After the paint has dried: a review of testing techniques for studying the mechanical properties of artists’ paint

While the chemistry of artists’ paints has previously been studied and reviewed, these studies only capture a portion of the properties affecting the response of paint materials. The mechanical properties of artists’ paints relate to the deformation response of these materials when a stress is appli...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Heritage science Ročník 9; číslo 1; s. 1 - 24
Hlavní autoři: dePolo, Gwen, Walton, Marc, Keune, Katrien, Shull, Kenneth R.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cham Springer International Publishing 07.06.2021
Springer Nature B.V
SpringerOpen
Témata:
ISSN:2050-7445, 2050-7445
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract While the chemistry of artists’ paints has previously been studied and reviewed, these studies only capture a portion of the properties affecting the response of paint materials. The mechanical properties of artists’ paints relate to the deformation response of these materials when a stress is applied. This response is dependent on many factors, such as paint composition, pigment to binder ratio, temperature, relative humidity, and solvent exposure. Here, thirty years of tensile testing data have been compiled into a single dataset, along with the testing conditions, to provide future researchers with easy access to these data as well some general discussion of their trends. Alongside the more commonly used techniques of tensile testing and dynamic mechanical analysis, new techniques have been developed to more fully investigate the mechanical properties, and are discussed along with salient results. The techniques have been divided into two categories: those that are restricted to use on model systems and those that are applicable to historic samples. Techniques applied to model systems (tensile testing, dynamic mechanic analysis, quartz crystal microbalance, vibration studies) require too large of a sample to be taken from art objects or focus on the mechanical properties of the liquid state (shear rheometry). Techniques applied to historic samples incorporate the use of small sample sizes (nanoindentation), optical techniques (laser shearography), computational simulations (finite element analysis), and non-invasive comparative mechanical properties (single-sided nuclear magnetic resonance) to investigate and predict the mechanical properties of paints.
AbstractList While the chemistry of artists’ paints has previously been studied and reviewed, these studies only capture a portion of the properties affecting the response of paint materials. The mechanical properties of artists’ paints relate to the deformation response of these materials when a stress is applied. This response is dependent on many factors, such as paint composition, pigment to binder ratio, temperature, relative humidity, and solvent exposure. Here, thirty years of tensile testing data have been compiled into a single dataset, along with the testing conditions, to provide future researchers with easy access to these data as well some general discussion of their trends. Alongside the more commonly used techniques of tensile testing and dynamic mechanical analysis, new techniques have been developed to more fully investigate the mechanical properties, and are discussed along with salient results. The techniques have been divided into two categories: those that are restricted to use on model systems and those that are applicable to historic samples. Techniques applied to model systems (tensile testing, dynamic mechanic analysis, quartz crystal microbalance, vibration studies) require too large of a sample to be taken from art objects or focus on the mechanical properties of the liquid state (shear rheometry). Techniques applied to historic samples incorporate the use of small sample sizes (nanoindentation), optical techniques (laser shearography), computational simulations (finite element analysis), and non-invasive comparative mechanical properties (single-sided nuclear magnetic resonance) to investigate and predict the mechanical properties of paints.
Abstract While the chemistry of artists’ paints has previously been studied and reviewed, these studies only capture a portion of the properties affecting the response of paint materials. The mechanical properties of artists’ paints relate to the deformation response of these materials when a stress is applied. This response is dependent on many factors, such as paint composition, pigment to binder ratio, temperature, relative humidity, and solvent exposure. Here, thirty years of tensile testing data have been compiled into a single dataset, along with the testing conditions, to provide future researchers with easy access to these data as well some general discussion of their trends. Alongside the more commonly used techniques of tensile testing and dynamic mechanical analysis, new techniques have been developed to more fully investigate the mechanical properties, and are discussed along with salient results. The techniques have been divided into two categories: those that are restricted to use on model systems and those that are applicable to historic samples. Techniques applied to model systems (tensile testing, dynamic mechanic analysis, quartz crystal microbalance, vibration studies) require too large of a sample to be taken from art objects or focus on the mechanical properties of the liquid state (shear rheometry). Techniques applied to historic samples incorporate the use of small sample sizes (nanoindentation), optical techniques (laser shearography), computational simulations (finite element analysis), and non-invasive comparative mechanical properties (single-sided nuclear magnetic resonance) to investigate and predict the mechanical properties of paints.
ArticleNumber 68
Author Shull, Kenneth R.
dePolo, Gwen
Walton, Marc
Keune, Katrien
Author_xml – sequence: 1
  givenname: Gwen
  surname: dePolo
  fullname: dePolo, Gwen
  organization: Department of Materials Science and Engineering, Northwestern University
– sequence: 2
  givenname: Marc
  surname: Walton
  fullname: Walton, Marc
  organization: Department of Materials Science and Engineering, Northwestern University
– sequence: 3
  givenname: Katrien
  surname: Keune
  fullname: Keune, Katrien
  organization: Van’t Hoff Institute for Molecular Science, University of Amsterdam, Conservation and Science, Rijksmuseum Amsterdam
– sequence: 4
  givenname: Kenneth R.
  orcidid: 0000-0002-8027-900X
  surname: Shull
  fullname: Shull, Kenneth R.
  email: k-shull@northwestern.edu
  organization: Department of Materials Science and Engineering, Northwestern University
BookMark eNp9UctuFDEQtFCQCCE_wMkS5wE_xzPcoohHpEi5wNnqsXt2vdrYi-1llRu_we_xJXh3gkAc4ku32lXV1aqX5CymiIS85uwt50P_riimRtUxwTvGtBi7wzNyLphmnVFKn_3TvyCXpWxYe-MoRW_OSb2aK2Za10h3EGKlayjU54D-PQWa8XvAA00zrVhqiKtW3TqGb3ssdE6Zlrr3D6d5E7hvfxCDgy3d5bTDXEODNTK0rtTy68fPZckr8nyGbcHLx3pBvn788OX6c3d79-nm-uq2c0qMtRtRM6G90M3spCQKPknh9Ohm5yaNqGbTG-al8VrB3FCgJw9geolaTdzJC3Kz6PoEG7vL4R7yg00Q7GmQ8soerbktWo0zDJIJNzilmIOBO_DGDNpxj5MZmtabRauddjy_2k3a59jsW6GlkQPrB9VQw4JyOZWScbYuVKghxZohbC1n9hiZXSKzLTJ7isweGlX8R_1j-EmSXEilgeMK819XT7B-Axc8rkA
CitedBy_id crossref_primary_10_1016_j_porgcoat_2025_109511
crossref_primary_10_3390_polym15224348
crossref_primary_10_1016_j_culher_2025_04_026
crossref_primary_10_3390_ma18174041
crossref_primary_10_1080_00393630_2024_2393049
crossref_primary_10_1186_s40494_022_00814_2
crossref_primary_10_1145_3728459
crossref_primary_10_3390_heritage6010009
crossref_primary_10_1016_j_porgcoat_2024_108820
crossref_primary_10_1016_j_optlastec_2023_110506
crossref_primary_10_1038_s41529_024_00472_8
crossref_primary_10_1016_j_culher_2024_10_002
crossref_primary_10_1186_s40494_023_01004_4
crossref_primary_10_1016_j_colsurfa_2024_135741
crossref_primary_10_1186_s40494_024_01147_y
crossref_primary_10_1186_s40494_023_01106_z
crossref_primary_10_3390_app13127251
crossref_primary_10_1016_j_optlaseng_2023_107726
crossref_primary_10_3390_app12031018
crossref_primary_10_1016_j_culher_2024_03_010
crossref_primary_10_1016_j_ijmecsci_2022_107267
crossref_primary_10_1016_j_culher_2025_06_017
Cites_doi 10.1016/0095-8522(50)90030-4
10.1007/978-1-4419-9794-4_41
10.1016/j.porgcoat.2011.08.021
10.3791/60584-v
10.1179/sic.1995.40.1.51
10.1557/PROC-852-OO3.1
10.1007/978-1-4899-7485-3
10.1016/j.porgcoat.2004.03.002
10.1039/C9NJ00186G
10.1016/j.engfracmech.2013.09.011
10.1021/acs.macromol.8b00890
10.1186/s40494-020-0352-0
10.1016/j.colsurfa.2008.07.037
10.1016/j.crhy.2018.11.003
10.1007/s11043-009-9076-y
10.1007/s00339-011-6486-x
10.1016/j.culher.2020.08.007
10.1016/j.porgcoat.2010.05.008
10.1557/PROC-852-OO2.9
10.1080/00393630.2018.1504434
10.1080/00393630.2016.1140428
10.1007/s10973-006-7725-9
10.1557/PROC-852-OO3.2
10.1038/nmat5070
10.1021/bm020116i
10.1007/978-3-642-36359-7_180
10.4028/www.scientific.net/KEM.295-296.165
10.1080/00393630.2018.1504444
10.1016/j.nuclphysa.2005.02.152
10.1016/j.culher.2017.08.001
10.1016/j.tafmec.2020.102779
10.1038/s41598-020-64892-7
10.1186/s40494-020-00396-x
10.1179/sic.2003.48.3.145
10.1016/j.porgcoat.2016.10.019
10.1016/j.crhy.2009.08.006
10.1002/mrc.5053
10.1016/0300-9440(76)80010-0
10.1016/j.colsurfa.2014.02.055
10.1016/j.ndteint.2009.04.002
10.1002/anie.201611136
10.1080/18680860.2019.1580005
10.1007/s10704-020-00461-3
10.1007/978-3-030-19254-9_32
10.1002/mrc.4164
10.1016/j.culher.2018.12.007
10.1007/s11998-019-00187-5
10.1179/019713694806124739
10.1016/j.microc.2017.03.013
10.1179/sic.1999.44.2.129
10.1002/mrc.5020
10.5479/si.19492359.3.1
10.1117/12.958089
10.1023/A:1001031931132
10.1557/opl.2014.828
10.1021/acs.macromol.8b01426
10.1117/12.727497
10.1016/j.polymdegradstab.2014.02.009
10.1080/01971360.2019.1603062
10.1557/PROC-267-337
10.1007/s00339-015-9423-6
10.1063/1.4960438
10.1557/mrs2001.19
10.1016/S0143-8166(99)00007-X
10.1023/A:1025133508109
10.1557/PROC-267-359
10.1179/sic.2005.50.2.143
10.1021/acs.macromol.9b01378
10.1016/j.eurpolymj.2003.10.017
10.1016/j.matdes.2019.108174
10.1016/j.jmbbm.2008.10.002
10.1016/j.jmps.2019.103683
10.1021/acs.iecr.9b02567
10.1117/12.482923
10.1016/0040-6031(94)02387-4
10.1016/S0926-6690(03)00042-6
10.1179/sic.1969.002
10.1016/j.microc.2015.08.023
10.1016/j.ccr.2005.02.002
10.1179/sic.1997.42.3.129
10.1021/la404925h
10.1080/00393630.2018.1504433
10.1016/j.polymer.2016.09.063
10.5479/si.11342126.v1
10.1016/j.polymer.2020.122222
10.1186/s40494-021-00501-8
10.1007/978-3-319-07836-6
10.1016/S0926-6690(01)00079-6
10.1557/JMR.1992.1564
10.1179/sic.2000.45.Supplement-1.65
10.1021/ac901141v
10.1111/str.12269
10.1002/anie.201713413
10.1186/s40494-020-00388-x
10.1016/j.ijadhadh.2015.12.026
10.1117/12.827519
10.1515/aut-2015-0023
10.1007/BF01905579
10.1038/s41598-020-75040-6
10.1039/b803960g
10.1179/0197136012Z.0000000003
10.1186/2193-0414-1-3
ContentType Journal Article
Copyright The Author(s) 2021
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
KB.
