Learning deep networks with crowdsourcing for relevance evaluation

In this paper, we propose a novel relevance evaluation method using labels collected from crowdsourcing. The proposed method not only predicts the relevance between query texts and responses in information retrieval systems but also performs the label aggregation tasks simultaneously. It first merge...

Full description

Saved in:
Bibliographic Details
Published in:EURASIP journal on wireless communications and networking Vol. 2020; no. 1; pp. 1 - 11
Main Authors: Wu, Ming, Yin, Xiaochun, Li, Qianmu, Zhang, Jing, Feng, Xinqi, Cao, Qi, Shen, Haiyuan
Format: Journal Article
Language:English
Published: Cham Springer International Publishing 25.04.2020
Springer Nature B.V
SpringerOpen
Subjects:
ISSN:1687-1499, 1687-1472, 1687-1499
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this paper, we propose a novel relevance evaluation method using labels collected from crowdsourcing. The proposed method not only predicts the relevance between query texts and responses in information retrieval systems but also performs the label aggregation tasks simultaneously. It first merges two kinds of heterogeneous data (i.e., image and query text) and constructs a CNN-like deep neural network. Then, on the top of its softmax layer, an additional layer was built to model the crowd workers. Finally, classification models for relevance prediction and aggregated labels for training examples can be simultaneously learned from noisy labels. Experimental results show that the proposed method significantly outperforms other state-of-the-art methods on a real-world dataset.
AbstractList In this paper, we propose a novel relevance evaluation method using labels collected from crowdsourcing. The proposed method not only predicts the relevance between query texts and responses in information retrieval systems but also performs the label aggregation tasks simultaneously. It first merges two kinds of heterogeneous data (i.e., image and query text) and constructs a CNN-like deep neural network. Then, on the top of its softmax layer, an additional layer was built to model the crowd workers. Finally, classification models for relevance prediction and aggregated labels for training examples can be simultaneously learned from noisy labels. Experimental results show that the proposed method significantly outperforms other state-of-the-art methods on a real-world dataset.
Abstract In this paper, we propose a novel relevance evaluation method using labels collected from crowdsourcing. The proposed method not only predicts the relevance between query texts and responses in information retrieval systems but also performs the label aggregation tasks simultaneously. It first merges two kinds of heterogeneous data (i.e., image and query text) and constructs a CNN-like deep neural network. Then, on the top of its softmax layer, an additional layer was built to model the crowd workers. Finally, classification models for relevance prediction and aggregated labels for training examples can be simultaneously learned from noisy labels. Experimental results show that the proposed method significantly outperforms other state-of-the-art methods on a real-world dataset.
ArticleNumber 82
Author Feng, Xinqi
Zhang, Jing
Cao, Qi
Li, Qianmu
Shen, Haiyuan
Wu, Ming
Yin, Xiaochun
Author_xml – sequence: 1
  givenname: Ming
  surname: Wu
  fullname: Wu, Ming
  organization: School of Computer Science and Engineering, Nanjing University of Science and Technology
– sequence: 2
  givenname: Xiaochun
  surname: Yin
  fullname: Yin, Xiaochun
  organization: Facility Horticulture Laboratory of Universities in Shandong, WeiFang University of Science & Technology
– sequence: 3
  givenname: Qianmu
  surname: Li
  fullname: Li, Qianmu
  email: qianmu@njust.edu.cn
  organization: School of Cyber Science and Engineering, Nanjing University of Science and Technology, Intelligent Manufacturing Department, Wuyi University
– sequence: 4
  givenname: Jing
  surname: Zhang
  fullname: Zhang, Jing
  organization: School of Computer Science and Engineering, Nanjing University of Science and Technology
– sequence: 5
  givenname: Xinqi
  surname: Feng
  fullname: Feng, Xinqi
  organization: Center Of Informationization Construction And Management, Nanjing Sport Institute
– sequence: 6
  givenname: Qi
  surname: Cao
  fullname: Cao, Qi
  organization: Academy of Science and Technology Strategic Consulting, Chinese Academy of Science
– sequence: 7
  givenname: Haiyuan
  surname: Shen
  fullname: Shen, Haiyuan
  organization: Jiangsu Zhongtian Internet Technology Co, Ltd
BookMark eNp9UMtOwzAQtBBIQOAHOEXiHPCrjn2EikelSlzgbG1sp6QEu9gpFX-PaUAgDj3t7mhmNDvHaN8H7xA6I_iCECkuE2GCyQpTXGEiVF3RPXREhKwrwpXa_7MfouOUlhgzxhU9QtdzB9F3flFa51ald8MmxJdUbrrhuTQxbGwK62i-CG2IZXS9ewdvXJlHv4ahC_4EHbTQJ3f6PQv0dHvzOL2v5g93s-nVvDKcqqECYsA0QG3DhZQTBpPWMWoEtvmytDYgXKs4J43FDGogkjIGkmYUlCXACjQbfW2ApV7F7hXihw7Q6S0Q4kJDHDrTOw0T1UhjaqCC8AY3DViBubQm3xnn2et89FrF8LZ2adDL_KbP8TVligvGJrnQAsmRlYtIKbpWm27Y_jxE6HpNsP5qX4_t69y-3rafPQpE_0l_Au8UsVGUMtkvXPxNtUP1CUSmmjk
CitedBy_id crossref_primary_10_3390_rs13061211
crossref_primary_10_1108_AJIM_08_2021_0215
crossref_primary_10_3390_agriculture11030273
Cites_doi 10.1109/TKDE.2015.2504974
10.1109/CVPR.2015.7298935
10.1109/JIOT.2019.2911669
10.1109/TMM.2020.2976573
10.1109/TSE.2016.2624293
10.1016/j.neucom.2019.01.075
10.1109/CLOUD.2015.40
10.1007/s11036-019-01448-8
10.1109/TCSS.2019.2906925
10.1145/2093346.2093356
10.1109/TSC.2019.2963301
10.1016/j.comcom.2019.10.012
10.1007/978-3-030-33702-5_8
10.1016/j.future.2018.02.050
10.1109/TCAD.2018.2883993
10.1016/j.future.2019.01.012
10.1109/TC.2019.2935042
10.1109/JBHI.2019.2891526
10.1145/1480506.1480508
10.3115/1613715.1613751
10.1007/s11227-019-03027-w
10.26599/BDMA.2018.9020028
10.1109/TMI.2016.2528120
10.1007/s11227-019-03011-4
10.1145/2557642.2563670
10.26599/BDMA.2018.9020031
10.1109/TSE.2017.2681667
10.1186/s13638-015-0498-8
10.2307/2346806
10.1145/3377876
10.1007/s11280-019-00684-y
10.1007/s11036-019-01445-x
ContentType Journal Article
Copyright The Author(s) 2020
The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2020
– notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
3V.
