Abdeljawad (CR60) 2022; 2022 CR63 Stern (CR66) 2008; 25 Gao (CR22) 2024; 15 Lian (CR44) 2020; 484 Hamadi, Ghandouri, Hafirassou (CR27) 2023; 20 Li, Fei (CR40) 2023; 33 Bahri, Abdul Karim (CR3) 2023; 11 Guanlei, Xiaotong, Xiaogang (CR26) 2009; 89 Li, Li, Qi (CR42) 2022; 101 D. Wei (3213_CR68) 2009; 16 G. Mani (3213_CR45) 2023; 11 A. Prasad (3213_CR56) 2012; 285 M.Y. Bhat (3213_CR10) 2023; 4 M. Moshinsky (3213_CR48) 1971; 12 Y. Zhou (3213_CR73) 2024; 44 M. Bahri (3213_CR4) 2016 H. Huo (3213_CR34) 2019; 38 P. Boggiatto (3213_CR14) 2016; 434 X. Zhu (3213_CR74) 2021; 44 A. Achak (3213_CR1) 2019; 29 Y. Yang (3213_CR69) 2016; 27 X. Guanlei (3213_CR25) 2008; 88 Ł. Błaszczyk (3213_CR13) 2017; 136 P.B. Sharma (3213_CR62) 2022; 29 M. Bahri (3213_CR5) 2020; 31 K.I. Kou (3213_CR37) 2013 L. Sabinin (3213_CR59) 2006 M.Y. Bhat (3213_CR11) 2023; 11 W.-B. Gao (3213_CR22) 2024; 15 H.M. Ozaktas (3213_CR52) 1999 J. Shi (3213_CR64) 2016; 10 X. Guanlei (3213_CR26) 2009; 89 A. Stern (3213_CR66) 2008; 25 3213_CR63 P. Bas (3213_CR8) 2003 L. Hörmander (3213_CR33) 1991; 29 T. Pradhana (3213_CR55) 2023; 37 B. Chen (3213_CR15) 2018; 12 X. Li (3213_CR41) 2012; 2012 R. Pathak (3213_CR54) 2012; 3 K.I. Kou (3213_CR38) 2017; 40 P. Bansal (3213_CR7) 2023; 14 J.H. Conway (3213_CR17) 2003 P. Lian (3213_CR44) 2020; 484 G. Mani (3213_CR47) 2023; 11 D.L. Donoho (3213_CR18) 1989; 49 H. Huo (3213_CR35) 2019; 42 H.M. Ozaktas (3213_CR53) 2001 3213_CR29 3213_CR28 M. Kumar (3213_CR39) 2020; 6 G. Nallaselli (3213_CR49) 2023; 11 A.J. Gnanaprakasam (3213_CR24) 2023; 11 Z.-W. Li (3213_CR42) 2022; 101 F.A. Shah (3213_CR61) 2021; 44 3213_CR70 G.B. Folland (3213_CR21) 1997; 3 Ł. Błaszczyk (3213_CR12) 2020; 39 W. Beckner (3213_CR9) 1995; 123 N.B. Hamadi (3213_CR27) 2023; 20 F.A. Shah (3213_CR60) 2022; 2022 3213_CR2 Y.-N. Zhang (3213_CR72) 2018; 28 V. Havin (3213_CR30) 2012 J.J. Healy (3213_CR31) 2015 T. Dray (3213_CR19) 2015 R. Roopkumar (3213_CR58) 2016; 127 S. Li (3213_CR40) 2023; 33 E.C. Titchmarsh (3213_CR67) 1948 D.H. Bailey (3213_CR6) 1991; 33 W.-B. Gao (3213_CR23) 2021; 188 T.A. Ell (3213_CR20) 2014 G. Mani (3213_CR46) 2023; 11 B.G. Osgood (3213_CR51) 2019 L.-P. Chen (3213_CR16) 2015; 423 I.N. Sneddon (3213_CR65) 1995 K.I. Kou (3213_CR36) 2014; 247 J.A. Hogan (3213_CR32) 2005 S. Okubo (3213_CR50) 1995 A. Prasad (3213_CR57) 2020; 43 P. Lian (3213_CR43) 2019; 164 M. Bahri (3213_CR3) 2023; 11 M. Zayed (3213_CR71) 2023; 46 |
| References_xml | – volume: 11 issue: 19 year: 2023 ident: CR46 article-title: Some results in fuzzy b-metric space with b-triangular property and applications to Fredholm integral equations and dynamic programming publication-title: Mathematics doi: 10.3390/math11194101 – ident: CR70 – volume: 46 start-page: 2651 issue: 2 year: 2023 end-page: 2666 ident: CR71 article-title: The uncertainty principle for the octonion Fourier transform publication-title: Math. Methods Appl. Sci. doi: 10.1002/mma.8667 – volume: 15 start-page: 1 issue: 2 year: 2024 end-page: 19 ident: CR22 article-title: Uncertainty principles for the biquaternion offset linear canonical transform publication-title: J. Pseudo-Differ. Oper. Appl. doi: 10.1007/s11868-024-00590-6 – volume: 101 year: 2022 ident: CR42 article-title: Two-dimensional quaternion linear canonical series for color images publication-title: Signal Process. Image Commun. doi: 10.1016/j.image.2021.116574 – volume: 12 start-page: 2238 issue: 12 year: 2018 end-page: 2249 ident: CR15 article-title: Multiple-parameter fractional quaternion Fourier transform and its application in colour image encryption publication-title: IET Image Process. doi: 10.1049/iet-ipr.2018.5440 – volume: 88 start-page: 2511 issue: 10 year: 2008 end-page: 2517 ident: CR25 article-title: Fractional quaternion Fourier transform, convolution and correlation publication-title: Signal Process. doi: 10.1016/j.sigpro.2008.04.012 – volume: 42 start-page: 466 issue: 2 year: 2019 end-page: 474 ident: CR35 article-title: Uncertainty principles associated with the offset linear canonical transform publication-title: