After the paint has dried: a review of testing techniques for studying the mechanical properties of artists’ paint
While the chemistry of artists’ paints has previously been studied and reviewed, these studies only capture a portion of the properties affecting the response of paint materials. The mechanical properties of artists’ paints relate to the deformation response of these materials when a stress is appli...
Uloženo v:
| Vydáno v: | Heritage science Ročník 9; číslo 1; s. 1 - 24 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Cham
Springer International Publishing
07.06.2021
Springer Nature B.V SpringerOpen |
| Témata: | |
| ISSN: | 2050-7445, 2050-7445 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | While the chemistry of artists’ paints has previously been studied and reviewed, these studies only capture a portion of the properties affecting the response of paint materials. The mechanical properties of artists’ paints relate to the deformation response of these materials when a stress is applied. This response is dependent on many factors, such as paint composition, pigment to binder ratio, temperature, relative humidity, and solvent exposure. Here, thirty years of tensile testing data have been compiled into a single dataset, along with the testing conditions, to provide future researchers with easy access to these data as well some general discussion of their trends. Alongside the more commonly used techniques of tensile testing and dynamic mechanical analysis, new techniques have been developed to more fully investigate the mechanical properties, and are discussed along with salient results. The techniques have been divided into two categories: those that are restricted to use on model systems and those that are applicable to historic samples. Techniques applied to model systems (tensile testing, dynamic mechanic analysis, quartz crystal microbalance, vibration studies) require too large of a sample to be taken from art objects or focus on the mechanical properties of the liquid state (shear rheometry). Techniques applied to historic samples incorporate the use of small sample sizes (nanoindentation), optical techniques (laser shearography), computational simulations (finite element analysis), and non-invasive comparative mechanical properties (single-sided nuclear magnetic resonance) to investigate and predict the mechanical properties of paints. |
|---|---|
| AbstractList | While the chemistry of artists’ paints has previously been studied and reviewed, these studies only capture a portion of the properties affecting the response of paint materials. The mechanical properties of artists’ paints relate to the deformation response of these materials when a stress is applied. This response is dependent on many factors, such as paint composition, pigment to binder ratio, temperature, relative humidity, and solvent exposure. Here, thirty years of tensile testing data have been compiled into a single dataset, along with the testing conditions, to provide future researchers with easy access to these data as well some general discussion of their trends. Alongside the more commonly used techniques of tensile testing and dynamic mechanical analysis, new techniques have been developed to more fully investigate the mechanical properties, and are discussed along with salient results. The techniques have been divided into two categories: those that are restricted to use on model systems and those that are applicable to historic samples. Techniques applied to model systems (tensile testing, dynamic mechanic analysis, quartz crystal microbalance, vibration studies) require too large of a sample to be taken from art objects or focus on the mechanical properties of the liquid state (shear rheometry). Techniques applied to historic samples incorporate the use of small sample sizes (nanoindentation), optical techniques (laser shearography), computational simulations (finite element analysis), and non-invasive comparative mechanical properties (single-sided nuclear magnetic resonance) to investigate and predict the mechanical properties of paints. Abstract While the chemistry of artists’ paints has previously been studied and reviewed, these studies only capture a portion of the properties affecting the response of paint materials. The mechanical properties of artists’ paints relate to the deformation response of these materials when a stress is applied. This response is dependent on many factors, such as paint composition, pigment to binder ratio, temperature, relative humidity, and solvent exposure. Here, thirty years of tensile testing data have been compiled into a single dataset, along with the testing conditions, to provide future researchers with easy access to these data as well some general discussion of their trends. Alongside the more commonly used techniques of tensile testing and dynamic mechanical analysis, new techniques have been developed to more fully investigate the mechanical properties, and are discussed along with salient results. The techniques have been divided into two categories: those that are restricted to use on model systems and those that are applicable to historic samples. Techniques applied to model systems (tensile testing, dynamic mechanic analysis, quartz crystal microbalance, vibration studies) require too large of a sample to be taken from art objects or focus on the mechanical properties of the liquid state (shear rheometry). Techniques applied to historic samples incorporate the use of small sample sizes (nanoindentation), optical techniques (laser shearography), computational simulations (finite element analysis), and non-invasive comparative mechanical properties (single-sided nuclear magnetic resonance) to investigate and predict the mechanical properties of paints. |
| ArticleNumber | 68 |
| Author | Shull, Kenneth R. dePolo, Gwen Walton, Marc Keune, Katrien |
| Author_xml | – sequence: 1 givenname: Gwen surname: dePolo fullname: dePolo, Gwen organization: Department of Materials Science and Engineering, Northwestern University – sequence: 2 givenname: Marc surname: Walton fullname: Walton, Marc organization: Department of Materials Science and Engineering, Northwestern University – sequence: 3 givenname: Katrien surname: Keune fullname: Keune, Katrien organization: Van’t Hoff Institute for Molecular Science, University of Amsterdam, Conservation and Science, Rijksmuseum Amsterdam – sequence: 4 givenname: Kenneth R. orcidid: 0000-0002-8027-900X surname: Shull fullname: Shull, Kenneth R. email: k-shull@northwestern.edu organization: Department of Materials Science and Engineering, Northwestern University |