7SC
7SP
7XB
8AL
8FD
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M0N
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOA
DOI 10.1186/s13638-020-01697-2
DatabaseName Springer Nature Link
CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1687-1499
EndPage 11
ExternalDocumentID oai_doaj_org_article_a59b8cc7a2614b0bbad6048dc2618cc4
10_1186_s13638_020_01697_2
GroupedDBID -A0
.4S
.DC
0R~
29G
2WC
3V.
4.4
40G
5GY
5VS
6OB
8FE
8FG
8R4
8R5
AAFWJ
AAJSJ
AAKKN
AAKPC
ABDBF
ABEEZ
ABFTD
ABUWG
ACACY
ACGFS
ACUHS
ACULB
ADBBV
ADDVE
ADINQ
ADMLS
AENEX
AFGXO
AFKRA
AFPKN
AHBYD
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
ARAPS
ARCSS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
C24
C6C
CCPQU
CS3
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBLON
EBS
EDO
EMK
ESX
GNUQQ
GROUPED_DOAJ
HCIFZ
HZ~
I-F
K6V
K7-
KQ8
M0N
M~E
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
Q2X
RHU
RNS
RSV
SEG
SOJ
TUS
U2A
XSB
AASML
AAYXX
CITATION
OVT
7SC
7SP
7XB
8AL
8FD
8FK
JQ2
L7M
L~C
L~D
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c429t-a1cacba2db468853a5fe32c60d885d27ca6ef9441bd03a7a18233a826efa9d1a3
IEDL.DBID BENPR
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000528580000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1687-1499
1687-1472
IngestDate Tue Oct 14 18:18:30 EDT 2025
Sat Oct 11 05:46:36 EDT 2025
Sat Nov 29 01:43:53 EST 2025
Tue Nov 18 20:55:44 EST 2025
Fri Feb 21 02:35:32 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Crowdsourcing
Deep learning
Information retrieval
Relevance evaluation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c429t-a1cacba2db468853a5fe32c60d885d27ca6ef9441bd03a7a18233a826efa9d1a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/2394633536?pq-origsite=%requestingapplication%
PQID 2394633536
PQPubID 237293
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_a59b8cc7a2614b0bbad6048dc2618cc4
proquest_journals_2394633536
crossref_citationtrail_10_1186_s13638_020_01697_2
crossref_primary_10_1186_s13638_020_01697_2
springer_journals_10_1186_s13638_020_01697_2
PublicationCentury 2000
PublicationDate 2020-04-25
PublicationDateYYYYMMDD 2020-04-25
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-25
  day: 25
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: New York
PublicationTitle EURASIP journal on wireless communications and networking
PublicationTitleAbbrev J Wireless Com Network
PublicationYear 2020
Publisher Springer International Publishing
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
– name: SpringerOpen
References KumarS.SinghM.Big data analytics for healthcare industry: impact, applications, and toolsBig Data Min. Analytics201821485710.26599/BDMA.2018.9020031
XuX.MoR.DaiF.LinW.WanS.DouW.Dynamic resource provisioning with fault tolerance for data-intensive meteorological workflows in cloudIEEE Trans. Ind. Inform.2019201911
GaoZ.LiY.WanS.Exploring deep learning for view-based 3D model retrievalACM Trans. Multimed. Comput. Commun. Appl. (TOMM)202016112110.1145/3377876
WhitehillJ.WuT. -f.BergsmaJ.MovellanJ. R.RuvoloP. L.Whose vote should count more: optimal integration of labels from labelers of unknown expertiseAdvances in Neural Information Processing Systems20092220352043
DawidA. P.SkeneA. M.Maximum likelihood estimation of observer error-rates using the em algorithmAppl. Stat.1979281202810.2307/2346806
WanS.LiX.XueY.LinW.XuX.Efficient computation offloading for Internet of Vehicles in edge computing-assisted 5G networksJ. Supercomput.20197510130https://doi.org/10.1007/s11227-019-03011-4
WangY.HeQ.YeD.YangY.Formulating criticality-based cost-effective fault tolerance strategies for multi-tenant service-based systemsIEEE Trans. Softw. Eng.201744329130710.1109/TSE.2017.2681667
ZhouJ.HuX. S.MaY.SunJ.WeiT.HuS.Improving availability of multicore real-time systems suffering both permanent and transient faultsIEEE Trans. Comput.20196812178518010715909310.1109/TC.2019.2935042
QiL.ChenY.YuanY.FuS.ZhangX.XuX.A QOS-aware virtual machine scheduling method for energy conservation in cloud-based cyber-physical systemsWorld Wide Web20202311275129710.1007/s11280-019-00684-yhttps://doi.org/10.1007/s11280-019-00684-y
WangB.MaH.WangX.DengG.YangY.WanS.Vulnerability assessment method for cyber-physical system considering node heterogeneityJ. Supercomput.20197510121https://doi.org/10.1007/s11227-019-03027-w
ZhangY.ChenX.ZhouD.JordanM. I.Spectral methods meet em: a provably optimal algorithm for crowdsourcingJ. Mach. Learn. Res.20161713537358035435081367.68241
LiuH.KouH.YanC.QiL.Link prediction in paper citation network to construct paper correlation graphEURASIP J. Wirel. Commun. Netw.20192019111210.1186/s13638-015-0498-8
B. Ionescu, A. -L. Radu, M. Menéndez, H. Müller, A. Popescu, B. Loni, Div400: a social image retrieval result diversification dataset. Proceedings of the 5th ACM Multimedia Systems Conference, 29–34 (2014).