Math. Methods Appl. Sci. doi: 10.1002/mma.5353 – volume: 11 issue: 13 year: 2023 ident: CR11 article-title: Convolution, correlation and uncertainty principle in the one-dimensional quaternion quadratic-phase Fourier transform domain publication-title: Mathematics doi: 10.3390/math11133002 – volume: 423 start-page: 681 issue: 1 year: 2015 end-page: 700 ident: CR16 article-title: Pitt’s inequality and the uncertainty principle associated with the quaternion Fourier transform publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2014.10.003 – volume: 4 year: 2023 ident: CR10 article-title: Quadratic phase S-transform: properties and uncertainty principles publication-title: e-Prime-Adv. Electr. Eng. Electron. Energy doi: 10.1016/j.prime.2023.100162 – volume: 123 start-page: 1897 issue: 6 year: 1995 end-page: 1905 ident: CR9 article-title: Pitt’s inequality and the uncertainty principle publication-title: Proc. Am. Math. Soc. – volume: 247 start-page: 675 year: 2014 end-page: 688 ident: CR36 article-title: Asymptotic behaviour of the quaternion linear canonical transform and the Bochner–Minlos theorem publication-title: Appl. Math. Comput. – volume: 27 start-page: 213 issue: 3 year: 2016 end-page: 226 ident: CR69 article-title: Novel uncertainty principles associated with 2d quaternion Fourier transforms publication-title: Integral Transforms Spec. Funct. doi: 10.1080/10652469.2015.1114482 – ident: CR29 – volume: 6 issue: 6 year: 2020 ident: CR39 article-title: A new class of pseudo-differential operators involving linear canonical transform publication-title: Int. J. Appl. Comput. Math. doi: 10.1007/s40819-020-00917-z – year: 1995 ident: CR65 publication-title: Fourier Transforms – volume: 11 issue: 3 year: 2023 ident: CR24 article-title: New fixed point results in orthogonal b-metric spaces with related applications publication-title: Mathematics doi: 10.3390/math11030677 – year: 2016 ident: CR4 article-title: A simplified proof of uncertainty principle for quaternion linear canonical transform publication-title: Abstract and Applied Analysis – volume: 11 issue: 12 year: 2023 ident: CR47 article-title: The study of bicomplex-valued controlled metric spaces with applications to fractional differential equations publication-title: Mathematics doi: 10.3390/math11122742 – volume: 2012 start-page: 1 year: 2012 end-page: 13 ident: CR41 article-title: On uncertainty principle of the local polynomial Fourier transform publication-title: EURASIP J. Adv. Signal Process. doi: 10.1186/1687-6180-2012-120 – year: 2014 ident: CR20 publication-title: Quaternion Fourier Transforms for Signal and Image Processing doi: 10.1002/9781118930908 – volume: 188 year: 2021 ident: CR23 article-title: The octonion linear canonical transform: definition and properties publication-title: Signal Process. doi: 10.1016/j.sigpro.2021.108233 – year: 2019 ident: CR51 publication-title: Lectures on the Fourier Transform and Its Applications – year: 2003 ident: CR17 publication-title: On Quaternions and Octonions doi: 10.1201/9781439864180 – volume: 3 start-page: 207 year: 1997 end-page: 238 ident: CR21 article-title: The uncertainty principle: a mathematical survey publication-title: J. Fourier Anal. Appl. doi: 10.1007/BF02649110 – volume: 20 issue: 4 year: 2023 ident: CR27 article-title: Beckner logarithmic uncertainty principle for the Stockwell transform associated with the singular partial differential operators publication-title: Mediterr. J. Math. doi: 10.1007/s00009-023-02403-4 – year: 2015 ident: CR19 publication-title: The Geometry of the Octonions doi: 10.1142/8456 – volume: 11 issue: 5 year: 2023 ident: CR45 article-title: Fixed point results in -algebra-valued partial b-metric spaces with related application publication-title: Mathematics doi: 10.3390/math11051158 – year: 2013 ident: CR37 article-title: On uncertainty principle for quaternionic linear canonical transform publication-title: Abstract and Applied Analysis – year: 2001 ident: CR53 publication-title: The Fractional Fourier Transform with