| BookMark | eNp9UctuFDEQtFCQCCE_wMkS5wE_xzPcoohHpEi5wNnqsXt2vdrYi-1llRu_we_xJXh3gkAc4ku32lXV1aqX5CymiIS85uwt50P_riimRtUxwTvGtBi7wzNyLphmnVFKn_3TvyCXpWxYe-MoRW_OSb2aK2Za10h3EGKlayjU54D-PQWa8XvAA00zrVhqiKtW3TqGb3ssdE6Zlrr3D6d5E7hvfxCDgy3d5bTDXEODNTK0rtTy68fPZckr8nyGbcHLx3pBvn788OX6c3d79-nm-uq2c0qMtRtRM6G90M3spCQKPknh9Ohm5yaNqGbTG-al8VrB3FCgJw9geolaTdzJC3Kz6PoEG7vL4R7yg00Q7GmQ8soerbktWo0zDJIJNzilmIOBO_DGDNpxj5MZmtabRauddjy_2k3a59jsW6GlkQPrB9VQw4JyOZWScbYuVKghxZohbC1n9hiZXSKzLTJ7isweGlX8R_1j-EmSXEilgeMK819XT7B-Axc8rkA |
| CitedBy_id | crossref_primary_10_1016_j_porgcoat_2025_109511 crossref_primary_10_3390_polym15224348 crossref_primary_10_1016_j_culher_2025_04_026 crossref_primary_10_3390_ma18174041 crossref_primary_10_1080_00393630_2024_2393049 crossref_primary_10_1186_s40494_022_00814_2 crossref_primary_10_1145_3728459 crossref_primary_10_3390_heritage6010009 crossref_primary_10_1016_j_porgcoat_2024_108820 crossref_primary_10_1016_j_optlastec_2023_110506 crossref_primary_10_1038_s41529_024_00472_8 crossref_primary_10_1016_j_culher_2024_10_002 crossref_primary_10_1186_s40494_023_01004_4 crossref_primary_10_1016_j_colsurfa_2024_135741 crossref_primary_10_1186_s40494_024_01147_y crossref_primary_10_1186_s40494_023_01106_z crossref_primary_10_3390_app13127251 crossref_primary_10_1016_j_optlaseng_2023_107726 crossref_primary_10_3390_app12031018 crossref_primary_10_1016_j_culher_2024_03_010 crossref_primary_10_1016_j_ijmecsci_2022_107267 crossref_primary_10_1016_j_culher_2025_06_017 |
| Cites_doi | 10.1016/0095-8522(50)90030-4 10.1007/978-1-4419-9794-4_41 10.1016/j.porgcoat.2011.08.021 10.3791/60584-v 10.1179/sic.1995.40.1.51 10.1557/PROC-852-OO3.1 10.1007/978-1-4899-7485-3 10.1016/j.porgcoat.2004.03.002 10.1039/C9NJ00186G 10.1016/j.engfracmech.2013.09.011 10.1021/acs.macromol.8b00890 10.1186/s40494-020-0352-0 10.1016/j.colsurfa.2008.07.037 10.1016/j.crhy.2018.11.003 10.1007/s11043-009-9076-y 10.1007/s00339-011-6486-x 10.1016/j.culher.2020.08.007 10.1016/j.porgcoat.2010.05.008 10.1557/PROC-852-OO2.9 10.1080/00393630.2018.1504434 10.1080/00393630.2016.1140428 10.1007/s10973-006-7725-9 10.1557/PROC-852-OO3.2 10.1038/nmat5070 10.1021/bm020116i 10.1007/978-3-642-36359-7_180 10.4028/www.scientific.net/KEM.295-296.165 10.1080/00393630.2018.1504444 10.1016/j.nuclphysa.2005.02.152 10.1016/j.culher.2017.08.001 10.1016/j.tafmec.2020.102779 10.1038/s41598-020-64892-7 10.1186/s40494-020-00396-x 10.1179/sic.2003.48.3.145 10.1016/j.porgcoat.2016.10.019 10.1016/j.crhy.2009.08.006 10.1002/mrc.5053 10.1016/0300-9440(76)80010-0 10.1016/j.colsurfa.2014.02.055 10.1016/j.ndteint.2009.04.002 10.1002/anie.201611136 10.1080/18680860.2019.1580005 10.1007/s10704-020-00461-3 10.1007/978-3-030-19254-9_32 10.1002/mrc.4164 10.1016/j.culher.2018.12.007 10.1007/s11998-019-00187-5 10.1179/019713694806124739 10.1016/j.microc.2017.03.013 10.1179/sic.1999.44.2.129 10.1002/mrc.5020 10.5479/si.19492359.3.1 10.1117/12.958089 10.1023/A:1001031931132 10.1557/opl.2014.828 10.1021/acs.macromol.8b01426 10.1117/12.727497 10.1016/j.polymdegradstab.2014.02.009 10.1080/01971360.2019.1603062 10.1557/PROC-267-337 10.1007/s00339-015-9423-6 10.1063/1.4960438 10.1557/mrs2001.19 10.1016/S0143-8166(99)00007-X 10.1023/A:1025133508109 10.1557/PROC-267-359 10.1179/sic.2005.50.2.143 10.1021/acs.macromol.9b01378 10.1016/j.eurpolymj.2003.10.017 10.1016/j.matdes.2019.108174 10.1016/j.jmbbm.2008.10.002 10.1016/j.jmps.2019.103683 10.1021/acs.iecr.9b02567 10.1117/12.482923 10.1016/0040-6031(94)02387-4 10.1016/S0926-6690(03)00042-6 10.1179/sic.1969.002 10.1016/j.microc.2015.08.023 10.1016/j.ccr.2005.02.002 10.1179/sic.1997.42.3.129 10.1021/la404925h 10.1080/00393630.2018.1504433 10.1016/j.polymer.2016.09.063 10.5479/si.11342126.v1 10.1016/j.polymer.2020.122222 10.1186/s40494-021-00501-8 10.1007/978-3-319-07836-6 10.1016/S0926-6690(01)00079-6 10.1557/JMR.1992.1564 10.1179/sic.2000.45.Supplement-1.65 10.1021/ac901141v 10.1111/str.12269 10.1002/anie.201713413 10.1186/s40494-020-00388-x 10.1016/j.ijadhadh.2015.12.026 10.1117/12.827519 10.1515/aut-2015-0023 10.1007/BF01905579 10.1038/s41598-020-75040-6 10.1039/b803960g 10.1179/0197136012Z.0000000003 10.1186/2193-0414-1-3 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2021 The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2021 – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ KB. PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS DOA |
| DOI | 10.1186/s40494-021-00529-w |
| DatabaseName | Springer Nature Open Access Journals CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central SciTech Premium Collection Materials Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Materials Science Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection Materials Science Database ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: KB. name: Materials Science Database url: http://search.proquest.com/materialsscijournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | History & Archaeology |
| EISSN | 2050-7445 |
| EndPage | 24 |
| ExternalDocumentID | oai_doaj_org_article_5efa8302c8c440ca81cad7785c1deb78 10_1186_s40494_021_00529_w |
| GrantInformation_xml | – fundername: National Science Foundation grantid: OISE-1743748 funderid: http://dx.doi.org/10.13039/100000001 – fundername: Andrew W. Mellon Foundation funderid: http://dx.doi.org/10.13039/100000873 |
| GroupedDBID | -A0 0R~ 4.4 5VS 8FE 8FG AAFWJ AAJSJ AAKKN ABDBF ABEEZ ABJCF ACACY ACGFS ACUHS ACULB ADBBV ADINQ AFGXO AFKRA AFPKN AHBYD AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP ASPBG BCNDV BENPR BFQNJ BGLVJ C24 C6C CCPQU D1I EBLON EBS GROUPED_DOAJ HCIFZ IAO IHR KB. KQ8 M~E NAO OK1 PDBOC PIMPY PROAC RBZ RSV RVI SOJ AAYXX CITATION SNYQT ABUWG AZQEC DWQXO PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c429t-9e5025d25993b43e21b32c59cfccb5ee4f7670d37d54af599a5bdaa763e54b1c3 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 32 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000658252600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2050-7445 |
| IngestDate | Fri Oct 03 12:44:38 EDT 2025 Tue Oct 14 14:12:15 EDT 2025 Tue Nov 18 20:55:34 EST 2025 Sat Nov 29 03:22:21 EST 2025 Fri Feb 21 02:49:14 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Shear rheometry Tensile testing Vibration studies Nanoindentation Mechanical properties Laser shearography Single-sided nuclear magnetic resonance Quartz crystal microbalance Finite element analysis Dynamic mechanical analysis |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c429t-9e5025d25993b43e21b32c59cfccb5ee4f7670d37d54af599a5bdaa763e54b1c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-8027-900X |