P. Lai, Q. He, G. Cui, X. Xia, M. Abdelrazek, F. Chen, J. Hosking, J. Grundy, Y. Yang, Edge user allocation with dynamic quality of service. International Conference on Service-Oriented Computing, 86–101 (2019).
ZhaoY.LiH.WanS.SekuboyinaA.HuX.TettehG.PiraudM.MenzeB.Knowledge-aided convolutional neural network for small organ segmentationIEEE J. Biomed. Health Inform.20192341363137310.1109/JBHI.2019.2891526
WanS.GuZ.NiQ.Cognitive computing and wireless communications on the edge for healthcare service robotsComput. Commun.20191499910610.1016/j.comcom.2019.10.012
XuX.XueY.QiL.YuanY.ZhangX.UmerT.WanS.An edge computing-enabled computation offloading method with privacy preservation for internet of connected vehiclesFutur. Gener. Comput. Syst.2019968910010.1016/j.future.2019.01.012
KongC.LuoG.TianL.CaoX.Disseminating authorized content via data analysis in opportunistic social networksBig Data Min. Analytics201821122410.26599/BDMA.2018.9020028
SimonyanK.ZissermanA.Very deep convolutional networks for large-scale image recognitionarXiv preprint arXiv:1409.155620142014114
O. Vinyals, A. Toshev, S. Bengio, D. Erhan, Show and tell: a neural image caption generator. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 3156–3164 (2015).
QiL.ZhangX.DouW.HuC.YangC.ChenJ.A two-stage locality-sensitive hashing based approach for privacy-preserving mobile service recommendation in cross-platform edge environmentFutur. Gener. Comput. Syst.20188863664310.1016/j.future.2018.02.050
XuY.QiL.DouW.YuJ.Privacy-preserving and scalable service recommendation based on simhash in a distributed cloud environmentComplexity2017201719
R. Snow, B. O’Connor, D. Jurafsky, A. Y. Ng, Cheap and fast—but is it good?: evaluating non-expert annotations for natural language tasks (Association for Computational Linguistics). Proceedings of the Conference on Empirical Methods in Natural Language Processing, 254–263 (2008).
MikolovT.ChenK.CorradoG.DeanJ.Efficient estimation of word representations in vector spacearXiv preprint arXiv:1301.378120132014112
RongX.word2vec parameter learning explainedarXiv preprint arXiv:1411.273820142014121
QiL.HeQ.ChenF.DouW.WanS.ZhangX.XuX.Finding all you need: Web APIs recommendation in web of things through keywords searchIEEE Trans. Comput. Soc. Syst.2019651063107210.1109/TCSS.2019.2906925
HoweJ.The rise of crowdsourcingWired Mag.200614614
DingS.QuS.XiY.WanS.Stimulus-driven and concept-driven analysis for image caption generationNeurocomputing201935111010.1016/j.neucom.2019.01.075
XuX.HeC.XuZ.QiL.WanS.BhuiyanM. Z. A.Joint optimization of offloading utility and privacy for edge computing enabled IoTIEEE Internet Things J.2019201911
ZhangJ.ShengV. S.NicholsonB. A.WuX.Ceka: a tool for mining the wisdom of crowdsJ. Mach. Learn. Res.2015161285328583450526
GongW.QiL.XuY.Privacy-aware multidimensional mobile service quality prediction and recommendation in distributed fog environmentWirel. Commun. Mob. Comput.2018201818
ZhouJ.SunJ.ZhouX.WeiT.ChenM.HuS.HuX. S.Resource management for improving soft-error and lifetime reliability of real-time MPSoCsIEEE Trans. Comput. Aided Des. Integr. Circ. Syst.2018381222152810.1109/TCAD.2018.2883993
X. Xu, X. Liu, Z. Xu, C. Wang, S. Wan, X. Yang, Joint optimization of resource utilization and load balance with privacy preservation for edge services in 5G networks. Mob. Netw. Appl., 1–12 (2019).
HeQ.ZhouR.ZhangX.WangY.YeD.ChenF.GrundyJ. C.YangY.Keyword search for building service-based systemsIEEE Trans. Softw. Eng.201643765867410.1109/TSE.2016.2624293
F. Chollet, et al., Keras (2015). https://github.com/fchollet/keras. 10 Accessed 13 June 2015.
Z. Junlong, S. Jin, C. Peijin, L. Zhe, W. Tongquan, Z. Xiumin, H. Shiyan, Security-critical energy-aware task scheduling for heterogeneous real-time MPSoCs in IoT. IEEE Trans. Serv. Comput. (TSC) (2019). https://doi.org/10.1109/TSC.2019.2963301.
Q. He, J. Han, F. Chen, Y. Wang, R. Vasa, Y. Yang, H. Jin, in 2015 IEEE 8th International Conference on Cloud Computing. QOS-aware service selection for customisable multi-tenant service-based systems: Maturity and approaches (IEEE, 2015), pp. 237–244.