Applications in Optics and Signal Processing – volume: 43 start-page: 1953 issue: 4 year: 2020 end-page: 1969 ident: CR57 article-title: The quadratic-phase Fourier wavelet transform publication-title: Math. Methods Appl. Sci. doi: 10.1002/mma.6018 – volume: 44 start-page: 14236 issue: 18 year: 2021 end-page: 14255 ident: CR74 article-title: Uncertainty principles for the two-sided offset quaternion linear canonical transform publication-title: Math. Methods Appl. Sci. doi: 10.1002/mma.7692 – volume: 44 start-page: 10416 issue: 13 year: 2021 end-page: 10431 ident: CR61 article-title: Uncertainty principles for the quadratic-phase Fourier transforms publication-title: Math. Methods Appl. Sci. doi: 10.1002/mma.7417 – volume: 28 start-page: 1 year: 2018 end-page: 14 ident: CR72 article-title: Novel uncertainty principles for two-sided quaternion linear canonical transform publication-title: Adv. Appl. Clifford Algebras doi: 10.1007/s00006-018-0828-0 – volume: 434 start-page: 1489 issue: 2 year: 2016 end-page: 1503 ident: CR14 article-title: Two aspects of the Donoho-Stark uncertainty principle publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2015.09.068 – volume: 29 start-page: 595 issue: 4 year: 2022 end-page: 602 ident: CR62 article-title: Convolution and product theorems for the quadratic-phase Fourier transform publication-title: Georgian Math. J. doi: 10.1515/gmj-2022-2158 – volume: 127 start-page: 11657 issue: 24 year: 2016 end-page: 11661 ident: CR58 article-title: Quaternionic one-dimensional fractional Fourier transform publication-title: Optik doi: 10.1016/j.ijleo.2016.09.069 – volume: 16 start-page: 853 issue: 10 year: 2009 end-page: 856 ident: CR68 article-title: A convolution and product theorem for the linear canonical transform publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2009.2026107 – year: 2012 ident: CR30 publication-title: The Uncertainty Principle in Harmonic Analysis – ident: CR2 – volume: 29 start-page: 237 issue: 1–2 year: 1991 end-page: 240 ident: CR33 article-title: A uniqueness theorem of Beurling for Fourier transform pairs publication-title: Ark. Mat. doi: 10.1007/BF02384339 – volume: 25 start-page: 647 issue: 3 year: 2008 end-page: 652 ident: CR66 article-title: Uncertainty principles in linear canonical transform domains and some of their implications in optics publication-title: J. Opt. Soc. Am. A doi: 10.1364/JOSAA.25.000647 – volume: 33 issue: 1 year: 2023 ident: CR40 article-title: Pitt’s inequality and logarithmic uncertainty principle for the Clifford-Fourier transform publication-title: Adv. Appl. Clifford Algebras doi: 10.1007/s00006-022-01244-w – volume: 2022 issue: 1 year: 2022 ident: CR60 article-title: On the class of uncertainty inequalities for the coupled fractional Fourier transform publication-title: J. Inequal. Appl. doi: 10.1186/s13660-022-02873-2 – volume: 285 start-page: 1005 issue: 6 year: 2012 end-page: 1009 ident: CR56 article-title: Color image encoding using fractional Fourier transformation associated with wavelet transformation publication-title: Opt. Commun. doi: 10.1016/j.optcom.2011.10.019 – volume: 89 start-page: 339 issue: 3 year: 2009 end-page: 343 ident: CR26 article-title: The logarithmic, Heisenberg’s and short-time uncertainty principles associated with fractional Fourier transform publication-title: Signal Process. doi: 10.1016/j.sigpro.2008.09.002 – volume: 39 issue: 4 year: 2020 ident: CR12 article-title: Discrete octonion Fourier transform and the analysis of discrete 3-D data publication-title: Comput. Appl. Math. doi: 10.1007/s40314-020-01373-7 – year: 2006 ident: CR59 publication-title: Non-associative Algebra and Its Applications doi: 10.1201/9781420003451 – volume: 11 issue: 5 year: 2023 ident: CR3 article-title: Some essential relations for the quaternion quadratic-phase Fourier transform publication-title: Mathematics doi: 10.3390/math11051235 – ident: CR63 – volume: 40 start-page: 3892 issue: 11 year: 2017 end-page: 3900 ident: CR38 article-title: Uncertainty principle for measurable