| OpenAccessLink | https://www.proquest.com/docview/2537380684?pq-origsite=%requestingapplication% |
| PQID | 2537380684 |
| PQPubID | 2034752 |
| PageCount | 24 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_5efa8302c8c440ca81cad7785c1deb78 proquest_journals_2537380684 crossref_citationtrail_10_1186_s40494_021_00529_w crossref_primary_10_1186_s40494_021_00529_w springer_journals_10_1186_s40494_021_00529_w |
| PublicationCentury | 2000 |
| PublicationDate | 2021-06-07 |
| PublicationDateYYYYMMDD | 2021-06-07 |
| PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-07 day: 07 |
| PublicationDecade | 2020 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham – name: London |
| PublicationTitle | Heritage science |
| PublicationTitleAbbrev | Herit Sci |
| PublicationYear | 2021 |
| Publisher | Springer International Publishing Springer Nature B.V SpringerOpen |
| Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V – name: SpringerOpen |
| References | Young C. Measurement of the biaxial properties of nineteenth century canvas primings using electronic speckle pattern interferometry. Opt Lasers Eng 1999;31(2):163–170. http://www.sciencedirect.com/science/article/pii/S014381669900007X. Mecklenburg MF, Tumosa CS, Erhardt D. The changing mechanical properties of aging oil paints. In: Vandiver PB, Mass JM, Murray A, editors. Materials issues in art and archeology VII. Warrendale, PA: Materials Research Society; 2004. p. 13–24. http://repository.si.edu/xmlui/handle/10088/36019. de Viguerie L, Jaber M, Pasco H, Lalevée J, Morlet-Savary F, Ducouret G, et al. A 19th century “ideal” oil paint medium: a complex hybrid organic–inorganic gel. Angewandte Chemie Int Edn. 2017;56(6):1619–1623. https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.201611136. Belgacem MN, Blayo A, Gandini A. organosolv lignin as a filler in inks, varnishes and paints. Ind Crops Products. 2003;18(2):145–153. http://www.sciencedirect.com/science/article/pii/S0926669003000426. Andersen CK, Freeman A, Mortensen MN, Beltran V, Łukomski M, Phenix A. Mechanical and moisture sorption properties of commercial artists’ oil paints by dynamic mechanical thermal analysis (DMA), nanoindentation, and dynamic vapour sorption (DVS). In: Conservation of modern oil paintings. Springer; 2019. p. 403–417. Fuesers O, Zumbühl S. the influence of organic solvents on the mechanical properties of alkyd and oil paint. In: IR, NIR, VIS UV Raman. Jerusalem, Israel; 2008. p. 1–14. Rooney M. Effect of pigment volume concentration on physical and chemical properties of acrylic emulsion paints assessed using single-sided Nmr [Master of Science]. College of William and Mary. Virginia; 2018. https://scholarworks.wm.edu/etd//1530192815. HaganEWSCharalambidesMNYoungCTLearnerTJSHackneySTensile properties of latex paint films with TiO2 pigmentMech Time Depend Mater.20091321491611:CAS:528:DC%2BD1MXkvVamur8%3D10.1007/s11043-009-9076-y Carlyle L, Young C, Jardine S. The mechanical response of flour-paste grounds. In: Preparation for painting: the artist’s choice and its consequences. London: Archetype Publications; 2008. p. 123–131. Fuster-López L, Izzo FC, Piovesan M, Yusá-Marco DJ, Sperni L, Zendri E. Study of the chemical composition and the mechanical behaviour of 20th century commercial artists’ oil paints containing manganese-based pigments. Microchem J. 2016;124:962–973. http://www.sciencedirect.com/science/article/pii/S0026265X15001964. dePolo GE, Schafer E, Sadman K, Rivnay J, Shull KR. Sample preparation in quartz crystal microbalance measurements of protein adsorption and polymer mechanics. JoVE J Vis Exp. 2020;(155):e60584. https://www.jove.com/video/60584. Fujisawa N, Łukomski M. Nanoindentation near the Edge of a Viscoelastic Solid with a Rough Surface. Materials & Design. 2019 Dec;184:108174. Available from: https://www.sciencedirect.com/science/article/pii/S0264127519306124. Michalski SW. Crack mechanisms in gilding. In: Gilded wood: conservation and history. Madison, Connecticut: Sound View Press; 1991. p. 171–181. https://www.academia.edu/741952/1991_Crack_mechanisms_in_gilding. Sturdy LF, Wright MS, Yee A, Casadio F, Faber KT, Shull KR. Effects of zinc oxide filler on the curing and mechanical response of alkyd coatings. Polymer. 2020;191:122222. http://www.sciencedirect.com/science/article/pii/S0032386120300641. Groves RM, Osten W, Doulgeridis M, Kouloumpi E, Green T, Hackney S, et al. Shearography as part of a multi-functional sensor for the detection of signature features in movable cultural heritaged. In: Fotakis C, Pezzati L, Salimbeni R, editors. Optical metrology. Munich, Germany; 2007. p. 661810. http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.727497. BaijLHermansJOrmsbyBNoblePIedemaPKeuneKA review of solvent action on oil paintHerit Sci.2020814310.1186/s40494-020-00388-x Mecklenburg MF, Institute CC, Institution S, National Gallery of Art (U S ), Gallery T, editors. Art in transit: studies in the transport of paintings. Washington: National Gallery of Art; 1991. Sato K. The mechanical properties of filled polymers. Prog Org Coat. 1976;4(4):271–302. http://www.sciencedirect.com/science/article/pii/0300944076800100. Johannsmann D. The quartz crystal microbalance in soft matter research. Soft Biol Matter. Cham: Springer International Publishing; 2015. http://link.springer.com/10.1007/978-3-319-07836-6. Cimino D, Chiantore O, de La Rie ER, McGlinchey CW, Ploeger R, Poli T, et al. Binary mixtures of ethylene containing copolymers and low molecular weight resins: a new approach towards specifically tuned art conservation products. Int J Adhes Adhes. 2016;67:54–62. http://www.sciencedirect.com/science/article/pii/S0143749615002298. Shull K. Future trends in studies of the mechanics of artists’ paints. In: The mechanics of art materials and its future in heritage science. No. 10 in Smithsonian Contributions to Museum Conservation. Washington D.C.: Smithsonian Scholarly Press; 2019. p. 87–92. Sturdy L, Casadio F, Kokkori M, Muir K, Shull KR. Quartz Crystal Rheometry: A quantitative technique for studying curing and aging in artists’ paints. Polym Degrad Stabil. 2014;107:348–355. http://linkinghub.elsevier.com/retrieve/pii/S0141391014000573. Johnson AP, Robert Hannen W, Zuccari F. Vibration control during museum construction projects. J Am Inst Conserv. 