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOA
DOI 10.1186/s40494-021-00529-w
DatabaseName Springer Nature Open Access Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
SciTech Premium Collection
Materials Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Materials Science Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
Materials Science Database
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef

Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: KB.
  name: Materials Science Database
  url: http://search.proquest.com/materialsscijournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline History & Archaeology
EISSN 2050-7445
EndPage 24
ExternalDocumentID oai_doaj_org_article_5efa8302c8c440ca81cad7785c1deb78
10_1186_s40494_021_00529_w
GrantInformation_xml – fundername: National Science Foundation
  grantid: OISE-1743748
  funderid: http://dx.doi.org/10.13039/100000001
– fundername: Andrew W. Mellon Foundation
  funderid: http://dx.doi.org/10.13039/100000873
GroupedDBID -A0
0R~
4.4
5VS
8FE
8FG
AAFWJ
AAJSJ
AAKKN
ABDBF
ABEEZ
ABJCF
ACACY
ACGFS
ACUHS
ACULB
ADBBV
ADINQ
AFGXO
AFKRA
AFPKN
AHBYD
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
ASPBG
BCNDV
BENPR
BFQNJ
BGLVJ
C24
C6C
CCPQU
D1I
EBLON
EBS
GROUPED_DOAJ
HCIFZ
IAO
IHR
KB.
KQ8
M~E
NAO
OK1
PDBOC
PIMPY
PROAC
RBZ
RSV
RVI
SOJ
AAYXX
CITATION
SNYQT
ABUWG
AZQEC
DWQXO
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c429t-9e5025d25993b43e21b32c59cfccb5ee4f7670d37d54af599a5bdaa763e54b1c3
IEDL.DBID BENPR
ISICitedReferencesCount 32
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000658252600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2050-7445
IngestDate Fri Oct 03 12:44:38 EDT 2025
Tue Oct 14 14:12:15 EDT 2025
Tue Nov 18 20:55:34 EST 2025
Sat Nov 29 03:22:21 EST 2025
Fri Feb 21 02:49:14 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Shear rheometry
Tensile testing
Vibration studies
Nanoindentation
Mechanical properties
Laser shearography
Single-sided nuclear magnetic resonance
Quartz crystal microbalance
Finite element analysis
Dynamic mechanical analysis
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c429t-9e5025d25993b43e21b32c59cfccb5ee4f7670d37d54af599a5bdaa763e54b1c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8027-900X
OpenAccessLink https://www.proquest.com/docview/2537380684?pq-origsite=%requestingapplication%
PQID 2537380684
PQPubID 2034752
PageCount 24
ParticipantIDs doaj_primary_oai_doaj_org_article_5efa8302c8c440ca81cad7785c1deb78
proquest_journals_2537380684
crossref_citationtrail_10_1186_s40494_021_00529_w
crossref_primary_10_1186_s40494_021_00529_w
springer_journals_10_1186_s40494_021_00529_w
PublicationCentury 2000
PublicationDate 2021-06-07
PublicationDateYYYYMMDD 2021-06-07
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-07
  day: 07
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: London
PublicationTitle Heritage science
PublicationTitleAbbrev Herit Sci
PublicationYear 2021
Publisher Springer International Publishing
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
– name: SpringerOpen
References Young C. Measurement of the biaxial properties of nineteenth century canvas primings using electronic speckle pattern interferometry. Opt Lasers Eng 1999;31(2):163–170. http://www.sciencedirect.com/science/article/pii/S014381669900007X.
Mecklenburg MF, Tumosa CS, Erhardt D. The changing mechanical properties of aging oil paints. In: Vandiver PB, Mass JM, Murray A, editors. Materials issues in art and archeology VII. Warrendale, PA: Materials Research Society; 2004. p. 13–24. http://repository.si.edu/xmlui/handle/10088/36019.
de Viguerie L, Jaber M, Pasco H, Lalevée J, Morlet-Savary F, Ducouret G, et al. A 19th century “ideal” oil paint medium: a complex hybrid organic–inorganic gel. Angewandte Chemie Int Edn. 2017;56(6):1619–1623. https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.201611136.
Belgacem MN, Blayo A, Gandini A. organosolv lignin as a filler in inks, varnishes and paints. Ind Crops Products. 2003;18(2):145–153. http://www.sciencedirect.com/science/article/pii/S0926669003000426.
Andersen CK, Freeman A, Mortensen MN, Beltran V, Łukomski M, Phenix A. Mechanical and moisture sorption properties of commercial artists’ oil paints by dynamic mechanical thermal analysis (DMA), nanoindentation, and dynamic vapour sorption (DVS). In: Conservation of modern oil paintings. Springer; 2019. p. 403–417.
Fuesers O, Zumbühl S. the influence of organic solvents on the mechanical properties of alkyd and oil paint. In: IR, NIR, VIS UV Raman. Jerusalem, Israel; 2008. p. 1–14.
Rooney M. Effect of pigment volume concentration on physical and chemical properties of acrylic emulsion paints assessed using single-sided Nmr [Master of Science]. College of William and Mary. Virginia; 2018. https://scholarworks.wm.edu/etd//1530192815.
HaganEWSCharalambidesMNYoungCTLearnerTJSHackneySTensile properties of latex paint films with TiO2 pigmentMech Time Depend Mater.20091321491611:CAS:528:DC%2BD1MXkvVamur8%3D10.1007/s11043-009-9076-y
Carlyle L, Young C, Jardine S. The mechanical response of flour-paste grounds. In: Preparation for painting: the artist’s choice and its consequences. London: Archetype Publications; 2008. p. 123–131.
Fuster-López L, Izzo FC, Piovesan M, Yusá-Marco DJ, Sperni L, Zendri E. Study of the chemical composition and the mechanical behaviour of 20th century commercial artists’ oil paints containing manganese-based pigments. Microchem J. 2016;124:962–973. http://www.sciencedirect.com/science/article/pii/S0026265X15001964.
dePolo GE, Schafer E, Sadman K, Rivnay J, Shull KR. Sample preparation in quartz crystal microbalance measurements of protein adsorption and polymer mechanics. JoVE J Vis Exp. 2020;(155):e60584. https://www.jove.com/video/60584.
Fujisawa N, Łukomski M. Nanoindentation near the Edge of a Viscoelastic Solid with a Rough Surface. Materials & Design. 2019 Dec;184:108174. Available from: https://www.sciencedirect.com/science/article/pii/S0264127519306124.
Michalski SW. Crack mechanisms in gilding. In: Gilded wood: conservation and history. Madison, Connecticut: Sound View Press; 1991. p. 171–181. https://www.academia.edu/741952/1991_Crack_mechanisms_in_gilding.
Sturdy LF, Wright MS, Yee A, Casadio F, Faber KT, Shull KR. Effects of zinc oxide filler on the curing and mechanical response of alkyd coatings. Polymer. 2020;191:122222. http://www.sciencedirect.com/science/article/pii/S0032386120300641.
Groves RM, Osten W, Doulgeridis M, Kouloumpi E, Green T, Hackney S, et al. Shearography as part of a multi-functional sensor for the detection of signature features in movable cultural heritaged. In: Fotakis C, Pezzati L, Salimbeni R, editors. Optical metrology. Munich, Germany; 2007. p. 661810. http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.727497.
BaijLHermansJOrmsbyBNoblePIedemaPKeuneKA review of solvent action on oil paintHerit Sci.2020814310.1186/s40494-020-00388-x
Mecklenburg MF, Institute CC, Institution S, National Gallery of Art (U S ), Gallery T, editors. Art in transit: studies in the transport of paintings. Washington: National Gallery of Art; 1991.
Sato K. The mechanical properties of filled polymers. Prog Org Coat. 1976;4(4):271–302. http://www.sciencedirect.com/science/article/pii/0300944076800100.
Johannsmann D. The quartz crystal microbalance in soft matter research. Soft Biol Matter. Cham: Springer International Publishing; 2015. http://link.springer.com/10.1007/978-3-319-07836-6.
Cimino D, Chiantore O, de La Rie ER, McGlinchey CW, Ploeger R, Poli T, et al. Binary mixtures of ethylene containing copolymers and low molecular weight resins: a new approach towards specifically tuned art conservation products. Int J Adhes Adhes. 2016;67:54–62. http://www.sciencedirect.com/science/article/pii/S0143749615002298.
Shull K. Future trends in studies of the mechanics of artists’ paints. In: The mechanics of art materials and its future in heritage science. No. 10 in Smithsonian Contributions to Museum Conservation. Washington D.C.: Smithsonian Scholarly Press; 2019. p. 87–92.
Sturdy L, Casadio F, Kokkori M, Muir K, Shull KR. Quartz Crystal Rheometry: A quantitative technique for studying curing and aging in artists’ paints. Polym Degrad Stabil. 2014;107:348–355. http://linkinghub.elsevier.com/retrieve/pii/S0141391014000573.
Johnson AP, Robert Hannen W, Zuccari F. Vibration control during museum construction projects. J Am Inst Conserv. 2013;52(1):30–47. http://search.ebscohost.com/login.aspx?direct=true&db=asu&AN=86141021&site=ehost-live.
Soucek MD, Khattab T, Wu J. Review of autoxidation and driers. Prog Org Coat. 2012;73(4):435–454. https://linkinghub.elsevier.com/retrieve/pii/S0300944011002529.
Andersen CK, Freeman A, Mortensen MN, Beltran V, Łukomski M, Phenix A. Mechanical and moisture sorption properties of commercial artists’ oil paint by dynamic mechanical thermal analysis (DMA), nanoindentation, and dynamic vapour sorption (DVS). In: van den Berg KJ, Bonaduce I, Burnstock A, Ormsby B, Scharff M, Carlyle L, et al., editors. Conservation of modern oil paintings. Cham: Springer International Publishing; 2019. p. 403–418. https://doi.org/10.1007/978-3-030-19254-9_32.
Klausmeyer P, Cushman M, Dobrev I, Khaleghi M, Harrington EJ, Chen X, et al. Quantifying and mapping induced strain in canvas paintings uising laser shearography. In: The noninvasive analysis of painted surfaces: scientific impact and conservation practice. No. 5 in Smithsonian Contributions to Museum Conservation. Washington D.C.: Smithsonian Scholarly Press; 2016. p. 1–13.