sets and signal recovery in quaternion domains publication-title: Math. Methods Appl. Sci. doi: 10.1002/mma.4271 – start-page: 191 year: 2005 end-page: 243 ident: CR32 article-title: Fourier uncertainty principles publication-title: Time-Frequency and Time-Scale Methods: Adaptive Decompositions, Uncertainty Principles, and Sampling – start-page: 239 year: 1999 end-page: 291 ident: CR52 article-title: Introduction to the fractional Fourier transform and its applications publication-title: Advances in Imaging and Electron Physics – volume: 33 start-page: 389 issue: 3 year: 1991 end-page: 404 ident: CR6 article-title: The fractional Fourier transform and applications publication-title: SIAM Rev. doi: 10.1137/1033097 – volume: 49 start-page: 906 issue: 3 year: 1989 end-page: 931 ident: CR18 article-title: Uncertainty principles and signal recovery publication-title: SIAM J. Appl. Math. doi: 10.1137/0149053 – year: 2015 ident: CR31 publication-title: Linear Canonical Transforms: Theory and Applications – volume: 484 issue: 2 year: 2020 ident: CR44 article-title: Sharp inequalities for geometric Fourier transform and associated ambiguity function publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2019.123730 – volume: 11 issue: 2 year: 2023 ident: CR49 article-title: Integral equation via fixed point theorems on a new type of convex contraction in b-metric and 2-metric spaces publication-title: Mathematics doi: 10.3390/math11020344 – volume: 38 start-page: 395 issue: 1 year: 2019 end-page: 406 ident: CR34 article-title: Uncertainty principles for the offset linear canonical transform publication-title: Circuits Syst. Signal Process. doi: 10.1007/s00034-018-0863-z – year: 1995 ident: CR50 publication-title: Introduction to Octonion and Other Non-associative Algebras in Physics doi: 10.1017/CBO9780511524479 – volume: 14 start-page: 1 issue: 3 year: 2023 end-page: 27 ident: CR7 article-title: Uncertainty inequalities for certain connected Lie groups publication-title: Ann. Funct. Anal. doi: 10.1007/s43034-023-00280-2 – volume: 29 start-page: 1 year: 2019 end-page: 19 ident: CR1 article-title: Uncertainty principles for the quaternion linear canonical transform publication-title: Adv. Appl. Clifford Algebras doi: 10.1007/s00006-019-1020-x – start-page: 521 year: 2003 ident: CR8 article-title: Color image watermarking using quaternion Fourier transform publication-title: 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP’03) – year: 1948 ident: CR67 publication-title: Introduction to the Theory of Fourier Integrals – volume: 37 start-page: 4155 issue: 13 year: 2023 end-page: 4170 ident: CR55 article-title: An n-dimensional pseudo-differential operator involving linear canonical transform and some applications in quantum mechanics publication-title: Filomat doi: 10.2298/FIL2313155P – volume: 136 start-page: 29 year: 2017 end-page: 37 ident: CR13 article-title: Octonion Fourier transform of real-valued functions of three variables-selected properties and examples publication-title: Signal Process. doi: 10.1016/j.sigpro.2016.11.021 – volume: 164 start-page: 295 year: 2019 end-page: 300 ident: CR43 article-title: The octonionic Fourier transform: uncertainty relations and convolution publication-title: Signal Process. doi: 10.1016/j.sigpro.2019.06.015 – volume: 3 start-page: 239 year: 2012 end-page: 254 ident: CR54 article-title: Fractional Fourier transform of tempered distributions and generalized pseudo-differential operator publication-title: J. Pseudo-Differ. Oper. Appl. doi: 10.1007/s11868-012-0047-8 – volume: 44 start-page: 257 issue: 2 year: 2024 end-page: 264 ident: CR73 article-title: Uncertainty principles of fractional Fourier transform publication-title: Acta Math. Sci. Ser. A Chin. Ed. – ident: CR28 – volume: 31 start-page: 538 issue: 7 year: 2020 end-page: 555 ident: CR5 article-title: Uncertainty principles for the continuous shearlet transforms in arbitrary space dimensions publication-title: Integral Transforms Spec. Funct. doi: 10.1080/10652469.2019.1707816 – volume: 