2013;52(1):30–47. http://search.ebscohost.com/login.aspx?direct=true&db=asu&AN=86141021&site=ehost-live. Soucek MD, Khattab T, Wu J. Review of autoxidation and driers. Prog Org Coat. 2012;73(4):435–454. https://linkinghub.elsevier.com/retrieve/pii/S0300944011002529. Andersen CK, Freeman A, Mortensen MN, Beltran V, Łukomski M, Phenix A. Mechanical and moisture sorption properties of commercial artists’ oil paint by dynamic mechanical thermal analysis (DMA), nanoindentation, and dynamic vapour sorption (DVS). In: van den Berg KJ, Bonaduce I, Burnstock A, Ormsby B, Scharff M, Carlyle L, et al., editors. Conservation of modern oil paintings. Cham: Springer International Publishing; 2019. p. 403–418. https://doi.org/10.1007/978-3-030-19254-9_32. Klausmeyer P, Cushman M, Dobrev I, Khaleghi M, Harrington EJ, Chen X, et al. Quantifying and mapping induced strain in canvas paintings uising laser shearography. In: The noninvasive analysis of painted surfaces: scientific impact and conservation practice. No. 5 in Smithsonian Contributions to Museum Conservation. Washington D.C.: Smithsonian Scholarly Press; 2016. p. 1–13. Hagan EWS. Thermo-mechanical properties of white oil and acrylic artist paints. Prog Org Coat. 2017 Mar;104:28–33. http://www.sciencedirect.com/science/article/pii/S0300944016302363. Doutre M, Murray A, Fuster-López L. Effects of humidity on gessoes for easel paintings. MRS Proc. 2017;1656:167–171. http://link.springer.com/10.1557/opl.2014.828. Erhardt D, Tumosa CS, Mecklenburg MF. Natural and accelerated thermal aging of oil paint films. Stud Conserv 2000;45(sup1):65–69. http://www.tandfonline.com/doi/full/10.1179/sic.2000.45.Supplement-1.65. RocheASoldanoAThe effect of changes in environmental conditions on the mechanical behaviour of selected paint systemsStud Conserv.201863sup12162211:CAS:528:DC%2BC1cXhslWhu7fE10.1080/00393630.2018.1504434 BridarolliANualart-TorrojaAChevalierAOdlyhaMBozecLSystematic mechanical assessment of consolidants for canvas reinforcement under controlled environmentHerit Sci.202081521:CAS:528:DC%2BB3cXhtFGmu7%2FF10.1186/s40494-020-00396-x Busse F, Rehorn C, Küppers M, Ruiz N, Stege H, Blümich B. NMR relaxometry of oil paint binders. Magn Reson Chem. 2020;58(9):830–839. https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/abs/10.1002/mrc.5020. Eumelen GJAM, Bosco E, Suiker ASJ, van Loon A, Iedema PD. A computational model for chemo-mechanical degradation of historical oil paintings due to metal soap formation. J Mech Phys Solids. 2019;132:103683. http://www.sciencedirect.com/science/article/pii/S0022509619302182. Rogala D, DePriest P, Charola AE, Koestler R. The mechanics of art materials and its future in heritage science. No. 10 in Smithsonian contributions to museum conservation. Washington D.C.: Smithsonian Scholarly Press; 2019. Mecklenburg MF, Tumosa CS, Erlebacher JD. Mechanical behavior of artist’s acrylic paints under equilibrium conditions. In: Division of polymer chemistry. vol. 35. Washington, D.C.: American Chemical Society; 1994. p. 297–298. http://repository.si.edu/xmlui/handle/10088/10305. HonzíčekJCuring of air-drying paints: a critical review | industrial and engineering chemistry researchInd Eng Chem Res.2019582812485125051:CAS:528:DC%2BC1MXht1aqsb3J10.1021/acs.iecr.9b02567 Hermens E, Townsend JH. Binding media in western easel painting. In: Conservation of easel paintings. 1st edn. Routledge series in conservation and museology. London/New York: Routledge; 2012. p. 207–213. Mecklenburg MF, McCormick-Goodhart M, Tumosa CS. Investigation into the deterioration of paintings and photographs using computerized modeling of stress development. J Am Inst Conserv. 1994;33(2):153–170. https://www.jstor.org/stable/3179424. Hagan EWS, Charalambides MN, Young CRT, Learner TJS, Hackney S. Viscoelastic properties of latex paint films in tension: influence of the inorganic phase and surfactants. Prog Org Coat. 2010;69(1):73–81. http://www.sciencedirect.com/science/article/pii/S0300944010001566. BucklowSThe description of craquelure patternsStud Conserv199742312914010.1179/sic.1997.42.3.129 Pauchard L, Giorgiutti-Dauphiné F. Craquelures and pictorial matter. J Cult Herit. 2020;46:361–373. https://www.sciencedirect.com/science/article/pii/S1296207420304398. Oliver WC, Pharr GM. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res. 1992;7(06):1564–1583. http://www.journals.cambridge.org/abstract_S0884291400017039. BrataszŁAkogluKGKékicheffPFracture saturation in paintings makes them less vulnerable to environmental variations in museumsHerit Sci.20208111 529_CR35 529_CR36 529_CR37 529_CR31 529_CR100 529_CR32 529_CR33 GM Foster (529_CR72) 2003; 73 529_CR39 D Erhardt (529_CR38) 2005; 50 529_CR30 A Bridarolli (529_CR59) 2020; 8 529_CR25 529_CR26 529_CR27 529_CR20 529_CR111 529_CR110 A Roche (529_CR57) 2018; 63 529_CR28 529_CR29 S Bucklow (529_CR22) 1997; 42 529_CR103 529_CR101 AA Freeman (529_CR78) 2021; 9 529_CR108 A Freeman (529_CR102) 2020; 59 529_CR107 529_CR106 529_CR105 529_CR58 529_CR53 529_CR54 529_CR55 529_CR56 529_CR1 G Hedley (529_CR70) 1991; 37 KA Marx (529_CR90) 2003; 4 529_CR51 EWS Hagan (529_CR46) 2009; 13 529_CR47 529_CR48 L de Viguerie (529_CR12) 2009; 81 529_CR49 529_CR42 529_CR43 529_CR44 529_CR45 529_CR6 529_CR7 529_CR8 529_CR9 529_CR3 529_CR5 529_CR40 529_CR41 DJ Carr (529_CR34) 2003; 48 529_CR79 L Krzemień (529_CR52) 2016; 61 529_CR75 529_CR76 529_CR77 L Baij (529_CR128) 2020; 8 529_CR71 529_CR136 529_CR73 529_CR135 529_CR74 529_CR134 529_CR69 M Morawitz (529_CR113) 2014 529_CR64 529_CR65 529_CR66 E Bosco (529_CR121) 2020; 225 529_CR67 R Wiesinger (529_CR13) 2018; 57 RR Eley (529_CR80) 2019; 16 Ł Bratasz (529_CR116) 2020; 8 529_CR60 Ł Bratasz (529_CR119) 2018; 63 529_CR61 529_CR62 529_CR63 J Honzíček (529_CR4) 2019; 58 DBZ Juita (529_CR2) 2012; 1 529_CR14 SL Bucklow (529_CR23) 1998; 31 529_CR15 529_CR16 529_CR97 529_CR122 529_CR10 529_CR98 529_CR11 529_CR99 529_CR120 529_CR17 529_CR18 529_CR19 S Keck (529_CR21) 1969; 14 S Bucklow (529_CR24) 2012 529_CR93 529_CR115 529_CR94 529_CR114 529_CR95 529_CR96 529_CR112 L Sauvage (529_CR126) 2018; 63 529_CR118 529_CR91 529_CR117 529_CR92 MK Kalms (529_CR109) 2005; 295–296 HF Brinson (529_CR68) 2015 EWS Hagan (529_CR50) 2015; 121 529_CR86 529_CR133 529_CR87 529_CR132 529_CR88 529_CR131 529_CR89 529_CR130 L Sauvage (529_CR127) 2018; 19 529_CR82 529_CR83 529_CR125 529_CR84 M Chyasnavichyus (529_CR104) 2014; 30 529_CR124 529_CR85 529_CR123 529_CR129 529_CR81 |