Hagan EWS. Thermo-mechanical properties of white oil and acrylic artist paints. Prog Org Coat. 2017 Mar;104:28–33. http://www.sciencedirect.com/science/article/pii/S0300944016302363.
Doutre M, Murray A, Fuster-López L. Effects of humidity on gessoes for easel paintings. MRS Proc. 2017;1656:167–171. http://link.springer.com/10.1557/opl.2014.828.
Erhardt D, Tumosa CS, Mecklenburg MF. Natural and accelerated thermal aging of oil paint films. Stud Conserv 2000;45(sup1):65–69. http://www.tandfonline.com/doi/full/10.1179/sic.2000.45.Supplement-1.65.
RocheASoldanoAThe effect of changes in environmental conditions on the mechanical behaviour of selected paint systemsStud Conserv.201863sup12162211:CAS:528:DC%2BC1cXhslWhu7fE10.1080/00393630.2018.1504434
BridarolliANualart-TorrojaAChevalierAOdlyhaMBozecLSystematic mechanical assessment of consolidants for canvas reinforcement under controlled environmentHerit Sci.202081521:CAS:528:DC%2BB3cXhtFGmu7%2FF10.1186/s40494-020-00396-x
Busse F, Rehorn C, Küppers M, Ruiz N, Stege H, Blümich B. NMR relaxometry of oil paint binders. Magn Reson Chem. 2020;58(9):830–839. https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/abs/10.1002/mrc.5020.
Eumelen GJAM, Bosco E, Suiker ASJ, van Loon A, Iedema PD. A computational model for chemo-mechanical degradation of historical oil paintings due to metal soap formation. J Mech Phys Solids. 2019;132:103683. http://www.sciencedirect.com/science/article/pii/S0022509619302182.
Rogala D, DePriest P, Charola AE, Koestler R. The mechanics of art materials and its future in heritage science. No. 10 in Smithsonian contributions to museum conservation. Washington D.C.: Smithsonian Scholarly Press; 2019.
Mecklenburg MF, Tumosa CS, Erlebacher JD. Mechanical behavior of artist’s acrylic paints under equilibrium conditions. In: Division of polymer chemistry. vol. 35. Washington, D.C.: American Chemical Society; 1994. p. 297–298. http://repository.si.edu/xmlui/handle/10088/10305.
HonzíčekJCuring of air-drying paints: a critical review | industrial and engineering chemistry researchInd Eng Chem Res.2019582812485125051:CAS:528:DC%2BC1MXht1aqsb3J10.1021/acs.iecr.9b02567
Hermens E, Townsend JH. Binding media in western easel painting. In: Conservation of easel paintings. 1st edn. Routledge series in conservation and museology. London/New York: Routledge; 2012. p. 207–213.
Mecklenburg MF, McCormick-Goodhart M, Tumosa CS. Investigation into the deterioration of paintings and photographs using computerized modeling of stress development. J Am Inst Conserv. 1994;33(2):153–170. https://www.jstor.org/stable/3179424.
Hagan EWS, Charalambides MN, Young CRT, Learner TJS, Hackney S. Viscoelastic properties of latex paint films in tension: influence of the inorganic phase and surfactants. Prog Org Coat. 2010;69(1):73–81. http://www.sciencedirect.com/science/article/pii/S0300944010001566.
BucklowSThe description of craquelure patternsStud Conserv199742312914010.1179/sic.1997.42.3.129
Pauchard L, Giorgiutti-Dauphiné F. Craquelures and pictorial matter. J Cult Herit. 2020;46:361–373. https://www.sciencedirect.com/science/article/pii/S1296207420304398.
Oliver WC, Pharr GM. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res. 1992;7(06):1564–1583. http://www.journals.cambridge.org/abstract_S0884291400017039.
BrataszŁAkogluKGKékicheffPFracture saturation in paintings makes them less vulnerable to environmental variations in museumsHerit Sci.20208111
529_CR35
529_CR36
529_CR37
529_CR31
529_CR100
529_CR32
529_CR33
GM Foster (529_CR72) 2003; 73
529_CR39
D Erhardt (529_CR38) 2005; 50
529_CR30
A Bridarolli (529_CR59) 2020; 8
529_CR25
529_CR26
529_CR27
529_CR20
529_CR111
529_CR110
A Roche (529_CR57) 2018; 63
529_CR28
529_CR29
S Bucklow (529_CR22) 1997; 42
529_CR103
529_CR101
AA Freeman (529_CR78) 2021; 9
529_CR108
A Freeman (529_CR102) 2020; 59
529_CR107
529_CR106
529_CR105
529_CR58
529_CR53
529_CR54
529_CR55
529_CR56
529_CR1
G Hedley (529_CR70) 1991; 37
KA Marx (529_CR90) 2003; 4
529_CR51
EWS Hagan (529_CR46) 2009; 13
529_CR47
529_CR48
L de Viguerie (529_CR12) 2009; 81
529_CR49
529_CR42
529_CR43
529_CR44
529_CR45
529_CR6
529_CR7
529_CR8
529_CR9
529_CR3
529_CR5
529_CR40
529_CR41
DJ Carr (529_CR34) 2003; 48
529_CR79
L Krzemień (529_CR52) 2016; 61
529_CR75
529_CR76
529_CR77
L Baij (529_CR128) 2020; 8
529_CR71
529_CR136
529_CR73
529_CR135
529_CR74
529_CR134
529_CR69
M Morawitz (529_CR113) 2014
529_CR64
529_CR65
529_CR66
E Bosco (529_CR121) 2020; 225
529_CR67
R Wiesinger (529_CR13) 2018; 57
RR Eley (529_CR80) 2019; 16
Ł Bratasz (529_CR116) 2020; 8
529_CR60
Ł Bratasz (529_CR119) 2018; 63
529_CR61
529_CR62
529_CR63
J Honzíček (529_CR4) 2019; 58
DBZ Juita (529_CR2) 2012; 1
529_CR14
SL Bucklow (529_CR23) 1998; 31
529_CR15
529_CR16
529_CR97
529_CR122
529_CR10
529_CR98
529_CR11
529_CR99
529_CR120
529_CR17
529_CR18
529_CR19
S Keck (529_CR21) 1969; 14
S Bucklow (529_CR24) 2012
529_CR93
529_CR115
529_CR94
529_CR114
529_CR95
529_CR96
529_CR112
L Sauvage (529_CR126) 2018; 63
529_CR118
529_CR91
529_CR117
529_CR92
MK Kalms (529_CR109) 2005; 295–296
HF Brinson (529_CR68) 2015
EWS Hagan (529_CR50) 2015; 121
529_CR86
529_CR133
529_CR87
529_CR132
529_CR88
529_CR131
529_CR89
529_CR130
L Sauvage (529_CR127) 2018; 19
529_CR82
529_CR83
529_CR125
529_CR84
M Chyasnavichyus (529_CR104) 2014; 30
529_CR124
529_CR85
529_CR123
529_CR129
529_CR81
References_xml – reference: Walter P, de Viguerie L. Materials science challenges in paintings. Nat Mater. 2018;17(2):106–109. https://www.nature.com/articles/nmat5070.
– reference: SauvageLWeiWBMartinezMWhen conservation meets engineering: predicting the damaging effects of vibrations on pastel paintingsStud Conserv201863sup141842010.1080/00393630.2018.1504444
– reference: BrinsonHFBrinsonLCPolymer engineering science and viscoelasticity: an introduction20152New YorkSpringer10.1007/978-1-4899-7485-3
– reference: Hagan EWS, Charalambides MN, Young CRT, Learner TJS, Hackney S. Viscoelastic properties of latex paint films in tension: influence of the inorganic phase and surfactants. Prog Org Coat. 2010;69(1):73–81. http://www.sciencedirect.com/science/article/pii/S0300944010001566.
– reference: Young C. interfacial interactions of modern paint layers. In: Modern paints uncovered: proceedings from the modern paints uncovered symposium. Los Angeles: Getty Conservation Institute; 2007. p. 247–256.
– reference: Buchta D, Heinemann C, Pedrini G, Krekel C, Osten W. Combination of FEM simulations and shearography for defect detection on artwork. Strain. 2018;54(3):12269. https://onlinelibrary.wiley.com/doi/abs/10.1111/str.12269.
– reference: Sturdy LF, Wright MS, Yee A, Casadio F, Faber KT, Shull KR. Effects of zinc oxide filler on the curing and mechanical response of alkyd coatings. Polymer. 2020;191:122222. http://www.sciencedirect.com/science/article/pii/S0032386120300641.
– reference: Fuster-López L, Mecklenburg M. A look into some factors influencing the film forming properties of oil paint films in copper paintings and the effects of environment in their structural behavior. In: Fuster-López L, Chulia Blanco I, Sarrio Martin MF, Vasquez de Agredos Pascual ML, Carlyle L, Wadum J, editors. Paintings on copper and other metal plates: production, degradation, and conservation issues. Valencia: Universidad Politecnica de Valencia; 2017. p. 95–102.
– reference: Hagan E, Murray A. Effects of water exposure on the mechanical properties of early artists’ acrylic paints. In: Materials issues in art and archaeology VII. vol. 852. Boston: Materials Research Society; 2004. p. 41–47.
– reference: RocheASoldanoAThe effect of changes in environmental conditions on the mechanical behaviour of selected paint systemsStud Conserv.201863sup12162211:CAS:528:DC%2BC1cXhslWhu7fE10.1080/00393630.2018.1504434
– reference: Hagan E, Charalambides M, Learner TJS, Murray A, Young CT. Factors affecting the mechanical properties of modern paints. In: Modern paints uncovered: proceedings from the modern paints uncovered symposium. Los Angeles: Getty Conservation Institute; 2007. p. 227–235.
– reference: de Viguerie L, Ducouret G, Lequeux F, Moutard-Martin T, Walter P. Historical evolution of oil painting media: a rheological study. Comptes Rendus Physique. 2009;10(7):612–621. http://www.sciencedirect.com/science/article/pii/S163107050900111X.
– reference: ChyasnavichyusMYoungSLTsukrukVVProbing of polymer surfaces in the viscoelastic regimeLangmuir.2014303510566105821:CAS:528:DC%2BC2cXitFersLo%3D10.1021/la404925h
– reference: Salvant Plisson J, de Viguerie L, Tahroucht L, Menu M, Ducouret G. Rheology of white paints: how van gogh achieved his famous impasto. Colloids Surf A Physicochem Eng Aspects. 2014;458:134–141. http://www.sciencedirect.com/science/article/pii/S092777571400212X.
– reference: Andersen CK, Freeman A, Mortensen MN, Beltran V, Łukomski M, Phenix A. Mechanical and moisture sorption properties of commercial artists’ oil paint by dynamic mechanical thermal analysis (DMA), nanoindentation, and dynamic vapour sorption (DVS). In: van den Berg KJ, Bonaduce I, Burnstock A, Ormsby B, Scharff M, Carlyle L, et al., editors. Conservation of modern oil paintings. Cham: Springer International Publishing; 2019. p. 403–418. https://doi.org/10.1007/978-3-030-19254-9_32.