10 start-page: 1519 year: 2016 end-page: 1525 ident: CR64 article-title: Uncertainty principles for discrete signals associated with the fractional Fourier and linear canonical transforms publication-title: Signal Image Video Process. doi: 10.1007/s11760-016-0965-7 – volume: 12 start-page: 1772 issue: 8 year: 1971 end-page: 1780 ident: CR48 article-title: Linear canonical transformations and their unitary representations publication-title: J. Math. Phys. doi: 10.1063/1.1665805 – volume: 101 year: 2022 ident: 3213_CR42 publication-title: Signal Process. Image Commun. doi: 10.1016/j.image.2021.116574 – volume: 6 issue: 6 year: 2020 ident: 3213_CR39 publication-title: Int. J. Appl. Comput. Math. doi: 10.1007/s40819-020-00917-z – volume: 27 start-page: 213 issue: 3 year: 2016 ident: 3213_CR69 publication-title: Integral Transforms Spec. Funct. doi: 10.1080/10652469.2015.1114482 – volume: 11 issue: 19 year: 2023 ident: 3213_CR46 publication-title: Mathematics doi: 10.3390/math11194101 – volume: 88 start-page: 2511 issue: 10 year: 2008 ident: 3213_CR25 publication-title: Signal Process. doi: 10.1016/j.sigpro.2008.04.012 – volume-title: Lectures on the Fourier Transform and Its Applications year: 2019 ident: 3213_CR51 – volume: 2022 issue: 1 year: 2022 ident: 3213_CR60 publication-title: J. Inequal. Appl. doi: 10.1186/s13660-022-02873-2 – volume: 44 start-page: 14236 issue: 18 year: 2021 ident: 3213_CR74 publication-title: Math. Methods Appl. Sci. doi: 10.1002/mma.7692 – volume: 11 issue: 5 year: 2023 ident: 3213_CR3 publication-title: Mathematics doi: 10.3390/math11051235 – volume: 44 start-page: 257 issue: 2 year: 2024 ident: 3213_CR73 publication-title: Acta Math. Sci. Ser. A Chin. Ed. – volume: 285 start-page: 1005 issue: 6 year: 2012 ident: 3213_CR56 publication-title: Opt. Commun. doi: 10.1016/j.optcom.2011.10.019 – ident: 3213_CR63 doi: 10.1002/mma.9440 – volume: 484 issue: 2 year: 2020 ident: 3213_CR44 publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2019.123730 – volume: 33 start-page: 389 issue: 3 year: 1991 ident: 3213_CR6 publication-title: SIAM Rev. doi: 10.1137/1033097 – volume-title: Fourier Transforms year: 1995 ident: 3213_CR65 – volume: 136 start-page: 29 year: 2017 ident: 3213_CR13 publication-title: Signal Process. doi: 10.1016/j.sigpro.2016.11.021 – volume: 247 start-page: 675 year: 2014 ident: 3213_CR36 publication-title: Appl. Math. Comput. – volume: 14 start-page: 1 issue: 3 year: 2023 ident: 3213_CR7 publication-title: Ann. Funct. Anal. doi: 10.1007/s43034-023-00280-2 – volume: 11 issue: 2 year: 2023 ident: 3213_CR49 publication-title: Mathematics doi: 10.3390/math11020344 – volume: 31 start-page: 538 issue: 7 year: 2020 ident: 3213_CR5 publication-title: Integral Transforms Spec. Funct. doi: 10.1080/10652469.2019.1707816 – ident: 3213_CR29 – volume-title: Linear Canonical Transforms: Theory and Applications year: 2015 ident: 3213_CR31 – volume-title: The Geometry of the Octonions year: 2015 ident: 3213_CR19 doi: 10.1142/8456 – start-page: 191 volume-title: Time-Frequency and Time-Scale Methods: Adaptive Decompositions, Uncertainty Principles, and Sampling year: 2005 ident: 3213_CR32 – volume-title: Abstract and Applied Analysis year: 2013 ident: 3213_CR37 – volume: 11 issue: 3 year: 2023 ident: 3213_CR24 publication-title: Mathematics doi: 10.3390/math11030677 – volume-title: The Uncertainty Principle in Harmonic Analysis year: 2012 ident: 3213_CR30 – volume: 33 issue: 1 year: 2023 ident: 3213_CR40 publication-title: Adv. Appl. Clifford Algebras doi: 10.1007/s00006-022-01244-w – volume: 11 issue: 13 year: 2023 ident: 3213_CR11 publication-title: Mathematics doi: 10.3390/math11133002 – volume-title: Non-associative Algebra and Its Applications year: 2006 ident: 3213_CR59 doi: 10.1201/9781420003451 – volume: 12 start-page: 1772 issue: 8 year: 1971 ident: 3213_CR48 publication-title: J. Math. Phys. doi: 10.1063/1.1665805 – ident: 3213_CR70 doi: 10.1002/mma.9126 – volume: 127 start-page: 11657 issue: 24 year: 2016 ident: 3213_CR58 publication-title: Optik