| References_xml | – reference: Walter P, de Viguerie L. Materials science challenges in paintings. Nat Mater. 2018;17(2):106–109. https://www.nature.com/articles/nmat5070. – reference: SauvageLWeiWBMartinezMWhen conservation meets engineering: predicting the damaging effects of vibrations on pastel paintingsStud Conserv201863sup141842010.1080/00393630.2018.1504444 – reference: BrinsonHFBrinsonLCPolymer engineering science and viscoelasticity: an introduction20152New YorkSpringer10.1007/978-1-4899-7485-3 – reference: Hagan EWS, Charalambides MN, Young CRT, Learner TJS, Hackney S. Viscoelastic properties of latex paint films in tension: influence of the inorganic phase and surfactants. Prog Org Coat. 2010;69(1):73–81. http://www.sciencedirect.com/science/article/pii/S0300944010001566. – reference: Young C. interfacial interactions of modern paint layers. In: Modern paints uncovered: proceedings from the modern paints uncovered symposium. Los Angeles: Getty Conservation Institute; 2007. p. 247–256. – reference: Buchta D, Heinemann C, Pedrini G, Krekel C, Osten W. Combination of FEM simulations and shearography for defect detection on artwork. Strain. 2018;54(3):12269. https://onlinelibrary.wiley.com/doi/abs/10.1111/str.12269. – reference: Sturdy LF, Wright MS, Yee A, Casadio F, Faber KT, Shull KR. Effects of zinc oxide filler on the curing and mechanical response of alkyd coatings. Polymer. 2020;191:122222. http://www.sciencedirect.com/science/article/pii/S0032386120300641. – reference: Fuster-López L, Mecklenburg M. A look into some factors influencing the film forming properties of oil paint films in copper paintings and the effects of environment in their structural behavior. In: Fuster-López L, Chulia Blanco I, Sarrio Martin MF, Vasquez de Agredos Pascual ML, Carlyle L, Wadum J, editors. Paintings on copper and other metal plates: production, degradation, and conservation issues. Valencia: Universidad Politecnica de Valencia; 2017. p. 95–102. – reference: Hagan E, Murray A. Effects of water exposure on the mechanical properties of early artists’ acrylic paints. In: Materials issues in art and archaeology VII. vol. 852. Boston: Materials Research Society; 2004. p. 41–47. – reference: RocheASoldanoAThe effect of changes in environmental conditions on the mechanical behaviour of selected paint systemsStud Conserv.201863sup12162211:CAS:528:DC%2BC1cXhslWhu7fE10.1080/00393630.2018.1504434 – reference: Hagan E, Charalambides M, Learner TJS, Murray A, Young CT. Factors affecting the mechanical properties of modern paints. In: Modern paints uncovered: proceedings from the modern paints uncovered symposium. Los Angeles: Getty Conservation Institute; 2007. p. 227–235. – reference: de Viguerie L, Ducouret G, Lequeux F, Moutard-Martin T, Walter P. Historical evolution of oil painting media: a rheological study. Comptes Rendus Physique. 2009;10(7):612–621. http://www.sciencedirect.com/science/article/pii/S163107050900111X. – reference: ChyasnavichyusMYoungSLTsukrukVVProbing of polymer surfaces in the viscoelastic regimeLangmuir.2014303510566105821:CAS:528:DC%2BC2cXitFersLo%3D10.1021/la404925h – reference: Salvant Plisson J, de Viguerie L, Tahroucht L, Menu M, Ducouret G. Rheology of white paints: how van gogh achieved his famous impasto. Colloids Surf A Physicochem Eng Aspects. 2014;458:134–141. http://www.sciencedirect.com/science/article/pii/S092777571400212X. – reference: Andersen CK, Freeman A, Mortensen MN, Beltran V, Łukomski M, Phenix A. Mechanical and moisture sorption properties of commercial artists’ oil paint by dynamic mechanical thermal analysis (DMA), nanoindentation, and dynamic vapour sorption (DVS). In: van den Berg KJ, Bonaduce I, Burnstock A, Ormsby B, Scharff M, Carlyle L, et al., editors. Conservation of modern oil paintings. Cham: Springer International Publishing; 2019. p. 403–418. https://doi.org/10.1007/978-3-030-19254-9_32. – reference: KalmsMKJueptnerWPOA mobile shearography system for non-destructive testing of industrial and artwork componentsKey Energy Mater.2005295–29616517010.4028/www.scientific.net/KEM.295-296.165 – reference: HedleyGOdlyhaMBurnstockATillinghastJHusbandCA study of the mechanical and surface properties of oil paint films treated with organic solvents and waterJ Therm Anal1991379206720881:CAS:528:DyaK38XhvFKhtLg%3D10.1007/BF01905579 – reference: Giorgiutti-Dauphiné F, Pauchard L. Painting cracks: a way to investigate the pictorial matter. J Appl Phys. 2016;120(6):065107. http://aip.scitation.org/doi/10.1063/1.4960438. – reference: Chiantore O, Scalarone D. The macro- and microassessment of physical and aging properties in modern paints. In: Modern paints uncovered: proceedings from the modern paints uncovered symposium. Los Angeles: Getty Conservation Institute; 2007. p. 96–104. – reference: Cimino D, Chiantore O, de La Rie ER, McGlinchey CW, Ploeger R, Poli T, et al. Binary mixtures of ethylene containing copolymers and low molecular weight resins: a new approach towards specifically tuned art conservation products. Int J Adhes Adhes. 2016;67:54–62. http://www.sciencedirect.com/science/article/pii/S0143749615002298. – reference: Rooney M. Effect of pigment volume concentration on physical and chemical properties of acrylic emulsion paints assessed using single-sided Nmr [Master of Science]. College of William and Mary. Virginia; 2018. https://scholarworks.wm.edu/etd//1530192815. – reference: Rooney M, Meldrum T. Effect of pigment concentration on nmr relaxometry in acrylic paints. Magn Reson Chem. 2020;58(9):880–888. https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/abs/10.1002/mrc.5053. – reference: Johannsmann D. The quartz crystal microbalance in soft matter research. Soft Biol Matter. Cham: Springer International Publishing; 2015. http://link.springer.com/10.1007/978-3-319-07836-6. – reference: Soucek MD, Khattab T, Wu J. Review of autoxidation and driers. Prog Org Coat. 2012;73(4):435–454. https://linkinghub.elsevier.com/retrieve/pii/S0300944011002529. – reference: Mirone G, Marton B, Vancso GJ. Elastic modulus profiles in the cross sections of drying alkyd coating films: modelling and experiments. Eur Polym J. 2004;40(3):549–560. https://linkinghub.elsevier.com/retrieve/pii/S0014305703002726. – reference: de Viguerie L, Glanville H, Ducouret G, Jacquemot P, Dang PA, Walter P. Re-interpretation of the old masters’ practices through optical and rheological investigation: the presence of calcite. Comptes Rendus Physique. 2018;19(7):543–552. http://www.sciencedirect.com/science/article/pii/S1631070518301142. – reference: Collinson DW, Eaton MD, Shull KR, Brinson LC. Deconvolution of stress interaction effects from atomic force spectroscopy data across polymer-particle interfaces. Macromolecules. 2019. https://pubs.acs.org/doi/10.1021/acs.macromol.9b01378. – reference: Chiriboga Arroyo PG. Finite element modeling of vibrations in canvas paintings [Doctoral]. Technische Universiteit Delft. Delft, Netherlands; 2013. https://repository.tudelft.nl/islandora/object/uuid%3Aa30b358e-d0de-4a81-92f3-e9f255443043 – reference: Bosco E, Suiker ASJ, Fleck NA. Moisture-induced cracking in a flexural bilayer with application to historical paintings. Theor Appl Fract Mech. 2021;112:102779. https://www.sciencedirect.com/science/article/pii/S0167844220303554. – reference: Tirat S, Echard JP, Lattuati-Derieux A, Le Huerou JY, Serfaty S. Reconstructing historical recipes of linseed oil/colophony varnishes: influence of preparation processes on application properties. J Cult Herit. 