– reference: KalmsMKJueptnerWPOA mobile shearography system for non-destructive testing of industrial and artwork componentsKey Energy Mater.2005295–29616517010.4028/www.scientific.net/KEM.295-296.165
– reference: HedleyGOdlyhaMBurnstockATillinghastJHusbandCA study of the mechanical and surface properties of oil paint films treated with organic solvents and waterJ Therm Anal1991379206720881:CAS:528:DyaK38XhvFKhtLg%3D10.1007/BF01905579
– reference: Giorgiutti-Dauphiné F, Pauchard L. Painting cracks: a way to investigate the pictorial matter. J Appl Phys. 2016;120(6):065107. http://aip.scitation.org/doi/10.1063/1.4960438.
– reference: Chiantore O, Scalarone D. The macro- and microassessment of physical and aging properties in modern paints. In: Modern paints uncovered: proceedings from the modern paints uncovered symposium. Los Angeles: Getty Conservation Institute; 2007. p. 96–104.
– reference: Cimino D, Chiantore O, de La Rie ER, McGlinchey CW, Ploeger R, Poli T, et al. Binary mixtures of ethylene containing copolymers and low molecular weight resins: a new approach towards specifically tuned art conservation products. Int J Adhes Adhes. 2016;67:54–62. http://www.sciencedirect.com/science/article/pii/S0143749615002298.
– reference: Rooney M. Effect of pigment volume concentration on physical and chemical properties of acrylic emulsion paints assessed using single-sided Nmr [Master of Science]. College of William and Mary. Virginia; 2018. https://scholarworks.wm.edu/etd//1530192815.
– reference: Rooney M, Meldrum T. Effect of pigment concentration on nmr relaxometry in acrylic paints. Magn Reson Chem. 2020;58(9):880–888. https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/abs/10.1002/mrc.5053.
– reference: Johannsmann D. The quartz crystal microbalance in soft matter research. Soft Biol Matter. Cham: Springer International Publishing; 2015. http://link.springer.com/10.1007/978-3-319-07836-6.
– reference: Soucek MD, Khattab T, Wu J. Review of autoxidation and driers. Prog Org Coat. 2012;73(4):435–454. https://linkinghub.elsevier.com/retrieve/pii/S0300944011002529.
– reference: Mirone G, Marton B, Vancso GJ. Elastic modulus profiles in the cross sections of drying alkyd coating films: modelling and experiments. Eur Polym J. 2004;40(3):549–560. https://linkinghub.elsevier.com/retrieve/pii/S0014305703002726.
– reference: de Viguerie L, Glanville H, Ducouret G, Jacquemot P, Dang PA, Walter P. Re-interpretation of the old masters’ practices through optical and rheological investigation: the presence of calcite. Comptes Rendus Physique. 2018;19(7):543–552. http://www.sciencedirect.com/science/article/pii/S1631070518301142.
– reference: Collinson DW, Eaton MD, Shull KR, Brinson LC. Deconvolution of stress interaction effects from atomic force spectroscopy data across polymer-particle interfaces. Macromolecules. 2019. https://pubs.acs.org/doi/10.1021/acs.macromol.9b01378.
– reference: Chiriboga Arroyo PG. Finite element modeling of vibrations in canvas paintings [Doctoral]. Technische Universiteit Delft. Delft, Netherlands; 2013. https://repository.tudelft.nl/islandora/object/uuid%3Aa30b358e-d0de-4a81-92f3-e9f255443043
– reference: Bosco E, Suiker ASJ, Fleck NA. Moisture-induced cracking in a flexural bilayer with application to historical paintings. Theor Appl Fract Mech. 2021;112:102779. https://www.sciencedirect.com/science/article/pii/S0167844220303554.
– reference: Tirat S, Echard JP, Lattuati-Derieux A, Le Huerou JY, Serfaty S. Reconstructing historical recipes of linseed oil/colophony varnishes: influence of preparation processes on application properties. J Cult Herit. 2017;27, Supplement(Wooden Musical Instruments):S34–S43. https://reader.elsevier.com/reader/sd/pii/S1296207417305654.
– reference: HaganEWSCharalambidesMNYoungCTLearnerTJSHackneySTensile properties of latex paint films with TiO2 pigmentMech Time Depend Mater.20091321491611:CAS:528:DC%2BD1MXkvVamur8%3D10.1007/s11043-009-9076-y
– reference: Fuster-López L, Izzo FC, Piovesan M, Yusá-Marco DJ, Sperni L, Zendri E. Study of the chemical composition and the mechanical behaviour of 20th century commercial artists’ oil paints containing manganese-based pigments. Microchem J. 2016;124:962–973. http://www.sciencedirect.com/science/article/pii/S0026265X15001964.
– reference: Young C, Ackroyd P, Hibberd R, Gritt S. The mechanical behaviour of adhesives and gap fillers for re-joining panel paintings. In: National gallery technical bulletin. vol. 23. London: National Gallery Publications; 2002. p. 23–96.
– reference: BoscoESuikerASJFleckNACrack channelling mechanisms in brittle coating systems under moisture or temperature gradientsInt J Fract.202022511301:CAS:528:DC%2BB3cXhs1OltrvO10.1007/s10704-020-00461-3
– reference: Mecklenburg MF, McCormick-Goodhart M, Tumosa CS. Investigation into the deterioration of paintings and photographs using computerized modeling of stress development. J Am Inst Conserv. 1994;33(2):153–170. https://www.jstor.org/stable/3179424.
– reference: van Loon A, Noble P, Burnstock A. Ageing and deterioration of traditional oil and tempera paints. In: Conservation of easel paintings. 1st edn. Routledge series in conservation and museology. London/New York: Routledge; 2012. p. 214–41.
– reference: Mecklenburg M, Tumosa CS, Vicenzi E. The influence of pigments and ion migration on the durability of drying oil and alkyd paints. In: New insights into the cleaning of paintings: proceedings from the cleaning 2010 international conference, Universidad Politecnica de Valencia and Museum Conservation Institute. No. 3 in Smithsonian Contributions to Museum Conservation. Washington, D.C.: Smithsonian Scholarly Press; 2013. p. 59–67.
– reference: Rogala D, DePriest P, Charola AE, Koestler R. The mechanics of art materials and its future in heritage science. No. 10 in Smithsonian contributions to museum conservation. Washington D.C.: Smithsonian Scholarly Press; 2019.
– reference: BucklowSLA stylometric analysis of craquelureComput Humanit.19983150352110.1023/A:1001031931132
– reference: BrataszŁSereshkMRVCrack saturation as a mechanism of acclimatization of panel paintings to unstable environmentsStud Conserv.201863sup1222710.1080/00393630.2018.1504433
– reference: de Viguerie L, Jaber M, Pasco H, Lalevée J, Morlet-Savary F, Ducouret G, et al. A 19th century “ideal” oil paint medium: a complex hybrid organic–inorganic gel. Angewandte Chemie Int Edn. 2017;56(6):1619–1623. https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.201611136.
– reference: Meybodi MK, Dobrev I, Klausmeyer P, Harrington EJ, Furlong C. Investigation of thermomechanical effects of lighting conditions on canvas paintings by laser shearography. In: Furlong C, Gorecki C, Novak EL, editors. SPIE Optical Engineering + Applications. San Diego, California, USA; 2012. p. 84940A. http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.958089.
– reference: Tumosa C, Erhardt D, Mecklenburg M, Su X. Linseed oil paint as ionomer: synthesis and characterization. In: Materials issues in art and archaeology VII. vol. 852. Boston: Materials Research Society; 2005. p. 25–31.
– reference: MorawitzMHeinNAlexeenkoIWilkeMPedriniGKrekelCOstenWOptical methods for the assessment of transport and age induced defects of artworkFringe 20132014Berlin, HeidelbergSpringer95195510.1007/978-3-642-36359-7_180
– reference: BucklowSThe description of craquelure patternsStud Conserv199742312914010.1179/sic.1997.42.3.129
– reference: Blayo A, Gandini A, Le Nest JF. Chemical and rheological characterizations of some vegetable oils derivatives commonly used in printing inks. Ind Crops Products. 2001;14(2):155–167. http://www.sciencedirect.com/science/article/pii/S0926669001000796.
– reference: Liu X, Di Tullio V, Lin YC, De Andrade V, Zhao C, Lin CH, et al. Nano- to microscale three-dimensional morphology relevant to transport properties in reactive porous composite paint films. Sci Rep. 2020;10(1):18320. https://www.nature.com/articles/s41598-020-75040-6.
– reference: Carlyle L, Young C, Jardine S. The mechanical response of flour-paste grounds. In: Preparation for painting: the artist’s choice and its consequences. London: Archetype Publications; 2008. p. 123–131.
– reference: BucklowSHill StonerJRushfieldRClassification of craquelureConservation of easel paintings: principles and practice2012London/New YorkButterowrth-Heinemann285290
– reference: Erlebacher JD, Brown E, Mecklenburg MF, Tumosa CS. The effects of temperature and relative humidity on the mechanical properties of modern painting materials. In: Materials issues in art and archaeology III. vol. 267. San Francisco: Materials Research Society; 1992. p. 359–370. http://repository.si.edu/xmlui/handle/10088/35967.
– reference: Kolluru PV, Eaton MD, Collinson DW, Cheng X, Delgado DE, Shull KR, et al. AFM-based dynamic scanning indentation (DSI) method for fast, high-resolution spatial mapping of local viscoelastic properties in soft materials. Macromolecules. 2018;51(21):8964–8978. https://pubs.acs.org/doi/10.1021/acs.macromol.8b01426.
– reference: Hermens E, Townsend JH. Binding media in western easel painting. In: Conservation of easel paintings. 1st edn. Routledge series in conservation and museology. London/New York: Routledge; 2012. p. 207–213.
– reference: EleyRRApplied rheology and architectural coating performanceJ Coat Technol Res.20191622633051:CAS:528:DC%2BC1MXmslaktLY%3D10.1007/s11998-019-00187-5
– reference: HaganEWSCharalambidesMNYoungCRTLearnerTJSThe effects of strain rate and temperature on commercial acrylic artist paints aged one year to decadesAppl Phys A.201512138238351:CAS:528:DC%2BC2MXhsFWgsr7O10.1007/s00339-015-9423-6
– reference: FosterGMRitchieSLoweCControlled temperature and relative humidity dynamic mechanical analysis of paint filmsJ Therm Anal Calorim.20037311191261:CAS:528:DC%2BD3sXmt1emtr8%3D10.1023/A:1025133508109
– reference: Eumelen GJAM, Bosco E, Suiker ASJ, van Loon A, Iedema PD. A computational model for chemo-mechanical degradation of historical oil paintings due to metal soap formation. J Mech Phys Solids. 2019;132:103683. http://www.sciencedirect.com/science/article/pii/S0022509619302182.