AlbarqouniS.BaurC.AchillesF.BelagiannisV.DemirciS.NavabN.Aggnet: deep learning from crowds for mitosis detection in breast cancer histology imagesIEEE Trans. Med. Imaging20163551313132110.1109/TMI.2016.2528120
WanS.XiaY.QiL.YangY. -H.AtiquzzamanM.Automated colorization of a grayscale image with seed points propagationIEEE Trans. Multimed.202020201110.1109/TMM.2020.2976573
WanS.QiL.XuX.TongC.GuZ.Deep learning models for real-time human activity recognition with smartphonesMob. Networks Appl.20197512113https://doi.org/10.1007/s11036-019-01445-x
ZhangJ.ShengV. S.WuJ.WuX.Multi-class ground truth inference in crowdsourcing with clusteringIEEE Trans. Knowl. Data Eng.20162841080108510.1109/TKDE.2015.2504974
WanS.GoudosS.Faster R-CNN for multi-class fruit detection using a robotic vision systemComput. Netw.2019168116
GaoZ.XuanH. -Z.ZhangH.WanS.ChooK. -K. R.Adaptive fusion and category-level dictionary learning model for multi-view human action recognitionIEEE Internet Things J.201969280929310.1109/JIOT.2019.2911669
O. Alonso, D. E. Rose, B. Stewart, in ACM SigIR Forum, vol. 42. Crowdsourcing for relevance evaluation (ACM, 2008), pp. 9–15.
LeaseM.YilmazE.Crowdsourcing for information retrievalACM SIGIR Forum2012452667510.1145/2093346.2093356
1697_CR16
1697_CR38
Y. Wang (1697_CR5) 2017; 44
1697_CR39
S. Ding (1697_CR35) 2019; 351
S. Wan (1697_CR33) 2019; 149
L. Qi (1697_CR42) 2019; 6
Q. He (1697_CR6) 2016; 43
1697_CR1
S. Kumar (1697_CR3) 2018; 2
S. Albarqouni (1697_CR23) 2016; 35
T. Mikolov (1697_CR30) 2013; 2014
S. Wan (1697_CR32) 2019; 75
1697_CR9
Z. Gao (1697_CR27) 2020; 16
J. Zhang (1697_CR37) 2015; 16
W. Gong (1697_CR44) 2018; 2018
A. P. Dawid (1697_CR17) 1979; 28
1697_CR13
1697_CR36
1697_CR15
J. Whitehill (1697_CR20) 2009; 22
J. Howe (1697_CR7) 2006; 14
L. Qi (1697_CR8) 2020; 23
Z. Gao (1697_CR26) 2019; 6
M. Lease (1697_CR12) 2012; 45
S. Wan (1697_CR24) 2019; 168
X. Xu (1697_CR40) 2019; 2019
L. Qi (1697_CR45) 2018; 88
Y. Xu (1697_CR10) 2017; 2017
C. Kong (1697_CR2) 2018; 2
X. Rong (1697_CR31) 2014; 2014
S. Wan (1697_CR25) 2019; 75
K. Simonyan (1697_CR29) 2014; 2014
H. Liu (1697_CR41) 2019; 2019
X. Xu (1697_CR14) 2019; 96
X. Xu (1697_CR11) 2019; 2019
J. Zhang (1697_CR22) 2016; 28
B. Wang (1697_CR4) 2019; 75
J. Zhou (1697_CR19) 2018; 38
1697_CR43
J. Zhou (1697_CR18) 2019; 68
Y. Zhang (1697_CR21) 2016; 17
Y. Zhao (1697_CR28) 2019; 23
S. Wan (1697_CR34) 2020; 2020
References_xml – reference: GongW.QiL.XuY.Privacy-aware multidimensional mobile service quality prediction and recommendation in distributed fog environmentWirel. Commun. Mob. Comput.2018201818
– reference: WhitehillJ.WuT. -f.BergsmaJ.MovellanJ. R.RuvoloP. L.Whose vote should count more: optimal integration of labels from labelers of unknown expertiseAdvances in Neural Information Processing Systems20092220352043
– reference: AlbarqouniS.BaurC.AchillesF.BelagiannisV.DemirciS.NavabN.Aggnet: deep learning from crowds for mitosis detection in breast cancer histology imagesIEEE Trans. Med. Imaging20163551313132110.1109/TMI.2016.2528120
– reference: F. Chollet, et al., Keras (2015). https://github.com/fchollet/keras. 10 Accessed 13 June 2015.
– reference: KumarS.SinghM.Big data analytics for healthcare industry: impact, applications, and toolsBig Data Min. Analytics201821485710.26599/BDMA.2018.9020031
– reference: Z. Junlong, S. Jin, C. Peijin, L. Zhe, W. Tongquan, Z. Xiumin, H. Shiyan, Security-critical energy-aware task scheduling for heterogeneous real-time MPSoCs in IoT. IEEE Trans. Serv. Comput. (TSC) (2019). https://doi.org/10.1109/TSC.2019.2963301.
– reference: XuX.XueY.QiL.YuanY.ZhangX.UmerT.WanS.An edge computing-enabled computation offloading method with privacy preservation for internet of connected vehiclesFutur. Gener. Comput. Syst.2019968910010.1016/j.future.2019.01.012
– reference: O. Alonso, D. E. Rose, B. Stewart, in ACM SigIR Forum, vol. 42. Crowdsourcing for relevance evaluation (ACM, 2008), pp. 9–15.
– reference: ZhouJ.HuX. S.MaY.SunJ.WeiT.HuS.Improving availability of multicore real-time systems suffering both permanent and transient faultsIEEE Trans. Comput.20196812178518010715909310.1109/TC.2019.2935042
– reference: ZhouJ.SunJ.ZhouX.WeiT.ChenM.HuS.HuX. S.Resource management for improving soft-error and lifetime reliability of real-time MPSoCsIEEE Trans. Comput. Aided Des. Integr. Circ. Syst.2018381222152810.1109/TCAD.2018.2883993
– reference: WanS.GuZ.NiQ.Cognitive computing and wireless communications on the edge for healthcare service robotsComput. Commun.20191499910610.1016/j.comcom.2019.10.012
– reference: Q. He, J. Han, F. Chen, Y. Wang, R. Vasa, Y. Yang, H. Jin, in 2015 IEEE 8th International Conference on Cloud Computing. QOS-aware service selection for customisable multi-tenant service-based systems: Maturity and approaches (IEEE, 2015), pp. 237–244.