doi: 10.1016/j.ijleo.2016.09.069 – volume: 40 start-page: 3892 issue: 11 year: 2017 ident: 3213_CR38 publication-title: Math. Methods Appl. Sci. doi: 10.1002/mma.4271 – volume: 434 start-page: 1489 issue: 2 year: 2016 ident: 3213_CR14 publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2015.09.068 – ident: 3213_CR28 – volume: 42 start-page: 466 issue: 2 year: 2019 ident: 3213_CR35 publication-title: Math. Methods Appl. Sci. doi: 10.1002/mma.5353 – volume-title: Introduction to Octonion and Other Non-associative Algebras in Physics year: 1995 ident: 3213_CR50 doi: 10.1017/CBO9780511524479 – volume: 44 start-page: 10416 issue: 13 year: 2021 ident: 3213_CR61 publication-title: Math. Methods Appl. Sci. doi: 10.1002/mma.7417 – volume: 20 issue: 4 year: 2023 ident: 3213_CR27 publication-title: Mediterr. J. Math. doi: 10.1007/s00009-023-02403-4 – volume: 123 start-page: 1897 issue: 6 year: 1995 ident: 3213_CR9 publication-title: Proc. Am. Math. Soc. – volume: 15 start-page: 1 issue: 2 year: 2024 ident: 3213_CR22 publication-title: J. Pseudo-Differ. Oper. Appl. doi: 10.1007/s11868-024-00590-6 – volume: 11 issue: 5 year: 2023 ident: 3213_CR45 publication-title: Mathematics doi: 10.3390/math11051158 – volume: 4 year: 2023 ident: 3213_CR10 publication-title: e-Prime-Adv. Electr. Eng. Electron. Energy doi: 10.1016/j.prime.2023.100162 – volume: 10 start-page: 1519 year: 2016 ident: 3213_CR64 publication-title: Signal Image Video Process. doi: 10.1007/s11760-016-0965-7 – volume-title: Quaternion Fourier Transforms for Signal and Image Processing year: 2014 ident: 3213_CR20 doi: 10.1002/9781118930908 – volume: 38 start-page: 395 issue: 1 year: 2019 ident: 3213_CR34 publication-title: Circuits Syst. Signal Process. doi: 10.1007/s00034-018-0863-z – volume: 39 issue: 4 year: 2020 ident: 3213_CR12 publication-title: Comput. Appl. Math. doi: 10.1007/s40314-020-01373-7 – volume: 29 start-page: 595 issue: 4 year: 2022 ident: 3213_CR62 publication-title: Georgian Math. J. doi: 10.1515/gmj-2022-2158 – volume: 43 start-page: 1953 issue: 4 year: 2020 ident: 3213_CR57 publication-title: Math. Methods Appl. Sci. doi: 10.1002/mma.6018 – start-page: 521 volume-title: 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP’03) year: 2003 ident: 3213_CR8 – volume: 188 year: 2021 ident: 3213_CR23 publication-title: Signal Process. doi: 10.1016/j.sigpro.2021.108233 – volume-title: The Fractional Fourier Transform with Applications in Optics and Signal Processing year: 2001 ident: 3213_CR53 – volume: 37 start-page: 4155 issue: 13 year: 2023 ident: 3213_CR55 publication-title: Filomat doi: 10.2298/FIL2313155P – volume: 12 start-page: 2238 issue: 12 year: 2018 ident: 3213_CR15 publication-title: IET Image Process. doi: 10.1049/iet-ipr.2018.5440 – volume: 29 start-page: 1 year: 2019 ident: 3213_CR1 publication-title: Adv. Appl. Clifford Algebras doi: 10.1007/s00006-019-1020-x – volume: 3 start-page: 207 year: 1997 ident: 3213_CR21 publication-title: J. Fourier Anal. Appl. doi: 10.1007/BF02649110 – volume: 25 start-page: 647 issue: 3 year: 2008 ident: 3213_CR66 publication-title: J. Opt. Soc. Am. A doi: 10.1364/JOSAA.25.000647 – volume-title: Abstract and Applied Analysis year: 2016 ident: 3213_CR4 – volume: 29 start-page: 237 issue: 1–2 year: 1991 ident: 3213_CR33 publication-title: Ark. Mat. doi: 10.1007/BF02384339 – start-page: 239 volume-title: Advances in Imaging and Electron Physics year: 1999 ident: 3213_CR52 – volume: 423 start-page: 681 issue: 1 year: 2015 ident: 3213_CR16 publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2014.10.003 – volume: 89 start-page: 339 issue: 3 year: 2009 ident: 3213_CR26 publication-title: Signal Process. doi: 10.1016/j.sigpro.2008.09.002 – ident: 3213_CR2 – volume: 3 start-page: 239 year: 2012 ident: 3213_CR54 publication-title: J. Pseudo-Differ. Oper. Appl. doi: 10.1007/s11868-012-0047-8 – volume: 2012 start-page: 1 year: 2012 ident: 3213_CR41 publication-title: EURASIP J. Adv. Signal Process. doi: 10.1186/1687-6180-2012-120 – volume: 46 start-page: 2651 issue: 2 year: 