– reference: Hagan EWS. Thermo-mechanical properties of white oil and acrylic artist paints. Prog Org Coat. 2017 Mar;104:28–33. http://www.sciencedirect.com/science/article/pii/S0300944016302363.
– reference: Young CRT, Hibberd RD. Biaxial tensile testing of paintings on canvas. Stud Conserv. 1999;44(2):129–141. https://www.jstor.org/stable/1506725.
– reference: Groves RM, Osten W, Doulgeridis M, Kouloumpi E, Green T, Hackney S, et al. Shearography as part of a multi-functional sensor for the detection of signature features in movable cultural heritaged. In: Fotakis C, Pezzati L, Salimbeni R, editors. Optical metrology. Munich, Germany; 2007. p. 661810. http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.727497.
– reference: Tumosa CS, Millard J, Erhardt D, Mecklenburg MF. Effects of solvents on the physical properties of paint films. Preprints, ICOM Committee for Conservation, 12th Triennial Meeting, Lyon. 1999;1:347–352. http://repository.si.edu/xmlui/handle/10088/35962.
– reference: KeckSMechanical alteration of the paint filmStud Conserv1969141930
– reference: FreemanAŁukomskiMBeltranVMechanical characterization of a cross-sectional TiO2 acrylic-based paint by nano-indentationJ Am Inst Conserv.2020591273910.1080/01971360.2019.1603062
– reference: Mecklenburg MF, Tumosa CS. An introduction into the mechanical behavior of paintings under rapid loading conditions. In: Art in transit: studies in the transport of paintings. Washington D.C.: National Gallery of Art; 1991. p. 137–171.
– reference: Doutre M, Murray A, Fuster-López L. Effects of humidity on gessoes for easel paintings. MRS Proc. 2017;1656:167–171. http://link.springer.com/10.1557/opl.2014.828.
– reference: BaijLHermansJOrmsbyBNoblePIedemaPKeuneKA review of solvent action on oil paintHerit Sci.2020814310.1186/s40494-020-00388-x
– reference: Pauchard L, Giorgiutti-Dauphiné F. Craquelures and pictorial matter. J Cult Herit. 2020;46:361–373. https://www.sciencedirect.com/science/article/pii/S1296207420304398.
– reference: Michalski SW. Paintings—their response to temperature, relative humidity, shock, and vibration. In: Mecklenburg M, editor. Art in transit: studies in the transport of paintings. Washington, D.C.: National Gallery of Art; 1991. https://www.academia.edu/741944/1991_Paintings_-_Their_Response_to_Temperature_Relative_Humidity_Shock_and_Vibration.
– reference: Johannsmann D. Viscoelastic, mechanical, and dielectric measurements on complex samples with the quartz crystal microbalance. Phys Chem Chem Phys. 2008;10(31):4516. http://xlink.rsc.org/?DOI=b803960g.
– reference: Shull KR, Taghon M, Wang Q. Investigations of the high-frequency dynamic properties of polymeric systems with quartz crystal resonators. Biointerphases. 2020;QCM2020(1):021012. https://avs.scitation.org/doi/full/10.1116/1.5142762%40bip.2020.QCM2020.issue-1.
– reference: Shull K. Future trends in studies of the mechanics of artists’ paints. In: The mechanics of art materials and its future in heritage science. No. 10 in Smithsonian Contributions to Museum Conservation. Washington D.C.: Smithsonian Scholarly Press; 2019. p. 87–92.
– reference: Tantideeravit S, Charalambides MN, Balint DS, Young CRT. Prediction of Delamination in multilayer artist paints under low amplitude fatigue loading. Eng Fract Mech. 2013;112-113:41–57. http://www.sciencedirect.com/science/article/pii/S0013794413003172.
– reference: Mecklenburg MF, Tumosa CS. Traditional oil paints: the effects of long-term chemical and mechanical properties on restoration efforts. MRS Bull. 2001;26(01):51–54. http://www.journals.cambridge.org/abstract_S0883769400023058.
– reference: Fuster-López L, Mecklenburg M, Castell-Agusti M, Guerola-Blay V. Filling materials for easel paintings: when the ground reintegration becomes a structural concern. In: Preparation for painting: the artists’ choice and its consequences. London: Archetype Publications; 2008. p. 180–186.
– reference: Odlyha M, Chan TYA, Pages O. Evaluation of relative humidity effects on fabric-supported paintings by dynamic mechanical and dielectric analysis. Thermochimica Acta. 1995;263:7–21. http://www.sciencedirect.com/science/article/pii/0040603194023874.
– reference: KrzemieńLŁukomskiMBrataszŁKozłowskiRMecklenburgMFMechanism of craquelure pattern formation on panel paintingsStud Conserv201661632433010.1080/00393630.2016.1140428
– reference: de ViguerieLBeckLSalomonJPichonLWalterPComposition of renaissance paint layers: simultaneous particle induced X-ray emission and backscattering spectrometryAnal Chem.20098119796079661:CAS:528:DC%2BD1MXhtV2mtbzJ10.1021/ac901141v
– reference: Perera DY. Effect of pigmentation on organic coating characteristics. Prog Org Coat. 2004;50(4):247–262. http://www.sciencedirect.com/science/article/pii/S0300944004000694.
– reference: Wei W, Sauvage L, Wölk J. Baseline limits for allowable vibrations for objects. In: Preventive conservation. vol. 1516. Paris: International Council of Museums; 2014. p. 7.
– reference: dePolo GE, Schafer E, Sadman K, Rivnay J, Shull KR. Sample preparation in quartz crystal microbalance measurements of protein adsorption and polymer mechanics. JoVE J Vis Exp. 2020;(155):e60584. https://www.jove.com/video/60584.
– reference: Fife GR, Stabik B, Kelley AE, King JN, Blümich B, Hoppenbrouwers R, et al. Characterization of aging and solvent treatments of painted surfaces using single-sided NMR. Magn Reson Chem. 2015;53(1):58–63. https://onlinelibrary.wiley.com/doi/abs/10.1002/mrc.4164.
– reference: Ormsby B, Learner TJS, Foster GM, Druzik JR, Schilling M. Wet cleaning acrylic emulsion paint films: an evaluation of physical, chemical, and optical changes. In: Modern paints uncovered: proceedings from the modern paints uncovered symposium. Los Angeles: Getty Conservation Institute; 2007. p. 189–200.
– reference: Doménech-Carbó MT, Silva MF, Aura-Castro E, Doménech-Carbó A, Fuster-López L, Gimeno-Adelantado JV, et al. Multitechnique approach to evaluate cleaning treatments for acrylic and polyvinyl acetate paints. In: New insights into the cleaning of paintings: proceedings from the cleaning 2010 international conference, Universidad Politecnica de Valencia and Museum Conservation Institute. No. 3 in Smithsonian Contributions to Museum Conservation. Washington, D.C.: Smithsonian Scholarly Press; 2013. p. 125–134.
– reference: Andersen CK, Freeman A, Mortensen MN, Beltran V, Łukomski M, Phenix A. Mechanical and moisture sorption properties of commercial artists’ oil paints by dynamic mechanical thermal analysis (DMA), nanoindentation, and dynamic vapour sorption (DVS). In: Conservation of modern oil paintings. Springer; 2019. p. 403–417.
– reference: MarxKAQuartz crystal microbalance: a useful tool for studying thin polymer films and complex biomolecular systems at the solution-surface interfaceBiomacromolecules.200345109911201:CAS:528:DC%2BD3sXmtFOhtLw%3D10.1021/bm020116i
– reference: Oliver WC, Pharr GM. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res. 1992;7(06):1564–1583. http://www.journals.cambridge.org/abstract_S0884291400017039.
– reference: Learner T. Modern paints. In: Conservation of easel paintings. 1st edn. Routledge series in conservation and museology. London/New York: Routledge; 2012. p. 242–251.
– reference: Erhardt D, Tumosa CS, Mecklenburg MF. Natural and accelerated thermal aging of oil paint films. Stud Conserv 2000;45(sup1):65–69. http://www.tandfonline.com/doi/full/10.1179/sic.2000.45.Supplement-1.65.
– reference: Mecklenburg MF, Tumosa CS, Erlebacher JD. Mechanical behavior of artist’s acrylic paints under equilibrium conditions. In: Division of polymer chemistry. vol. 35. Washington, D.C.: American Chemical Society; 1994. p. 297–298. http://repository.si.edu/xmlui/handle/10088/10305.
– reference: FreemanAALeeJAndersenCKFujisawaNŁukomskiMOrmsbyBA pilot study of solvent-based cleaning of yellow ochre oil paint: effect on mechanical propertiesHerit Sci.2021912810.1186/s40494-021-00501-8
– reference: Michalski SW. Crack mechanisms in gilding. In: Gilded wood: conservation and history. Madison, Connecticut: Sound View Press; 1991. p. 171–181. https://www.academia.edu/741952/1991_Crack_mechanisms_in_gilding.
– reference: Klausmeyer P, Cushman M, Dobrev I, Khaleghi M, Harrington EJ, Chen X, et al. Quantifying and mapping induced strain in canvas paintings uising laser shearography. In: The noninvasive analysis of painted surfaces: scientific impact and conservation practice. No. 5 in Smithsonian Contributions to Museum Conservation. Washington D.C.: Smithsonian Scholarly Press; 2016. p. 1–13.
– reference: Fujisawa N, Łukomski M. Nanoindentation near the Edge of a Viscoelastic Solid with a Rough Surface. Materials & Design. 2019 Dec;184:108174. Available from: https://www.sciencedirect.com/science/article/pii/S0264127519306124.
– reference: HonzíčekJCuring of air-drying paints: a critical review | industrial and engineering chemistry researchInd Eng Chem Res.2019582812485125051:CAS:528:DC%2BC1MXht1aqsb3J10.1021/acs.iecr.9b02567
– reference: Phenix A. Thermal mechanical transitions in artists’ oil paints and selected conservation materials: a study by dynamic mechanical analysis (DMA). In: The AIC paintings specialty group. vol. 22. Los Angeles: American Institute for Conservation and Historic Works; 2009. p. 72–89.
– reference: WiesingerRPagninLAngheloneMMorettoLMOrsegaEFSchreinerMPigment and binder concentrations in modern paint samples determined by IR and Raman spectroscopyAngewandte Chemie Int Edn.20185725740174071:CAS:528:DC%2BC1cXptFSmt7k%3D10.1002/anie.201713413
– reference: Ormsby B, Foster G, Learner T, Ritchie S, Schilling M. Improved controlled relative humidity dynamic mechanical analysis of artists’ acrylic emulsion paints: Part II. General properties and accelerated ageing. J Therm Anal Calorim. 2007;90(2):503–508. http://link.springer.com/10.1007/s10973-006-7725-9.
– reference: Kalms MK, Osten W, Jueptner WPO. Advanced shearographic system for nondestructive testing of industrial and artwork components. In: Deng S, Okada T, Behler K, Wang X, editors. Photonics Asia 2002. Shanghai, China; 2002. p. 34. http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.482923.