– reference: HoweJ.The rise of crowdsourcingWired Mag.200614614
– reference: LeaseM.YilmazE.Crowdsourcing for information retrievalACM SIGIR Forum2012452667510.1145/2093346.2093356
– reference: WanS.GoudosS.Faster R-CNN for multi-class fruit detection using a robotic vision systemComput. Netw.2019168116
– reference: GaoZ.XuanH. -Z.ZhangH.WanS.ChooK. -K. R.Adaptive fusion and category-level dictionary learning model for multi-view human action recognitionIEEE Internet Things J.201969280929310.1109/JIOT.2019.2911669
– reference: O. Vinyals, A. Toshev, S. Bengio, D. Erhan, Show and tell: a neural image caption generator. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 3156–3164 (2015).
– reference: ZhaoY.LiH.WanS.SekuboyinaA.HuX.TettehG.PiraudM.MenzeB.Knowledge-aided convolutional neural network for small organ segmentationIEEE J. Biomed. Health Inform.20192341363137310.1109/JBHI.2019.2891526
– reference: ZhangJ.ShengV. S.NicholsonB. A.WuX.Ceka: a tool for mining the wisdom of crowdsJ. Mach. Learn. Res.2015161285328583450526
– reference: X. Xu, X. Liu, Z. Xu, C. Wang, S. Wan, X. Yang, Joint optimization of resource utilization and load balance with privacy preservation for edge services in 5G networks. Mob. Netw. Appl., 1–12 (2019).
– reference: P. Lai, Q. He, G. Cui, X. Xia, M. Abdelrazek, F. Chen, J. Hosking, J. Grundy, Y. Yang, Edge user allocation with dynamic quality of service. International Conference on Service-Oriented Computing, 86–101 (2019).
– reference: ZhangJ.ShengV. S.WuJ.WuX.Multi-class ground truth inference in crowdsourcing with clusteringIEEE Trans. Knowl. Data Eng.20162841080108510.1109/TKDE.2015.2504974
– reference: SimonyanK.ZissermanA.Very deep convolutional networks for large-scale image recognitionarXiv preprint arXiv:1409.155620142014114
– reference: QiL.ZhangX.DouW.HuC.YangC.ChenJ.A two-stage locality-sensitive hashing based approach for privacy-preserving mobile service recommendation in cross-platform edge environmentFutur. Gener. Comput. Syst.20188863664310.1016/j.future.2018.02.050
– reference: RongX.word2vec parameter learning explainedarXiv preprint arXiv:1411.273820142014121
– reference: QiL.HeQ.ChenF.DouW.WanS.ZhangX.XuX.Finding all you need: Web APIs recommendation in web of things through keywords searchIEEE Trans. Comput. Soc. Syst.2019651063107210.1109/TCSS.2019.2906925
– reference: WangB.MaH.WangX.DengG.YangY.WanS.Vulnerability assessment method for cyber-physical system considering node heterogeneityJ. Supercomput.20197510121https://doi.org/10.1007/s11227-019-03027-w
– reference: XuX.MoR.DaiF.LinW.WanS.DouW.Dynamic resource provisioning with fault tolerance for data-intensive meteorological workflows in cloudIEEE Trans. Ind. Inform.2019201911
– reference: WanS.QiL.XuX.TongC.GuZ.Deep learning models for real-time human activity recognition with smartphonesMob. Networks Appl.20197512113https://doi.org/10.1007/s11036-019-01445-x
– reference: B. Ionescu, A. -L. Radu, M. Menéndez, H. Müller, A. Popescu, B. Loni, Div400: a social image retrieval result diversification dataset. Proceedings of the 5th ACM Multimedia Systems Conference, 29–34 (2014).
– reference: DawidA. P.SkeneA. M.Maximum likelihood estimation of observer error-rates using the em algorithmAppl. Stat.1979281202810.2307/2346806
– reference: LiuH.KouH.YanC.QiL.Link prediction in paper citation network to construct paper correlation graphEURASIP J. Wirel. Commun. Netw.20192019111210.1186/s13638-015-0498-8
– reference: GaoZ.LiY.WanS.Exploring deep learning for view-based 3D model retrievalACM Trans. Multimed. Comput. Commun. Appl. (TOMM)202016112110.1145/3377876
– reference: WangY.HeQ.YeD.YangY.Formulating criticality-based cost-effective fault tolerance strategies for multi-tenant service-based systemsIEEE Trans. Softw. Eng.201744329130710.1109/TSE.2017.2681667
– reference: QiL.ChenY.YuanY.FuS.ZhangX.XuX.A QOS-aware virtual machine scheduling method for energy conservation in cloud-based cyber-physical systemsWorld Wide Web20202311275129710.1007/s11280-019-00684-yhttps://doi.org/10.1007/s11280-019-00684-y
– reference: WanS.LiX.XueY.LinW.XuX.Efficient computation offloading for Internet of Vehicles in edge computing-assisted 5G networksJ. Supercomput.20197510130https://doi.org/10.1007/s11227-019-03011-4
– reference: DingS.QuS.XiY.WanS.Stimulus-driven and concept-driven analysis for image caption generationNeurocomputing201935111010.1016/j.neucom.2019.01.075
– reference: MikolovT.ChenK.CorradoG.DeanJ.Efficient estimation of word representations in vector spacearXiv preprint arXiv:1301.378120132014112
– reference: KongC.LuoG.TianL.CaoX.Disseminating authorized content via data analysis in opportunistic social networksBig Data Min. Analytics201821122410.26599/BDMA.2018.9020028
– reference: XuY.QiL.DouW.YuJ.Privacy-preserving and scalable service recommendation based on simhash in a distributed cloud environmentComplexity2017201719
– reference: WanS.XiaY.QiL.YangY. -H.AtiquzzamanM.Automated colorization of a grayscale image with seed points propagationIEEE Trans. Multimed.202020201110.1109/TMM.2020.2976573
– reference: HeQ.ZhouR.ZhangX.WangY.YeD.ChenF.GrundyJ. C.YangY.Keyword search for building service-based systemsIEEE Trans. Softw. Eng.201643765867410.1109/TSE.2016.2624293
– reference: R. Snow, B. O’Connor, D. Jurafsky, A. Y. Ng, Cheap and fast—but is it good?: evaluating non-expert annotations for natural language tasks (Association for Computational Linguistics). Proceedings of the Conference on Empirical Methods in Natural Language Processing, 254–263 (2008).