2017;27, Supplement(Wooden Musical Instruments):S34–S43. https://reader.elsevier.com/reader/sd/pii/S1296207417305654. – reference: HaganEWSCharalambidesMNYoungCTLearnerTJSHackneySTensile properties of latex paint films with TiO2 pigmentMech Time Depend Mater.20091321491611:CAS:528:DC%2BD1MXkvVamur8%3D10.1007/s11043-009-9076-y – reference: Fuster-López L, Izzo FC, Piovesan M, Yusá-Marco DJ, Sperni L, Zendri E. Study of the chemical composition and the mechanical behaviour of 20th century commercial artists’ oil paints containing manganese-based pigments. Microchem J. 2016;124:962–973. http://www.sciencedirect.com/science/article/pii/S0026265X15001964. – reference: Young C, Ackroyd P, Hibberd R, Gritt S. The mechanical behaviour of adhesives and gap fillers for re-joining panel paintings. In: National gallery technical bulletin. vol. 23. London: National Gallery Publications; 2002. p. 23–96. – reference: BoscoESuikerASJFleckNACrack channelling mechanisms in brittle coating systems under moisture or temperature gradientsInt J Fract.202022511301:CAS:528:DC%2BB3cXhs1OltrvO10.1007/s10704-020-00461-3 – reference: Mecklenburg MF, McCormick-Goodhart M, Tumosa CS. Investigation into the deterioration of paintings and photographs using computerized modeling of stress development. J Am Inst Conserv. 1994;33(2):153–170. https://www.jstor.org/stable/3179424. – reference: van Loon A, Noble P, Burnstock A. Ageing and deterioration of traditional oil and tempera paints. In: Conservation of easel paintings. 1st edn. Routledge series in conservation and museology. London/New York: Routledge; 2012. p. 214–41. – reference: Mecklenburg M, Tumosa CS, Vicenzi E. The influence of pigments and ion migration on the durability of drying oil and alkyd paints. In: New insights into the cleaning of paintings: proceedings from the cleaning 2010 international conference, Universidad Politecnica de Valencia and Museum Conservation Institute. No. 3 in Smithsonian Contributions to Museum Conservation. Washington, D.C.: Smithsonian Scholarly Press; 2013. p. 59–67. – reference: Rogala D, DePriest P, Charola AE, Koestler R. The mechanics of art materials and its future in heritage science. No. 10 in Smithsonian contributions to museum conservation. Washington D.C.: Smithsonian Scholarly Press; 2019. – reference: BucklowSLA stylometric analysis of craquelureComput Humanit.19983150352110.1023/A:1001031931132 – reference: BrataszŁSereshkMRVCrack saturation as a mechanism of acclimatization of panel paintings to unstable environmentsStud Conserv.201863sup1222710.1080/00393630.2018.1504433 – reference: de Viguerie L, Jaber M, Pasco H, Lalevée J, Morlet-Savary F, Ducouret G, et al. A 19th century “ideal” oil paint medium: a complex hybrid organic–inorganic gel. Angewandte Chemie Int Edn. 2017;56(6):1619–1623. https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.201611136. – reference: Meybodi MK, Dobrev I, Klausmeyer P, Harrington EJ, Furlong C. Investigation of thermomechanical effects of lighting conditions on canvas paintings by laser shearography. In: Furlong C, Gorecki C, Novak EL, editors. SPIE Optical Engineering + Applications. San Diego, California, USA; 2012. p. 84940A. http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.958089. – reference: Tumosa C, Erhardt D, Mecklenburg M, Su X. Linseed oil paint as ionomer: synthesis and characterization. In: Materials issues in art and archaeology VII. vol. 852. Boston: Materials Research Society; 2005. p. 25–31. – reference: MorawitzMHeinNAlexeenkoIWilkeMPedriniGKrekelCOstenWOptical methods for the assessment of transport and age induced defects of artworkFringe 20132014Berlin, HeidelbergSpringer95195510.1007/978-3-642-36359-7_180 – reference: BucklowSThe description of craquelure patternsStud Conserv199742312914010.1179/sic.1997.42.3.129 – reference: Blayo A, Gandini A, Le Nest JF. Chemical and rheological characterizations of some vegetable oils derivatives commonly used in printing inks. Ind Crops Products. 2001;14(2):155–167. http://www.sciencedirect.com/science/article/pii/S0926669001000796. – reference: Liu X, Di Tullio V, Lin YC, De Andrade V, Zhao C, Lin CH, et al. Nano- to microscale three-dimensional morphology relevant to transport properties in reactive porous composite paint films. Sci Rep. 2020;10(1):18320. https://www.nature.com/articles/s41598-020-75040-6. – reference: Carlyle L, Young C, Jardine S. The mechanical response of flour-paste grounds. In: Preparation for painting: the artist’s choice and its consequences. London: Archetype Publications; 2008. p. 123–131. – reference: BucklowSHill StonerJRushfieldRClassification of craquelureConservation of easel paintings: principles and practice2012London/New YorkButterowrth-Heinemann285290 – reference: Erlebacher JD, Brown E, Mecklenburg MF, Tumosa CS. The effects of temperature and relative humidity on the mechanical properties of modern painting materials. In: Materials issues in art and archaeology III. vol. 267. San Francisco: Materials Research Society; 1992. p. 359–370. http://repository.si.edu/xmlui/handle/10088/35967. – reference: Kolluru PV, Eaton MD, Collinson DW, Cheng X, Delgado DE, Shull KR, et al. AFM-based dynamic scanning indentation (DSI) method for fast, high-resolution spatial mapping of local viscoelastic properties in soft materials. Macromolecules. 2018;51(21):8964–8978. https://pubs.acs.org/doi/10.1021/acs.macromol.8b01426. – reference: Hermens E, Townsend JH. Binding media in western easel painting. In: Conservation of easel paintings. 1st edn. Routledge series in conservation and museology. London/New York: Routledge; 2012. p. 207–213. – reference: EleyRRApplied rheology and architectural coating performanceJ Coat Technol Res.20191622633051:CAS:528:DC%2BC1MXmslaktLY%3D10.1007/s11998-019-00187-5 – reference: HaganEWSCharalambidesMNYoungCRTLearnerTJSThe effects of strain rate and temperature on commercial acrylic artist paints aged one year to decadesAppl Phys A.201512138238351:CAS:528:DC%2BC2MXhsFWgsr7O10.1007/s00339-015-9423-6 – reference: FosterGMRitchieSLoweCControlled temperature and relative humidity dynamic mechanical analysis of paint filmsJ Therm Anal Calorim.20037311191261:CAS:528:DC%2BD3sXmt1emtr8%3D10.1023/A:1025133508109 – reference: Eumelen GJAM, Bosco E, Suiker ASJ, van Loon A, Iedema PD. A computational model for chemo-mechanical degradation of historical oil paintings due to metal soap formation. J Mech Phys Solids. 