– reference: BridarolliANualart-TorrojaAChevalierAOdlyhaMBozecLSystematic mechanical assessment of consolidants for canvas reinforcement under controlled environmentHerit Sci.202081521:CAS:528:DC%2BB3cXhtFGmu7%2FF10.1186/s40494-020-00396-x
– reference: CarrDJYoungCRTPhenixAHibberdRDDevelopment of a physical model of a typical nineteenth-century English canvas paintingStud Conserv200348314515410.1179/sic.2003.48.3.145
– reference: ErhardtDTumosaCSMecklenburgMFLong-term chemical and physical processes in oil paint filmsStud Conserv.200550214315010.1179/sic.2005.50.2.143
– reference: Leonardi R. Nuclear physics and painting: sub-topic of the wide and fascinating field of science and art. Nucl Phys A. 2005;752:659–674. http://www.sciencedirect.com/science/article/pii/S0375947405002241.
– reference: Prati S, Sciutto G, Volpi F, Rehorn C, Vurro R, Blümich B, et al. Cleaning oil paintings: nmr relaxometry and SPME to evaluate the effects of green solvents and innovative green gels. New J Chem. 2019;43(21):8229–8238. https://pubs.rsc.org/en/content/articlelanding/2019/nj/c9nj00186g.
– reference: Penava Ž, Penava DŠ, Tkalec M. Experimental analysis of the tensile properties of painting canvas. Autex Research Journal. 2016;16(4):182–195. https://content.sciendo.com/view/journals/aut/16/4/article-p182.xml.
– reference: Mecklenburg MF, Institute CC, Institution S, National Gallery of Art (U S ), Gallery T, editors. Art in transit: studies in the transport of paintings. Washington: National Gallery of Art; 1991.
– reference: Baij L, Hermans JJ, Keune K, Iedema PD. Time-dependent ATR-FTIR spectroscopic studies on solvent diffusion and film swelling in oil paint model systems. Macromolecules. 2018;51(18):7134–7144. http://pubs.acs.org/doi/10.1021/acs.macromol.8b00890.
– reference: Fischer EK. Rheological properties of commercial paints. J Colloid Sci. 1950;5(3):271–281. http://www.sciencedirect.com/science/article/pii/0095852250900304.
– reference: Sato K. The mechanical properties of filled polymers. Prog Org Coat. 1976;4(4):271–302. http://www.sciencedirect.com/science/article/pii/0300944076800100.
– reference: Tumosa CS, Mecklenburg MF. Oil paints: the chemistry of drying oils and the potential for solvent disruption. In: New insights into the cleaning of paintings: proceedings from the cleaning 2010 international conference, Universidad Politecnica de Valencia and Museum Conservation Institute. No. 3 in Smithsonian Contributions to Museum Conservation. Washington, D.C.: Smithsonian Scholarly Press; 2013. p. 51–58.
– reference: Sturdy LF, Yee A, Casadio F, Shull KR. Quantitative characterization of alkyd cure kinetics with the quartz crystal microbalance. Polymer. 2016;103:387–396. http://www.sciencedirect.com/science/article/pii/S0032386116308631.
– reference: Groen K. Investigation of the use of the binding medium by rembrandt. Zeitschrift fur Kunsttechnologie und Konservierung. 1997;2:207–227. https://pure.tue.nl/ws/files/1370067/617823.pdf.
– reference: JuitaDBZKennedyEMMackieJCLow temperature oxidation of linseed oil: a reviewFire Sci Rev20121131:CAS:528:DC%2BC2cXntVyrsr8%3D10.1186/2193-0414-1-3
– reference: Ormsby B, Hagan E, Smithen P, Learner TJS. Comparing contemporary titanium white-based acrylic emulsion grounds and paints: characterisation, properties and conservation. In: preparation for painting: the artists’ choice and its consequences. London: Archetype Publications; 2008. p. 163–171.
– reference: Busse F, Rehorn C, Küppers M, Ruiz N, Stege H, Blümich B. NMR relaxometry of oil paint binders. Magn Reson Chem. 2020;58(9):830–839. https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/abs/10.1002/mrc.5020.
– reference: Mecklenburg MF, Tumosa CS, Erhardt D. The changing mechanical properties of aging oil paints. In: Vandiver PB, Mass JM, Murray A, editors. Materials issues in art and archeology VII. Warrendale, PA: Materials Research Society; 2004. p. 13–24. http://repository.si.edu/xmlui/handle/10088/36019.
– reference: BrataszŁAkogluKGKékicheffPFracture saturation in paintings makes them less vulnerable to environmental variations in museumsHerit Sci.2020811110.1186/s40494-020-0352-0
– reference: Fuesers O, Zumbühl S. the influence of organic solvents on the mechanical properties of alkyd and oil paint. In: IR, NIR, VIS UV Raman. Jerusalem, Israel; 2008. p. 1–14.
– reference: Zumbuhl S, Attanasio F, Scherrer NC, Muller W, Fenners N, Caseri W. Solvent action on dispersion paint systems and the influence on the morphology—changes and destruction of the latex microstructure. In: Modern paints uncovered: proceedings from the modern paints uncovered symposium. Los Angeles: Getty Conservation Institute; 2007. p. 257–268.
– reference: Rothe A. Andrea Mantega’s “Adoration of the Magi”. In: Historical painting techniques, materials, and studio practice. Preprints from the Symposium at the University of Leiden, the Netherlands. The Getty Conservation Institute; 1995. p. 111–116.
– reference: SauvageLStratisHHarrisonLPastel roundtableJ Paper Conserv.2018191333510.1080/18680860.2019.1580005
– reference: Hagan EWS, Charalambides MN, Young CRT, Learner TJS, Hackney S. Micromechanics models for predicting tensile properties of latex paint films. In: Proulx T, editor. Time dependent constitutive behavior and fracture/failure processes, Volume 3. Conference proceedings of the society for experimental mechanics series. New York, NY: Springer; 2011. p. 297–306.
– reference: Groves RM, Pradarutti B, Kouloumpi E, Osten W, Notni G. 2D and 3D non-destructive evaluation of a wooden panel painting using shearography and terahertz imaging. NDT & E International. 2009;42(6):543–549. http://www.sciencedirect.com/science/article/pii/S0963869509000619.
– reference: Young C. Measurement of the biaxial properties of nineteenth century canvas primings using electronic speckle pattern interferometry. Opt Lasers Eng 1999;31(2):163–170. http://www.sciencedirect.com/science/article/pii/S014381669900007X.
– reference: Johnson AP, Robert Hannen W, Zuccari F. Vibration control during museum construction projects. J Am Inst Conserv. 2013;52(1):30–47. http://search.ebscohost.com/login.aspx?direct=true&db=asu&AN=86141021&site=ehost-live.
– reference: Belgacem MN, Blayo A, Gandini A. organosolv lignin as a filler in inks, varnishes and paints. Ind Crops Products. 2003;18(2):145–153. http://www.sciencedirect.com/science/article/pii/S0926669003000426.
– reference: Mecklenburg M, Tumosa C, McCormick-Goodhardt M. A general method for determining the mechanical properties needed for the computer analysis of polymeric structures subjected to changes in temperature and relative humidity. In: Materials research society symposium. vol. 267. San Francisco, CA: Materials Research Society; 1992. p. 337–358.
– reference: Tiennot M, Paardekam E, Iannuzzi D, Hermens E. Mapping the mechanical properties of paintings via nanoindentation: a new approach for cultural heritage studies. Sci Rep. 2020;10(1):7924. https://www.nature.com/articles/s41598-020-64892-7.
– reference: van Gorkum R, Bouwman E. The oxidative drying of alkyd paint catalysed by metal complexes. Coord Chem Rev. 2005;249(17):1709–1728. http://www.sciencedirect.com/science/article/pii/S0010854505000342.
– reference: Sturdy L, Casadio F, Kokkori M, Muir K, Shull KR. Quartz Crystal Rheometry: A quantitative technique for studying curing and aging in artists’ paints. Polym Degrad Stabil. 2014;107:348–355. http://linkinghub.elsevier.com/retrieve/pii/S0141391014000573.
– reference: Salvant J, Barthel E, Menu M. Nanoindentation and the micromechanics of van gogh oil paints. Appl Phys A. 2011;104(2):509–515. http://link.springer.com/10.1007/s00339-011-6486-x.
– reference: Oyen ML, Cook RF. A practical guide for analysis of nanoindentation data. J Mech Behav Biomed Mater. 2009;2(4):396–407. http://www.sciencedirect.com/science/article/pii/S1751616108000805.
– reference: Udell NA, Hodgkins RE, Berrie BH, Meldrum T. Physical and chemical properties of traditional and water-mixable oil paints assessed using single-sided NMR. Microchem J. 2017;133:31–36. https://www.sciencedirect.com/science/article/pii/S0026265X16306038.
– reference: Whitmore PM, Colaluca VG. The natural and accelerated aging of an acrylic artists’ medium. Stud Conserv. 1995;40(1):51–64. https://www.jstor.org/stable/1506611.
– reference: de Viguerie L, Ducouret G, Cotte M, Lequeux F, Walter P. New insights on the glaze technique through reconstruction of old glaze medium formulations. Colloids Surf A: Physicochem Eng Aspects. 2008;331(1):119–125. http://www.sciencedirect.com/science/article/pii/S0927775708004809.
– reference: Groves RM, Li A, Liu X, Hackney S, Peng X, Osten W. 2.5D Virtual reality visualisation of shearography strain data from a canvas painting. In: Pezzati L, Salimbeni R, editors. SPIE Europe Optical Metrology. Munich, Germany; 2009. p. 739109. http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.827519.
– reference: Young C, Hagan E. Cold temperature effects of modern paints used for priming flexible supports. In: Preparation for painting: the artists’ choice and its consequences. London: Archetype Publications; 2008. p. 172–179.
– reference: Fuster-López L, Izzo FC, Damato V, Yusà-Marco DJ, Zendri E. An insight into the mechanical properties of selected commercial oil and alkyd paint films containing cobalt blue. J Cult Herit. 2019;35:225–234. https://www.sciencedirect.com/science/article/pii/S1296207418301031.