2023 ident: 3213_CR71 publication-title: Math. Methods Appl. Sci. doi: 10.1002/mma.8667 – volume-title: On Quaternions and Octonions year: 2003 ident: 3213_CR17 doi: 10.1201/9781439864180 – volume: 49 start-page: 906 issue: 3 year: 1989 ident: 3213_CR18 publication-title: SIAM J. Appl. Math. doi: 10.1137/0149053 – volume: 16 start-page: 853 issue: 10 year: 2009 ident: 3213_CR68 publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2009.2026107 – volume: 11 issue: 12 year: 2023 ident: 3213_CR47 publication-title: Mathematics doi: 10.3390/math11122742 – volume-title: Introduction to the Theory of Fourier Integrals year: 1948 ident: 3213_CR67 – volume: 164 start-page: 295 year: 2019 ident: 3213_CR43 publication-title: Signal Process. doi: 10.1016/j.sigpro.2019.06.015 – volume: 28 start-page: 1 year: 2018 ident: 3213_CR72 publication-title: Adv. Appl. Clifford Algebras doi: 10.1007/s00006-018-0828-0 |
| SSID | ssj0021384 ssib044744598 ssib008501289 |
| Score | 2.3589618 |
| Snippet | In this article, we define the octonion quadratic-phase Fourier transform (OQPFT) and derive its inversion formula, including its fundamental properties such... Abstract In this article, we define the octonion quadratic-phase Fourier transform (OQPFT) and derive its inversion formula, including its fundamental... |
| SourceID | doaj proquest crossref springer |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 134 |
| SubjectTerms | Algebra Analysis Applications of Mathematics Data compression Fourier transform Fourier transforms Inequalities Inequality Integral transforms Investigations Lie groups Mathematics Mathematics and Statistics Octonion quadratic-phase Fourier transform Principles Quaternions Sharp inequalities Signal processing Uncertainty principles Wavelet transforms |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PTxQxFG4M8eAFVDQuLqQHb9DQTqedlhsYNh7M6mFjONl0XjvRhAzLzizB_57X-bEKCXLh2naS5r3Xfu-btt8j5BOCkgFuPKsqC0hQQmQ-KsGKEPKs1CCLrmbkj6_FfG4uLuz3f0p9pTthvTxwb7jjUvnIQ56nnRbBxvto0skRh4xbHzyk3ZcXdiRTA9US0uTjExmjjxshteYM8YhxiZ0suwdDnVr_vRTzwaloBzaz12R7yBLpaT-7N-RFrN-SnSFjpMN6bHbJz2-AuRuall6vfUjOBLb8hcBEZ30tOtqOiekJxXyyf0KJ5PiIIp71twHaP3Q5_nHHdl8HGm99Eg1u3pHF7Hzx-QsbKiYwQFxpmUfKqQMvCl_EPBi0FlgOqjK6tHkVYpRQWoTk3ILwvgT0YLSVlNoEDUrL92SrvqrjB0IxcaxkEqexRuZBqLIqVZCKe1AqWmknRIz2czCoiaeiFpeuYxVGu97mDm3uOpu7bEION98sey2N_44-S27ZjEw62F0DRocbosM9FR0TMh2d6obF2TgpBJJYq4WekKPR0X-7H5_S3nNM6SN5laVATLdi9JRstat13Ccv4ab93awOujC-Aw1Y9QY priority: 102 providerName: Directory of Open Access Journals – databaseName: Springer Journals Complete - Open Access dbid: C24 link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbxUhECdN9aAHq63GV6vh4K0lwrKw4E0bXzz0w0PT9FTCDqyamNfn262p_70Dyz5ToyZ6ZSEhwwy_3yzzQchLBCUD3HjWdRbQQQmR-agEa0Koq1aDbHLPyPOj5uTEXFzYDyUprJ-i3acnyXxTZ7M2-lUvpNacIaYwLishGV68d5QwNgXyHaYch-JmCWnqKT3mt-tuQVCu1H-LXv7yIpqBZr71f1t8SB4UYknfjJrwiGzExTbZKiSTFhPut8n943Wh1n6HXJ4Ckj88G_r12oekDcCWnxDZ6HxsZkeHidm-pkhIxxxM9K4PKALiGE4wfKfL6Zc9jvtFoPHGp6rD_WNyNn93dvielZYLDBCYBubRZ9WBN41vYh2M8h4sB9UZ3dq6CzFKaC1iem1BeN8CqkC0nZTaBA1Kyydkc3G1iE8JRebZyVTdxhpZB6HarlVBKu5BqWilnRExHYKDUo48dcX44rJbYrQbpelQmi5L01Uzsr9esxyLcfx19tt0tuuZqZB2HrhafXTFLl2rfOShrhOQI5fxPpr0MMmh4tYHDzOyN2mGK9bdOykEesFWCz0jB5Mm_Pz85y3t_tv0Z-RelZQpBdDoPbI5rK7jc3IXvg2f-9WLrPU_ANcu_RY priority: 102 providerName: Springer Nature |
| Title | Octonion quadratic-phase Fourier transform: inequalities, uncertainty principles, and examples |
| URI | https://link.springer.com/article/10.1186/s13660-024-03213-2 https://www.proquest.com/docview/3117179616 https://doaj.org/article/b5ae0d440362415aae884250c209adac |
| Volume | 2024 |