– reference: ZhangY.ChenX.ZhouD.JordanM. I.Spectral methods meet em: a provably optimal algorithm for crowdsourcingJ. Mach. Learn. Res.20161713537358035435081367.68241
– reference: XuX.HeC.XuZ.QiL.WanS.BhuiyanM. Z. A.Joint optimization of offloading utility and privacy for edge computing enabled IoTIEEE Internet Things J.2019201911
– volume: 28
  start-page: 1080
  issue: 4
  year: 2016
  ident: 1697_CR22
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2015.2504974
– ident: 1697_CR43
  doi: 10.1109/CVPR.2015.7298935
– volume: 6
  start-page: 9280
  year: 2019
  ident: 1697_CR26
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2019.2911669
– volume: 2014
  start-page: 1
  year: 2013
  ident: 1697_CR30
  publication-title: arXiv preprint arXiv:1301.3781
– volume: 2020
  start-page: 1
  year: 2020
  ident: 1697_CR34
  publication-title: IEEE Trans. Multimed.
  doi: 10.1109/TMM.2020.2976573
– volume: 2014
  start-page: 1
  year: 2014
  ident: 1697_CR31
  publication-title: arXiv preprint arXiv:1411.2738
– volume: 2014
  start-page: 1
  year: 2014
  ident: 1697_CR29
  publication-title: arXiv preprint arXiv:1409.1556
– volume: 43
  start-page: 658
  issue: 7
  year: 2016
  ident: 1697_CR6
  publication-title: IEEE Trans. Softw. Eng.
  doi: 10.1109/TSE.2016.2624293
– volume: 351
  start-page: 1
  year: 2019
  ident: 1697_CR35
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.01.075
– ident: 1697_CR9
  doi: 10.1109/CLOUD.2015.40
– ident: 1697_CR39
  doi: 10.1007/s11036-019-01448-8
– ident: 1697_CR36
– volume: 6
  start-page: 1063
  issue: 5
  year: 2019
  ident: 1697_CR42
  publication-title: IEEE Trans. Comput. Soc. Syst.
  doi: 10.1109/TCSS.2019.2906925
– volume: 45
  start-page: 66
  issue: 2
  year: 2012
  ident: 1697_CR12
  publication-title: ACM SIGIR Forum
  doi: 10.1145/2093346.2093356
– volume: 16
  start-page: 2853
  issue: 1
  year: 2015
  ident: 1697_CR37
  publication-title: J. Mach. Learn. Res.
– volume: 2019
  start-page: 1
  year: 2019
  ident: 1697_CR11
  publication-title: IEEE Trans. Ind. Inform.
– ident: 1697_CR13
  doi: 10.1109/TSC.2019.2963301
– volume: 149
  start-page: 99
  year: 2019
  ident: 1697_CR33
  publication-title: Comput. Commun.
  doi: 10.1016/j.comcom.2019.10.012
– ident: 1697_CR15
  doi: 10.1007/978-3-030-33702-5_8
– volume: 88
  start-page: 636
  year: 2018
  ident: 1697_CR45
  publication-title: Futur. Gener. Comput. Syst.
  doi: 10.1016/j.future.2018.02.050
– volume: 38
  start-page: 2215
  issue: 12
  year: 2018
  ident: 1697_CR19
  publication-title: IEEE Trans. Comput. Aided Des. Integr. Circ. Syst.
  doi: 10.1109/TCAD.2018.2883993
– volume: 22
  start-page: 2035
  year: 2009
  ident: 1697_CR20
  publication-title: Advances in Neural Information Processing Systems
– volume: 168
  start-page: 1
  year: 2019
  ident: 1697_CR24
  publication-title: Comput. Netw.
– volume: 17
  start-page: 3537
  issue: 1
  year: 2016
  ident: 1697_CR21
  publication-title: J. Mach. Learn. Res.
– volume: 96
  start-page: 89
  year: 2019
  ident: 1697_CR14
  publication-title: Futur. Gener. Comput. Syst.
  doi: 10.1016/j.future.2019.01.012
– volume: 68
  start-page: 1785
  issue: 12
  year: 2019
  ident: 1697_CR18
  publication-title: IEEE Trans. Comput.
  doi: 10.1109/TC.2019.2935042
– volume: 23
  start-page: 1363
  issue: 4
  year: 2019
  ident: 1697_CR28
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2019.2891526
– ident: 1697_CR1
  doi: 10.1145/1480506.1480508
– ident: 1697_CR16
  doi: 10.3115/1613715.1613751
– volume: 75
  start-page: 1
  issue: 10
  year: 2019
  ident: 1697_CR4
  publication-title: J. Supercomput.
  doi: 10.1007/s11227-019-03027-w
– volume: 2018
  start-page: 1
  year: 2018
  ident: 1697_CR44
  publication-title: Wirel. Commun. Mob. Comput.