– ident: 529_CR55
– ident: 529_CR79
  doi: 10.1016/0095-8522(50)90030-4
– ident: 529_CR19
  doi: 10.1007/978-1-4419-9794-4_41
– ident: 529_CR3
  doi: 10.1016/j.porgcoat.2011.08.021
– ident: 529_CR94
  doi: 10.3791/60584-v
– ident: 529_CR32
  doi: 10.1179/sic.1995.40.1.51
– ident: 529_CR36
  doi: 10.1557/PROC-852-OO3.1
– volume-title: Polymer engineering science and viscoelasticity: an introduction
  year: 2015
  ident: 529_CR68
  doi: 10.1007/978-1-4899-7485-3
– ident: 529_CR11
  doi: 10.1016/j.porgcoat.2004.03.002
– ident: 529_CR134
  doi: 10.1039/C9NJ00186G
– ident: 529_CR9
– ident: 529_CR41
– ident: 529_CR123
  doi: 10.1016/j.engfracmech.2013.09.011
– ident: 529_CR76
  doi: 10.1021/acs.macromol.8b00890
– volume: 8
  start-page: 11
  issue: 1
  year: 2020
  ident: 529_CR116
  publication-title: Herit Sci.
  doi: 10.1186/s40494-020-0352-0
– ident: 529_CR82
  doi: 10.1016/j.colsurfa.2008.07.037
– ident: 529_CR86
  doi: 10.1016/j.crhy.2018.11.003
– ident: 529_CR81
– ident: 529_CR29
– volume: 13
  start-page: 149
  issue: 2
  year: 2009
  ident: 529_CR46
  publication-title: Mech Time Depend Mater.
  doi: 10.1007/s11043-009-9076-y
– ident: 529_CR98
– ident: 529_CR99
  doi: 10.1007/s00339-011-6486-x
– ident: 529_CR6
– ident: 529_CR27
  doi: 10.1016/j.culher.2020.08.007
– ident: 529_CR73
– ident: 529_CR18
  doi: 10.1016/j.porgcoat.2010.05.008
– ident: 529_CR37
  doi: 10.1557/PROC-852-OO2.9
– volume: 63
  start-page: 216
  issue: sup1
  year: 2018
  ident: 529_CR57
  publication-title: Stud Conserv.
  doi: 10.1080/00393630.2018.1504434
– volume: 61
  start-page: 324
  issue: 6
  year: 2016
  ident: 529_CR52
  publication-title: Stud Conserv
  doi: 10.1080/00393630.2016.1140428
– ident: 529_CR67
– ident: 529_CR74
  doi: 10.1007/s10973-006-7725-9
– ident: 529_CR15
– ident: 529_CR39
  doi: 10.1557/PROC-852-OO3.2
– ident: 529_CR135
  doi: 10.1038/nmat5070
– volume: 4
  start-page: 1099
  issue: 5
  year: 2003
  ident: 529_CR90
  publication-title: Biomacromolecules.
  doi: 10.1021/bm020116i
– start-page: 951
  volume-title: Fringe 2013
  year: 2014
  ident: 529_CR113
  doi: 10.1007/978-3-642-36359-7_180
– volume: 295–296
  start-page: 165
  year: 2005
  ident: 529_CR109
  publication-title: Key Energy Mater.
  doi: 10.4028/www.scientific.net/KEM.295-296.165
– volume: 63
  start-page: 418
  issue: sup1
  year: 2018
  ident: 529_CR126
  publication-title: Stud Conserv
  doi: 10.1080/00393630.2018.1504444
– ident: 529_CR28
– ident: 529_CR20
  doi: 10.1016/j.nuclphysa.2005.02.152
– ident: 529_CR84
  doi: 10.1016/j.culher.2017.08.001
– ident: 529_CR122
  doi: 10.1016/j.tafmec.2020.102779
– ident: 529_CR103
  doi: 10.1038/s41598-020-64892-7
– ident: 529_CR125
– volume: 8
  start-page: 52
  issue: 1
  year: 2020
  ident: 529_CR59
  publication-title: Herit Sci.
  doi: 10.1186/s40494-020-00396-x
– volume: 48
  start-page: 145
  issue: 3
  year: 2003
  ident: 529_CR34
  publication-title: Stud Conserv
  doi: 10.1179/sic.2003.48.3.145
– ident: 529_CR54
  doi: 10.1016/j.porgcoat.2016.10.019
– ident: 529_CR83
  doi: 10.1016/j.crhy.2009.08.006
– ident: 529_CR43
– ident: 529_CR62
– ident: 529_CR132
  doi: 10.1002/mrc.5053
– ident: 529_CR10
  doi: 10.1016/0300-9440(76)80010-0
– ident: 529_CR16
  doi: 10.1016/j.colsurfa.2014.02.055
– ident: 529_CR112
  doi: 10.1016/j.ndteint.2009.04.002
– ident: 529_CR85
  doi: 10.1002/anie.201611136
– volume: 19
  start-page: 33
  issue: 1
  year: 2018
  ident: 529_CR127
  publication-title: J Paper Conserv.
  doi: 10.1080/18680860.2019.1580005
– volume: 225
  start-page: 1
  issue: 1
  year: 2020
  ident: 529_CR121
  publication-title: Int J Fract.
  doi: 10.1007/s10704-020-00461-3
– ident: 529_CR77
  doi: 10.1007/978-3-030-19254-9_32
– ident: 529_CR133
  doi: 10.1002/mrc.4164
– ident: 529_CR58
  doi: 10.1016/j.culher.2018.12.007
– ident: 529_CR100
  doi: 10.1007/978-3-030-19254-9_32
– volume: 16
  start-page: 263
  issue: 2
  year: 2019
  ident: 529_CR80
  publication-title: J Coat Technol Res.
  doi: 10.1007/s11998-019-00187-5
– ident: 529_CR61
  doi: 10.1179/019713694806124739
– ident: 529_CR93
– ident: 529_CR129
  doi: 10.1016/j.microc.2017.03.013
– ident: 529_CR65
  doi: 10.1179/sic.1999.44.2.129
– ident: 529_CR8
– ident: 529_CR131
  doi: 10.1002/mrc.5020
– ident: 529_CR40
– ident: 529_CR48
  doi: 10.5479/si.19492359.3.1
– ident: 529_CR114
  doi: 10.1117/12.958089
– volume: 31
  start-page: 503
  year: 1998
  ident: 529_CR23
  publication-title: Comput Humanit.
  doi: 10.1023/A:1001031931132
– ident: 529_CR56
  doi: 10.1557/opl.2014.828
– ident: 529_CR105
  doi: 10.1021/acs.macromol.8b01426
– ident: 529_CR110
  doi: 10.1117/12.727497
– ident: 529_CR95
  doi: 10.1016/j.polymdegradstab.2014.02.009
– volume: 59
  start-page: 27
  issue: 1
  year: 2020
  ident: 529_CR102
  publication-title: J Am Inst Conserv.
  doi: 10.1080/01971360.2019.1603062
– ident: 529_CR117
  doi: 10.1557/PROC-267-337
– ident: 529_CR5
– volume: 121
  start-page: 823
  issue: 3
  year: 2015
  ident: 529_CR50
  publication-title: Appl Phys A.
  doi: 10.1007/s00339-015-9423-6
– ident: 529_CR26
  doi: 10.1063/1.4960438
– ident: 529_CR33
  doi: 10.1557/mrs2001.19
– ident: 529_CR66
  doi: 10.1016/S0143-8166(99)00007-X
– ident: 529_CR45
– volume: 73
  start-page: 119
  issue: 1
  year: 2003
  ident: 529_CR72
  publication-title: J Therm Anal Calorim.
  doi: 10.1023/A:1025133508109
– ident: 529_CR136
– start-page: 285
  volume-title: Conservation of easel paintings: principles and practice
  year: 2012
  ident: 529_CR24
– ident: 529_CR30
  doi: 10.1557/PROC-267-359
– ident: 529_CR31
– volume: 50
  start-page: 143
  issue: 2
  year: 2005
  ident: 529_CR38
  publication-title: Stud Conserv.
  doi: 10.1179/sic.2005.50.2.143
– ident: 529_CR106
  doi: 10.1021/acs.macromol.9b01378
– ident: 529_CR60
– ident: 529_CR25
– ident: 529_CR35
  doi: 10.1016/j.eurpolymj.2003.10.017
– ident: 529_CR101
  doi: 10.1016/j.matdes.2019.108174
– ident: 529_CR97
  doi: 10.1016/j.jmbbm.2008.10.002
– ident: 529_CR120
  doi: 10.1016/j.jmps.2019.103683
– volume: 58
  start-page: 12485
  issue: 28
  year: 2019
  ident: 529_CR4
  publication-title: Ind Eng Chem Res.
  doi: 10.1021/acs.iecr.9b02567
– ident: 529_CR108
  doi: 10.1117/12.482923
– ident: 529_CR71
  doi: 10.1016/0040-6031(94)02387-4
– ident: 529_CR88
  doi: 10.1016/S0926-6690(03)00042-6
– ident: 529_CR47
  doi: 10.5479/si.19492359.3.1
– volume: 14
  start-page: 9
  issue: 1
  year: 1969
  ident: 529_CR21
  publication-title: Stud Conserv
  doi: 10.1179/sic.1969.002
– ident: 529_CR42
– ident: 529_CR49
  doi: 10.5479/si.19492359.3.1
– ident: 529_CR51
  doi: 10.1016/j.microc.2015.08.023
– ident: 529_CR1
  doi: 10.1016/j.ccr.2005.02.002
– volume: 42
  start-page: 129
  issue: 3
  year: 1997
  ident: 529_CR22
  publication-title: Stud Conserv
  doi: 10.1179/sic.1997.42.3.129
– volume: 30
  start-page: 10566
  issue: 35
  year: 2014
  ident: 529_CR104
  publication-title: Langmuir.
  doi: 10.1021/la404925h
– volume: 63
  start-page: 22
  issue: sup1
  year: 2018
  ident: 529_CR119
  publication-title: Stud Conserv.
  doi: 10.1080/00393630.2018.1504433
– ident: 529_CR69
  doi: 10.1016/j.polymer.2016.09.063
– ident: 529_CR64
  doi: 10.5479/si.11342126.v1
– ident: 529_CR7
– ident: 529_CR17
  doi: 10.1016/j.polymer.2020.122222
– volume: 9
  start-page: 28
  issue: 1
  year: 2021
  ident: 529_CR78
  publication-title: Herit Sci.
  doi: 10.1186/s40494-021-00501-8
– ident: 529_CR92
  doi: 10.1007/978-3-319-07836-6
– ident: 529_CR87
  doi: 10.1016/S0926-6690(01)00079-6
– ident: 529_CR96
  doi: 10.1557/JMR.1992.1564
– ident: 529_CR63
  doi: 10.1179/sic.2000.45.Supplement-1.65
– volume: 81
  start-page: 7960
  issue: 19
  year: 2009
  ident: 529_CR12
  publication-title: Anal Chem.
  doi: 10.1021/ac901141v
– ident: 529_CR115
  doi: 10.1111/str.12269
– volume: 57
  start-page: 7401
  issue: 25
  year: 2018
  ident: 529_CR13
  publication-title: Angewandte Chemie Int Edn.
  doi: 10.1002/anie.201713413
– volume: 8
  start-page: 43
  issue: 1
  year: 2020
  ident: 529_CR128
  publication-title: Herit Sci.
  doi: 10.1186/s40494-020-00388-x
– ident: 529_CR130
– ident: 529_CR89
  doi: 10.1016/j.ijadhadh.2015.12.026
– ident: 529_CR118
– ident: 529_CR111
  doi: 10.1117/12.827519
– ident: 529_CR75
– ident: 529_CR53
  doi: 10.1515/aut-2015-0023
– ident: 529_CR44
– ident: 529_CR107
– volume: 37
  start-page: 2067
  issue: 9
  year: 1991
  ident: 529_CR70
  publication-title: J Therm Anal
  doi: 10.1007/BF01905579
– ident: 529_CR14
  doi: 10.1038/s41598-020-75040-6
– ident: 529_CR91
  doi: 10.1039/b803960g
– ident: 529_CR124
  doi: 10.1179/0197136012Z.0000000003
– volume: 1
  start-page: 3
  issue: 1
  year: 2012
  ident: 529_CR2
  publication-title: Fire Sci Rev
  doi: 10.1186/2193-0414-1-3
SSID ssj0000993267
Score 2.359302
SecondaryResourceType review_article
Snippet While the chemistry of artists’ paints has previously been studied and reviewed, these studies only capture a portion of the properties affecting the response...