| WOSCitedRecordID | wos001338741200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1029-242X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0021384 issn: 1029-242X databaseCode: DOA dateStart: 20050101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1029-242X dateEnd: 99991231 omitProxy: false ssIdentifier: ssib044744598 issn: 1029-242X databaseCode: M~E dateStart: 0 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1029-242X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0021384 issn: 1029-242X databaseCode: P5Z dateStart: 20240101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database (ProQuest) customDbUrl: eissn: 1029-242X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0021384 issn: 1029-242X databaseCode: K7- dateStart: 20240101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1029-242X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0021384 issn: 1029-242X databaseCode: M7S dateStart: 20240101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1029-242X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0021384 issn: 1029-242X databaseCode: BENPR dateStart: 20240101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1029-242X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0021384 issn: 1029-242X databaseCode: PIMPY dateStart: 20240101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVAVX databaseName: Springer Journals Complete - Open Access customDbUrl: eissn: 1029-242X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0021384 issn: 1029-242X databaseCode: C24 dateStart: 20051201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZoy4EL5SkWysoHbtRqHD9ic0G06goELCuoUOGA5dgOIKHd7SZF8O8ZO06qItELlxwcJ0r0jef7xo8ZhJ4AKSlXKEuaRjsIUHwgNghKKu95WUvHqlQz8uObaj5Xp6d6kSfc2rytcvCJyVH7lYtz5AeMUog8tKTy-fqMxKpRcXU1l9DYQjsxSwJNW_c-jPakRHS_I11zXnEu9LjKUFKWKhLTWNJVKMaHQzVKHrSUSVkQYDBSMOhIykvElfL7XxKlf62jJnqa7f7vj91CN7MwxS96S7qNroXlHbSbRSrOLqC9i768cyAXAU18dm59tB9H1t-AC_GsL3-Hu0ELP8MgYftTmxCP72Og0H4DQvcbr4dJfmi3S4_DLxvzFLf30Mns-OToJclFGogDKuuIhShX-qKqbBW4V8JapwsnGiVrzRsfAnO1BhXAtaPW1g6MJuiGMam8dEKy-2h7uVqGBwiDVm1YzIejAQpPRd3UwjNRWCdE0ExPEB0AMC4nMI91NH6YFMgoaXrQDIBmEmimnKCn4zPrPn3Hlb0PI65jz5h6OzWsNl9NHsmmFjYUnvNI_aB-rA0qLmUWriy09dZN0N6As8n-oDUXIE_Q_mApF7f__UkPr37bI3SjjDYat9jIPbTdbc7DY3Td_ey-t5sp2jk8ni_eT9HWUcmnaboBrq8rMk3jBK4L8Rl6LV69XXz6A3iTEy8 |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggQXyqtioYAPcKJWk_gRGwkhXqtWuywcVqgnLMd2oBLa3W5SoD-K_8g4r6pI9NYD18SJ4vU3M9_s2PMBPMWgpFyiLC1L7TBB8YHaIFKae8-zQjqWN5qRn6f5bKYOD_WnDfjdn4WJ2yp7n9g4ar908T_yPZammHlomcpXq2MaVaNidbWX0GhhMQmnPzFlq14evMP1fZZl4_fzt_u0UxWgDn1vTS2mZdIneW7zwL0S1jqdOFEqWWhe-hCYKzSGLa5dam3hcJZBl4xJ5aUTkuFrr8BVnGIezWqS0wG-SkRvP7ADznPOhR6KGlnKGgHkNCrICsV4f4ZHyb0Kv0kmFAMmTRgOpNm5ONnICZzjwH-VbZtoON76z37HW3Czo93kdWsnt2EjLO7AVkfBSefgqrvw5aNDMoxYJccn1kfrcHT1DSM9GbfifqTumf4LggS9PZN6FKpdggSh3V5Rn5JVX8LA63bhSfhlYxfm6h7ML2OS27C5WC7CfSDIxEsWu_1oXHmfiqIshGcisU6IoJkeQdqvt3Fde_aoEvLdNGmakqbFiEGMmAYjJhvB8-GZVduc5MLRbyKMhpGxsXhzYbn-ajo_ZQphQ-I5j8QGuZ21QcVCbeKyRFtv3Qh2eliZzttV5gxTI9jtgXl2-9-f9ODitz2B6_vzD1MzPZhNHsKNLJpH3Ewkd2CzXp-ER3DN_aiPqvXjxhAJmEsG7B_eXWsl |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VglAvlKdYKOADnKi1SfyIjYQQUFZUrZY9VKjigOXYDlSqdrebFOhP498xzqsqEr31wNVxojw-z3yTGc8H8BydknKJsrQstcMAxQdqg0hp7j3PCulY3mhGft7Pp1N1eKhna_C73wsTyyp7m9gYar9w8R_5mKUpRh5apnJcdmURs53Jm-UJjQpSMdPay2m0ENkLZz8xfKte7-7gt36RZZMPB-8_0k5hgDq0wzW1GKJJn-S5zQP3SljrdOJEqWSheelDYK7Q6MK4dqm1hcMnDrpkTCovnZAML3sNrucYYsZqwpn4MkBZiWj5B6bAec650EOCI0tZI4acRjVZoRjv9_MoOa7wnmRC0XnShOFEml3wmY20wAU-_FcKt_GMk83_-J3ehlsdHSdv2_VzB9bC_C5sdtScdIavugdfPzkkyYhhcnJqfVw1ji6_IwMgk1b0j9R9BPCKIHFv96oehWqbIHFoyy7qM7LsUxs4bueehF82dmeu7sPBVTzkA1ifL-bhIRBk6CWLXYA0osCnoigL4ZlIrBMiaKZHkPbf3riubXtUDzk2TfimpGnxYhAvpsGLyUbwcjhn2TYtuXT2uwipYWZsON4MLFbfTGe_TCFsSDznkfAg57M2qJjATVyWaOutG8FWDzHTWcHKnONrBNs9SM8P__uWHl1-tWdwE3Fq9nene49hI4srJdYYyS1Yr1en4QnccD_qo2r1tFmTBMwV4_UPa9V0SQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Octonion+quadratic-phase+Fourier+transform%3A+inequalities%2C+uncertainty+principles%2C+and+examples&rft.jtitle=Journal+of+inequalities+and+applications&rft.au=Kumar%2C+Manish&rft.au=Bhawna&rft.date=2024-10-16&rft.pub=Springer+Nature+B.V&rft.issn=1025-5834&rft.eissn=1029-242X&rft.volume=2024&rft.issue=1&rft.spage=134&rft_id=info:doi/10.1186%2Fs13660-024-03213-2&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-242X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-242X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-242X&client=summon |