– volume: 2
  start-page: 12
  issue: 1
  year: 2018
  ident: 1697_CR2
  publication-title: Big Data Min. Analytics
  doi: 10.26599/BDMA.2018.9020028
– volume: 2017
  start-page: 1
  year: 2017
  ident: 1697_CR10
  publication-title: Complexity
– volume: 35
  start-page: 1313
  issue: 5
  year: 2016
  ident: 1697_CR23
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2016.2528120
– volume: 75
  start-page: 1
  issue: 10
  year: 2019
  ident: 1697_CR32
  publication-title: J. Supercomput.
  doi: 10.1007/s11227-019-03011-4
– ident: 1697_CR38
  doi: 10.1145/2557642.2563670
– volume: 2
  start-page: 48
  issue: 1
  year: 2018
  ident: 1697_CR3
  publication-title: Big Data Min. Analytics
  doi: 10.26599/BDMA.2018.9020031
– volume: 44
  start-page: 291
  issue: 3
  year: 2017
  ident: 1697_CR5
  publication-title: IEEE Trans. Softw. Eng.
  doi: 10.1109/TSE.2017.2681667
– volume: 2019
  start-page: 1
  issue: 1
  year: 2019
  ident: 1697_CR41
  publication-title: EURASIP J. Wirel. Commun. Netw.
  doi: 10.1186/s13638-015-0498-8
– volume: 2019
  start-page: 1
  year: 2019
  ident: 1697_CR40
  publication-title: IEEE Internet Things J.
– volume: 14
  start-page: 1
  issue: 6
  year: 2006
  ident: 1697_CR7
  publication-title: Wired Mag.
– volume: 28
  start-page: 20
  issue: 1
  year: 1979
  ident: 1697_CR17
  publication-title: Appl. Stat.
  doi: 10.2307/2346806
– volume: 16
  start-page: 1
  issue: 1
  year: 2020
  ident: 1697_CR27
  publication-title: ACM Trans. Multimed. Comput. Commun. Appl. (TOMM)
  doi: 10.1145/3377876
– volume: 23
  start-page: 1275
  issue: 1
  year: 2020
  ident: 1697_CR8
  publication-title: World Wide Web
  doi: 10.1007/s11280-019-00684-y
– volume: 75
  start-page: 1
  issue: 12
  year: 2019
  ident: 1697_CR25
  publication-title: Mob. Networks Appl.
  doi: 10.1007/s11036-019-01445-x
SSID ssj0033492
Score 2.2181652
Snippet In this paper, we propose a novel relevance evaluation method using labels collected from crowdsourcing. The proposed method not only predicts the relevance...
Abstract In this paper, we propose a novel relevance evaluation method using labels collected from crowdsourcing. The proposed method not only predicts the...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Artificial neural networks
Communications Engineering
Crowdsourcing
Deep learning
Engineering
Evaluation
Information retrieval
Information Systems Applications (incl.Internet)
Labels
Machine learning
Multi-modal Sensor Data Fusion in Internet of Things
Networks
Relevance evaluation
Signal,Image and Speech Processing
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQYoAB8RSFgjKwgdXWTux4pIiKAVUMgLpZ50cQEgpVW-Dvc3aSPpCAhdHORTndnXMP298Rci5tBj5loQTmgKZOWAqeWWoyhc5TcuXjrbSnOzkc5qORul9q9RXOhFXwwJXgOpApk1srAUP91HSNASfQ6pzFMc5HJNCuVE0yVf2DecDca67I5KIz7XG0MxpSpYA-IilbcUMRrX8lxPy2KxqdzWCHbNdRYnJVcbdL1ny5R7aWsAP3Sb9GRn1OnPfjpKyOc0-TUFhN8KOfLtblAwHGpUnojRJ3-5MFvvcBeRzcPFzf0rohArXoNmYUehasAeZMKnL0s5AVnjMrug5HjkkLwhcKAxzjuhwkYO7AOWAC4QtQrgf8kKyXb6U_Iol3GDcVwprC-7RQysgARsgzw60TaQ4t0mvko22NFh6aVrzqmDXkQlcy1ShTHWWqWYtczN8ZV1gZv1L3g9jnlAHnOk6g9nWtff2X9luk3ShN14tvqkO3d8F5xkWLXDaKXDz-maXj_2DphGyyaGgpZVmbrM8m7_6UbNiP2ct0chbN9Avgz-r1
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: SpringerLINK
  dbid: C24
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZQYYCBNyJQUAY2sGhix0lGWlExoIoBUDfr_EiFhNqqKfD3OTtJoQiQYIxzlqzz-R723XeEnKU6ActjdwVmgHIjNAUba6qSHI1nynLrq9Ieb9PBIBsO87u6KKxsst2bJ0mvqf2xzsRlGTGUFerCHYcgklJUvKsOTswlcvVcjUOlf5nD22vKY76dt2SCPFL_knv55UXUG5r-1v-WuE02a8cyvKokYYes2PEu2fgEN7hHujWY6ig01k7DcZUBXobuLjbEtb4Zf5XvCNCVDV07FZ8gEH5Agu-Th_71fe-G1j0UqEZLM6cQadAKYqO4yNA0Q1JYFmvRMfhl4lSDsEWOPpEyHQYpYLjBGGDMYQvITQTsgLTGk7E9JKE16GoVQqvCWl7kuUodfiFLFNNG8AwCEjVslboGGHd9Lp6lDzQyISv-SOSP9PyRcUDOF3OmFbzGr9Rdt1sLSgeN7Qcms5GsT5qEJFeZ1ilgbMhVRykwAtWU0fiN4zwg7WavZX1eS-kaxAvGEiYCctHs7cfvn5d09DfyY7Iee_HgNE7apDWfvdgTsqZf50_l7NTL8TvMEe3O