Abstract While the chemistry of artists’ paints has previously been studied and reviewed, these studies only capture a portion of the properties affecting the...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Artists
Chemistry and Materials Science
Dynamic mechanical analysis
Finite element method
Magnetic properties
Materials Science
Mechanical properties
Microbalances
Model testing
Nanoindentation
NMR
Nuclear magnetic resonance
Optics
Paints
Quartz crystal microbalance
Quartz crystals
Relative humidity
Review
Rheometry
Shear rheometry
Shearography
Tensile testing
Tensile tests
Vibration analysis
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LbtQwFLWqikU3iEcRQwvyouqmWI0Tv8KuIKouUMWCou6s6xcIwXQ0CVTd8Rv8Hl-Cr50ZWiRg000Wjp1YPjfxubbvuYTsueQSh5RYvgATQRnmdBJM9y4pDc7rkpLl_Rt9emrOz_u311J94ZmwKg9cB-5QxgSoUeWNF6LxYLiHoLWRnofodAnzbXR_zZn6VHlP5iV6FSVj1OEgUAmF4YmEsrvFLm_MREWw_wbL_GNjtMw3x_fI3Yko0qPawftkI84fkO2q6nFF9ylKxkJJy3v1kIxHmOqbZjJHF9nVH-lHGGjIXnB4QYHW8BR6keiImhrzD3St3DrQTFpp0Zgt5fkBXyIGAyN2dIEr9UuUXMXGOFbDOPz8_qO-ZJucHb9-9-qETfkUmM-zzsj6KDPDCdnh6Tsnuthy17Ve9j5572SMImmlm9DpIAWkXAukCwD5DxSlcNx3j8jm_GIeHxPKUzItKOkdBxFE76BTHEL2xpxXYOSM8NXYWj-JjWPOi8-2OB1G2YqHzXjYgoe9nJGDdZtFldr4Z-2XCNm6Jspkl4JsPHYyHvs_45mR3RXgdvp2B9tKVHtqlBEz8nxlBL9v_71LT26jSztkqy1Gqlijd8nmuPwan5I7_luGePmsWPkvppEDwg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: SpringerLINK
  dbid: C24
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagcOBCeRSxtEU-IC5gsU78Cre2ouKAKg6AerPGr0IF2dUmbdUbf4O_xy_B4ySLigAJLjk448TyzMTfxJ5vCHnikkscUmL5AkwEZZjTSTDduKQ0OK9LSZYPb_TRkTk-bt6OSWHddNp92pIsX-ri1ka96ARSmTA8UlC2p9jFdXJDctPgQb6DMcfhdMA8GZPoKUPmt12vrEKFrP8KwvxlU7SsNYeb_zfKO-T2iC3p3mAMd8m12N4jWwMRyCV9SpFlFkol38v7pN_D6uA04z-6hE9tTz9CR0MOnMNLCnTIaKGLRHuk4WhP6JrstaMZ59JCS1va8wO-RMwfRnXTJf7cXyFLK3ZGu-z67vvXb8NLtsj7w1fvDl6zsQQD83mh6lkTZQZFIcdITe1EHSvu6srLxifvnYxRJK30PNQ6SAEpS4F0ASB_tKIUjvv6AdloF218SChPyVSgpHccRBCNg1pxCDmAc16BkTPCJ5VYP_KTY5mMz7bEKUbZYW5tnltb5tZezMizdZ_lwM7xV-l91PRaEpm1S8NidWJHR7UyJkBONG-8EHMPhnsIWhvpeYhOmxnZmezEju7e2UoiQdRcGTEjzye7-Hn7z0N69G_i2-RWVUxLsbneIRv96izukpv-PCtz9bi4wQ_hYgc4
  priority: 102
  providerName: Springer Nature
Title After the paint has dried: a review of testing techniques for studying the mechanical properties of artists’ paint
URI https://link.springer.com/article/10.1186/s40494-021-00529-w
https://www.proquest.com/docview/2537380684
https://doaj.org/article/5efa8302c8c440ca81cad7785c1deb78
Volume 9
WOSCitedRecordID wos000658252600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMedCentral
  customDbUrl:
  eissn: 2050-7445
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000993267
  issn: 2050-7445
  databaseCode: RBZ
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAON
  databaseName: Directory of Open Access Journals (DOAJ)
  customDbUrl:
  eissn: 2050-7445
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000993267
  issn: 2050-7445
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2050-7445
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000993267
  issn: 2050-7445
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAVX
  databaseName: SpringerLINK
  customDbUrl:
  eissn: 2050-7445
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000993267
  issn: 2050-7445
  databaseCode: C24
  dateStart: 20131201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELb64MAFKBR1oax8QFzAdJP4lV5Qt9oKBF2tEKBysvwsSJBdNqFVL4i_wd_jl-Bxkq2KRC9cfHBsx9J8Hs-M7W8QemyCCZkOgcRCE-q4JEYESkRpAhfaWJFSsnx4I6ZTeXJSzrqAW91dq-x1YlLUbm4hRr6XM-DgGXFJXyy-EcgaBaerXQqNdbQJTGUR55vjyXT2dhVlifZPtE9E_1pG8r2aAiMKgZsJ6ZSLnF_ZkRJx_xVr868D0rTvHN3-3xnfQbc6ixMftBDZQmu-uou2W3qQC_wEA_esTvl9L-6h5gByhuNoFeKF_lw1-JOusYvutNvHGrfvXPA84AbIOapTvKKArXG0fnEiq031cYCvHl4VAwjwAkL-S-Buhc6A1rqpf__81f5kG70_mrw7fEm6xAzExu2rIaVn0VRy0XMqC0MLn2emyC0rbbDWMO9pEFyMXCEcozrEVpoZp3VUZZ5Rk9niPtqo5pXfQTgLQeaaM2syTR0tjS54pl1064zlWrIBynrhKNuxlkPyjC8qeS-Sq1agKgpUJYGq8wF6uuqzaDk7rm09BpmvWgLfdqqYL09Vt3wV80EDU5qVltKR1TKz2gkhmc2cN0IO0G6PAdUpgVpdAmCAnvUouvz87yk9uH60h-hmnvDLyUjsoo1m-d0_QjfsWRTectgtgSFaP8zpMMUYYvl6_DyWxz8m8fvs1fHs4x9XaBfT
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwELbKFgku_BaxUMAH4AJWN4kdO0gIlZ-qq25XeyionIx_20qQXTaB1d54DV6Ch-JJ8DjJVkWitx645ODYTmR_Mx57PN8g9Fh77RPlPQkPRajNBdHcU8IL7XOutOExJcuHER-PxeFhMVlDv7pYGLhW2enEqKjt1MAZ-VbKgINnkAv6avaVQNYo8K52KTQaWOy55SJs2aqXw7dhfp-k6c67gze7pM0qQEzQvTUpHAvrvA1mf5Fpmrk00VlqWGG8MZo5Rz3P-cBm3DKqfKilmLZKBTl0jOrEZKHfS2idAth7aH0y3J98XJ3qBHsr2EO8i84R-VZFgYGFwE2I6FUjizMrYEwUcMa6_cshG9e5nev_2wjdQNdaixpvNyJwE6258hbaaOhPlvgpBm5dFfMXL2-jehtyouNg9eKZOilrfKwqbOfBDn-BFW7iePDU4xrIR8ojvKK4rXCw7nEk443loYMvDqKmAeR4Bi6NOXDTQmOQxqqufv_42XxkA72_kAG4g3rltHR3EU68F6nKmdGJopYWWmV5omzYtmqTK8H6KOnAIE3Lyg7JQT7LuDsTuWwAJAOAZASQXPTRs1WbWcNJcm7t14CxVU3gE48F0_mRbNWTZM4rYIIzwlA6MEokRlnOBTOJdZqLPtrsMCdbJVfJU8D10fMOtaev__1L987v7RG6snuwP5Kj4XjvPrqaRtnJyYBvol49_-YeoMvme5jI-cNW_DD6dNF4_gOR6XBi
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VLUJc-C1ioYAPwAWs3SR27CAhVCgrVi2rPQAqJ-PfthLsLklgtTdeg1fhcXgSbCfZqkj01gOXHBzbiexvxjMe-xuAh8opl0jnsH9ITEzOsWKOYFYolzOpNIspWT7ss8mEHxwU0w341d2FCccqO50YFbWZ67BHPkhp4OAZ5pwMXHssYro7erH4ikMGqRBp7dJpNBDZs6uld9-q5-NdP9eP0nT0-t2rN7jNMIC118M1Liz1a77xLkCRKZLZNFFZqmmhndaKWkscy9nQZMxQIp2vJakyUnqZtJSoRGe-3wuw6U1ykvZgczp-O_243uHxtpe3jVh3U4fng4oENhYcTkXECBtenloNY9KAU5buX8HZuOaNrv7Po3UNrrSWNtppROM6bNjZDdhqaFFW6DEKnLsy5jVe3YR6J-RKR94aRgt5PKvRkayQKb19_gxJ1NzvQXOH6kBKMjtEa-rbCnmrH0WS3ljuO_hiw23qAH60CKGOMnDWhsZBSqu6-v3jZ_ORLXh_LgNwC3qz-czeBpQ4x1OZU60SSQwplMzyRBrvziqdS077kHTAELplaw9JQz6L6LXxXDRgEh5MIoJJLPvwZN1m0XCVnFn7ZcDbumbgGY8F8_JQtGpLUOtkYIjTXBMy1JInWhrGONWJsYrxPmx3-BOt8qvECfj68LRD8Mnrf__SnbN7ewCXPIjF_niydxcup1GMcjxk29Cry2_2HlzU3_08lvdbSUTw6bzh_AdrEHki
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=After+the+paint+has+dried%3A+a+review+of+testing+techniques+for+studying+the+mechanical+properties+of+artists%E2%80%99+paint&rft.jtitle=Heritage+science&rft.au=dePolo+Gwen&rft.au=Walton%2C+Marc&rft.au=Keune+Katrien&rft.au=Shull%2C+Kenneth+R&rft.date=2021-06-07&rft.pub=Springer+Nature+B.V&rft.eissn=2050-7445&rft.volume=9&rft.issue=1&rft_id=info:doi/10.1186%2Fs40494-021-00529-w&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7445&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7445&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7445&client=summon