  priority: 102
  providerName: Springer Nature
Title Learning deep networks with crowdsourcing for relevance evaluation
URI https://link.springer.com/article/10.1186/s13638-020-01697-2
https://www.proquest.com/docview/2394633536
https://doaj.org/article/a59b8cc7a2614b0bbad6048dc2618cc4
Volume 2020
WOSCitedRecordID wos000528580000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1687-1499
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0033492
  issn: 1687-1499
  databaseCode: DOA
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVAVX
  databaseName: SpringerLINK
  customDbUrl:
  eissn: 1687-1499
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0033492
  issn: 1687-1499
  databaseCode: C24
  dateStart: 20041201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB7RlgM98K4aKNEeuIHVrO21d0-IVK1AQLRCgAoXy6-tkFASsgH-PjOOt6FI9MLFkh-7sjzjedn-BuCp9pWNklMILFgmg_LMRu6ZqxpUnlo0Mb1K-_RWz2b1-XnT5oBbn69VDjIxCeqw8BQjP6YU3kqISqgXy--MskbR6WpOobEDe4RUhny-Nz2dte8HWSwIe49cLoVbqZSaD89manXclwJ5j5H7RIgkmvErqikh-F8xO_86KU0K6OzO_079LtzOpmfxcsMr9-BGnN-H_T8ACR_ANMOtXhQhxmUx39wR7wuK1hY4618hBftpABq7BSVcSVcIii1o-EP4eHb64eQVy1kWmEddtGa29NY7y4OTqkblbasuCu7VJGAtcO2til2DVpMLE2G1RYdECIteSexsE0orDmB3vpjHQyhiQGOsU951McquaZwmhENROeGDkrUdQTkssPEZgpwyYXwzyRWpldkQxSBRTCKK4SN4dvnNcgPAce3oKdHtciSBZ6eGxerC5L1obNW42ntt0XuUbuKcDQoFWfBYx3Y5gqOBjibv6N5siTiC5wMnbLv_PaVH1__tMdziiQcl49UR7K5XP-ITuOl_rr_2q3Hm5zHsnHA5TgEDLN9ohmVbfcH-9vW79vNvTFMA0A
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLRJw4I1YWsAHOIHVje3YyaFCFKi66na1h4LKyfUrFRLaXTYLFX-qv7FjJ-lSJHrrgaOdiZXYn-fhxzcAr5TLTRAsLoF5Q4WXjprAHLV5icZT8TKkW2lfRmo8Lo6OyskanHV3YeKxyk4nJkXtZy6ukW_FFN6S85zLd_MfNGaNirurXQqNBhb74fcphmz19vAjju9rxnY_HX7Yo21WAepQ9y6pyZxx1jBvhSzQWJm8Cpw5OfBY8kw5I0NVopdg_YAbZdAB59ygFx4qU_rMcGz3BqwLBPugB-uT4cHka6f7eeT6iyGexKmbCcW6azqF3KozjlinMVyLDCiKskumMGUMuOTm_rUzmwze7r3_ravuw93WtSbvm7nwANbC9CHc-YNw8RHstHSyJ8SHMCfT5gx8TeJqNMFeOvVpMyMKoDNPYkKZdESCrEjRH8Pna_mJJ9CbzqbhKZDg0dmspLNVCKIqS6sigyPPLXdeisL0IesGVLuWYj1m-viuU6hVSN2AQCMIdAKBZn14c_HOvCEYuVJ6J-LkQjKSg6eK2eJEt7pGm7y0hXPKYHQs7MBa4yUqau-wjPWiD5sdbnSrsWq9Ak0f3nbIWz3-9yc9u7q1l3Br7_BgpEfD8f4G3GYJ_4KyfBN6y8XP8Bxuul_Lb_XiRTuXCBxfNybPAep6WmQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Nb9MwFH8aG0LswOfQCgN8gBNYbWzHTg4TomwV06aqQoB2M_7KhITarumY-Nf46_bsJCtDYrcdOMZxrNj--X3Yz78H8Eq53ATB4haYN1R46agJzFGbl6g8FS9DupX29UiNx8XxcTlZg9_dXZgYVtnJxCSo_czFPfJ-TOEtOc-57FdtWMRkb_RufkpjBql40tql02ggchh-naP7Vu8e7OFcv2ZstP_5w0faZhigDuXwkprMGWcN81bIAhWXyavAmZMDj0-eKWdkqEq0GKwfcKMMGuOcG7TIQ2VKnxmO7d6CDexSho7fxnB_PPnU6QEeef-iuydxGWdCse7KTiH7dcYR9zS6bpENRVF2RS2m7AFXTN6_TmmT8hvd_5-H7QHca01u8r5ZIw9hLUwfweYfRIyPYdjSzJ4QH8KcTJvY-JrEXWqCI3bu0yFHrIBGPomJZlLoBFmRpW_BlxvpxBNYn86mYRtI8GiEVtLZKgRRlaVVkdmR55Y7L0VhepB1k6tdS70eM4D80MkFK6RuAKEREDoBQrMevLn8Zt4Qj1xbexgxc1kzkoangtniRLcySJu8tIVzyqDXLOzAWuMlCnDv8BnLRQ92OgzpVpLVegWgHrztULh6_e9fenp9ay_hDgJRHx2MD5_BXZaWgqAs34H15eIsPIfb7ufye7140S4rAt9uGpIXli5i_g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+deep+networks+with+crowdsourcing+for+relevance+evaluation&rft.jtitle=EURASIP+journal+on+wireless+communications+and+networking&rft.au=Wu%2C+Ming&rft.au=Yin+Xiaochun&rft.au=Li+Qianmu&rft.au=Zhang%2C+Jing&rft.date=2020-04-25&rft.pub=Springer+Nature+B.V&rft.issn=1687-1472&rft.eissn=1687-1499&rft.volume=2020&rft.issue=1&rft_id=info:doi/10.1186%2Fs13638-020-01697-2&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-1499&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-1499&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-1499&client=summon