2019;132:103683. http://www.sciencedirect.com/science/article/pii/S0022509619302182. – reference: Hagan EWS. Thermo-mechanical properties of white oil and acrylic artist paints. Prog Org Coat. 2017 Mar;104:28–33. http://www.sciencedirect.com/science/article/pii/S0300944016302363. – reference: Young CRT, Hibberd RD. Biaxial tensile testing of paintings on canvas. Stud Conserv. 1999;44(2):129–141. https://www.jstor.org/stable/1506725. – reference: Groves RM, Osten W, Doulgeridis M, Kouloumpi E, Green T, Hackney S, et al. Shearography as part of a multi-functional sensor for the detection of signature features in movable cultural heritaged. In: Fotakis C, Pezzati L, Salimbeni R, editors. Optical metrology. Munich, Germany; 2007. p. 661810. http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.727497. – reference: Tumosa CS, Millard J, Erhardt D, Mecklenburg MF. Effects of solvents on the physical properties of paint films. Preprints, ICOM Committee for Conservation, 12th Triennial Meeting, Lyon. 1999;1:347–352. http://repository.si.edu/xmlui/handle/10088/35962. – reference: KeckSMechanical alteration of the paint filmStud Conserv1969141930 – reference: FreemanAŁukomskiMBeltranVMechanical characterization of a cross-sectional TiO2 acrylic-based paint by nano-indentationJ Am Inst Conserv.2020591273910.1080/01971360.2019.1603062 – reference: Mecklenburg MF, Tumosa CS. An introduction into the mechanical behavior of paintings under rapid loading conditions. In: Art in transit: studies in the transport of paintings. Washington D.C.: National Gallery of Art; 1991. p. 137–171. – reference: Doutre M, Murray A, Fuster-López L. Effects of humidity on gessoes for easel paintings. MRS Proc. 2017;1656:167–171. http://link.springer.com/10.1557/opl.2014.828. – reference: BaijLHermansJOrmsbyBNoblePIedemaPKeuneKA review of solvent action on oil paintHerit Sci.2020814310.1186/s40494-020-00388-x – reference: Pauchard L, Giorgiutti-Dauphiné F. Craquelures and pictorial matter. J Cult Herit. 2020;46:361–373. https://www.sciencedirect.com/science/article/pii/S1296207420304398. – reference: Michalski SW. Paintings—their response to temperature, relative humidity, shock, and vibration. In: Mecklenburg M, editor. Art in transit: studies in the transport of paintings. Washington, D.C.: National Gallery of Art; 1991. https://www.academia.edu/741944/1991_Paintings_-_Their_Response_to_Temperature_Relative_Humidity_Shock_and_Vibration. – reference: Johannsmann D. Viscoelastic, mechanical, and dielectric measurements on complex samples with the quartz crystal microbalance. Phys Chem Chem Phys. 2008;10(31):4516. http://xlink.rsc.org/?DOI=b803960g. – reference: Shull KR, Taghon M, Wang Q. Investigations of the high-frequency dynamic properties of polymeric systems with quartz crystal resonators. Biointerphases. 2020;QCM2020(1):021012. https://avs.scitation.org/doi/full/10.1116/1.5142762%40bip.2020.QCM2020.issue-1. – reference: Shull K. Future trends in studies of the mechanics of artists’ paints. In: The mechanics of art materials and its future in heritage science. No. 10 in Smithsonian Contributions to Museum Conservation. Washington D.C.: Smithsonian Scholarly Press; 2019. p. 87–92. – reference: Tantideeravit S, Charalambides MN, Balint DS, Young CRT. Prediction of Delamination in multilayer artist paints under low amplitude fatigue loading. Eng Fract Mech. 2013;112-113:41–57. http://www.sciencedirect.com/science/article/pii/S0013794413003172. – reference: Mecklenburg MF, Tumosa CS. Traditional oil paints: the effects of long-term chemical and mechanical properties on restoration efforts. MRS Bull. 2001;26(01):51–54. http://www.journals.cambridge.org/abstract_S0883769400023058. – reference: Fuster-López L, Mecklenburg M, Castell-Agusti M, Guerola-Blay V. Filling materials for easel paintings: when the ground reintegration becomes a structural concern. In: Preparation for painting: the artists’ choice and its consequences. London: Archetype Publications; 2008. p. 180–186. – reference: Odlyha M, Chan TYA, Pages O. Evaluation of relative humidity effects on fabric-supported paintings by dynamic mechanical and dielectric analysis. Thermochimica Acta. 1995;263:7–21. http://www.sciencedirect.com/science/article/pii/0040603194023874. – reference: KrzemieńLŁukomskiMBrataszŁKozłowskiRMecklenburgMFMechanism of craquelure pattern formation on panel paintingsStud Conserv201661632433010.1080/00393630.2016.1140428 – reference: de ViguerieLBeckLSalomonJPichonLWalterPComposition of renaissance paint layers: simultaneous particle induced X-ray emission and backscattering spectrometryAnal Chem.20098119796079661:CAS:528:DC%2BD1MXhtV2mtbzJ10.1021/ac901141v – reference: Perera DY. Effect of pigmentation on organic coating characteristics. Prog Org Coat. 2004;50(4):247–262. http://www.sciencedirect.com/science/article/pii/S0300944004000694. – reference: Wei W, Sauvage L, Wölk J. Baseline limits for allowable vibrations for objects. In: Preventive conservation. vol. 1516. Paris: International Council of Museums; 2014. p. 7. – reference: dePolo GE, Schafer E, Sadman K, Rivnay J, Shull KR. Sample preparation in quartz crystal microbalance measurements of protein adsorption and polymer mechanics. JoVE J Vis Exp. 2020;(155):e60584. https://www.jove.com/video/60584. – reference: Fife GR, Stabik B, Kelley AE, King JN, Blümich B, Hoppenbrouwers R, et al. Characterization of aging and solvent treatments of painted surfaces using single-sided NMR. Magn Reson Chem. 2015;53(1):58–63. https://onlinelibrary.wiley.com/doi/abs/10.1002/mrc.4164. – reference: Ormsby B, Learner TJS, Foster GM, Druzik JR, Schilling M. Wet cleaning acrylic emulsion paint films: an evaluation of physical, chemical, and optical changes. In: Modern paints uncovered: proceedings from the modern paints uncovered symposium. Los Angeles: Getty Conservation Institute; 2007. p. 189–200. – reference: Doménech-Carbó MT, Silva MF, Aura-Castro E, Doménech-Carbó A, Fuster-López L, Gimeno-Adelantado JV, et al. Multitechnique approach to evaluate cleaning treatments for acrylic and polyvinyl acetate paints. In: New insights into the cleaning of paintings: proceedings from the cleaning 2010 international conference, Universidad Politecnica de Valencia and Museum Conservation Institute. No. 3 in Smithsonian Contributions to Museum Conservation. Washington, D.C.: Smithsonian Scholarly Press; 2013. p. 125–134. – reference: Andersen CK, Freeman A, Mortensen MN, Beltran V, Łukomski M, Phenix A. Mechanical and moisture sorption properties of commercial artists’ oil paints by dynamic mechanical thermal analysis (DMA), nanoindentation, and dynamic vapour sorption (DVS). In: Conservation of modern oil paintings. Springer; 2019. p. 403–417. – reference: MarxKAQuartz crystal microbalance: a useful tool for studying thin polymer films and complex biomolecular systems at the solution-surface interfaceBiomacromolecules.200345109911201:CAS:528:DC%2BD3sXmtFOhtLw%3D10.1021/bm020116i – reference: Oliver WC, Pharr GM. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res. 1992;7(06):1564–1583. http://www.journals.cambridge.org/abstract_S0884291400017039. – reference: Learner T. Modern paints. In: Conservation of easel paintings. 1st edn. Routledge series in conservation and museology. London/New York: Routledge; 2012. p. 242–251. – reference: Erhardt D, Tumosa CS, Mecklenburg MF. Natural and accelerated thermal aging of oil paint films. Stud Conserv 2000;45(sup1):65–69. http://www.tandfonline.com/doi/full/10.1179/sic.2000.45.Supplement-1.65. – reference: Mecklenburg MF, Tumosa CS, Erlebacher JD. Mechanical behavior of artist’s acrylic paints under equilibrium conditions. In: Division of polymer chemistry. vol. 35. Washington, D.C.: American Chemical Society; 1994. p. 297–298. http://repository.si.edu/xmlui/handle/10088/10305. – reference: FreemanAALeeJAndersenCKFujisawaNŁukomskiMOrmsbyBA pilot study of solvent-based cleaning of yellow ochre oil paint: effect on mechanical propertiesHerit Sci.2021912810.1186/s40494-021-00501-8 – reference: Michalski SW. Crack mechanisms in gilding. In: Gilded wood: conservation and history. Madison, Connecticut: Sound View Press; 1991. p. 171–181. https://www.academia.edu/741952/1991_Crack_mechanisms_in_gilding. – reference: Klausmeyer P, Cushman M, Dobrev I, Khaleghi M, Harrington EJ, Chen X, et al. Quantifying and mapping induced strain in canvas paintings uising laser shearography. In: The noninvasive analysis of painted surfaces: scientific impact and conservation practice. No. 5 in Smithsonian Contributions to Museum Conservation. Washington D.C.: Smithsonian Scholarly Press; 2016. p. 1–13. – reference: Fujisawa N, Łukomski M. Nanoindentation near the Edge of a Viscoelastic Solid with a Rough Surface. Materials & Design. 2019 Dec;184:108174. Available from: https://www.sciencedirect.com/science/article/pii/S0264127519306124. – reference: HonzíčekJCuring of air-drying paints: a critical review | industrial and engineering chemistry researchInd Eng Chem Res.2019582812485125051:CAS:528:DC%2BC1MXht1aqsb3J10.1021/acs.iecr.9b02567 – reference: Phenix A. Thermal mechanical transitions in artists’ oil paints and selected conservation materials: a study by dynamic mechanical analysis (DMA). In: The AIC paintings specialty group. vol. 22. Los Angeles: American Institute for Conservation and Historic Works; 2009. p. 72–89. – reference: WiesingerRPagninLAngheloneMMorettoLMOrsegaEFSchreinerMPigment and binder concentrations in modern paint samples determined by IR and Raman spectroscopyAngewandte Chemie Int Edn.20185725740174071:CAS:528:DC%2BC1cXptFSmt7k%3D10.1002/anie.201713413 – reference: Ormsby B, Foster G, Learner T, Ritchie S, Schilling M. Improved controlled relative humidity dynamic mechanical analysis of artists’ acrylic emulsion paints: Part II. General properties and accelerated ageing. J Therm Anal Calorim. 2007;90(2):503–508. http://link.springer.com/10.1007/s10973-006-7725-9. – reference: Kalms MK, Osten W, Jueptner WPO. Advanced shearographic system for nondestructive testing of industrial and artwork components. In: Deng S, Okada T, Behler K, Wang X, editors. Photonics Asia 2002. Shanghai, China; 2002. p. 34. http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.482923. – reference: BridarolliANualart-TorrojaAChevalierAOdlyhaMBozecLSystematic mechanical assessment of consolidants for canvas reinforcement under controlled environmentHerit Sci.202081521:CAS:528:DC%2BB3cXhtFGmu7%2FF10.1186/s40494-020-00396-x – reference: CarrDJYoungCRTPhenixAHibberdRDDevelopment of a physical model of a typical nineteenth-century English canvas paintingStud Conserv200348314515410.1179/sic.2003.48.3.145 – reference: ErhardtDTumosaCSMecklenburgMFLong-term chemical and physical processes in oil paint filmsStud Conserv.200550214315010.1179/sic.2005.50.2.143 – reference: Leonardi R. Nuclear physics and painting: sub-topic of the wide and fascinating field of science and art. Nucl Phys A. 2005;752:659–674. http://www.sciencedirect.com/science/article/pii/S0375947405002241. – reference: Prati S, Sciutto G, Volpi F, Rehorn C, Vurro R, Blümich B, et al. Cleaning oil paintings: nmr relaxometry and SPME to evaluate the effects of green solvents and innovative green gels. New J Chem. 2019;43(21):8229–8238. https://pubs.rsc.org/en/content/articlelanding/2019/nj/c9nj00186g. – reference: Penava Ž, Penava DŠ, Tkalec M. Experimental analysis of the tensile properties of painting canvas. Autex Research Journal. 2016;16(4):182–195. https://content.sciendo.com/view/journals/aut/16/4/article-p182.xml. – reference: Mecklenburg MF, Institute CC, Institution S, National Gallery of Art (U S ), Gallery T, editors. Art in transit: studies in the transport of paintings. Washington: National Gallery of Art; 1991. – reference: Baij L, Hermans JJ, Keune K, Iedema PD. Time-dependent ATR-FTIR spectroscopic studies on solvent diffusion and film swelling in oil paint model systems. Macromolecules. 2018;51(18):7134–7144. http://pubs.acs.org/doi/10.1021/acs.macromol.8b00890. – reference: Fischer EK. Rheological properties of commercial paints. J Colloid Sci. 1950;5(3):271–281. http://www.sciencedirect.com/science/article/pii/0095852250900304. – reference: Sato K. The mechanical properties of filled polymers. Prog Org Coat. 1976;4(4):271–302. http://www.sciencedirect.com/science/article/pii/0300944076800100. – reference: Tumosa CS, Mecklenburg MF. Oil paints: the chemistry of drying oils and the potential for solvent disruption. In: New insights into the cleaning of paintings: proceedings from the cleaning 2010 international conference, Universidad Politecnica de Valencia and Museum Conservation Institute. No. 3 in Smithsonian Contributions to Museum Conservation. Washington, D.C.: Smithsonian Scholarly Press; 2013. p. 51–58. – reference: Sturdy LF, Yee A, Casadio F, Shull KR. Quantitative characterization of alkyd cure kinetics with the quartz crystal microbalance. Polymer. 2016;103:387–396. http://www.sciencedirect.com/science/article/pii/S0032386116308631. – reference: Groen K. Investigation of the use of the binding medium by rembrandt. Zeitschrift fur Kunsttechnologie und Konservierung. 1997;2:207–227. https://pure.tue.nl/ws/files/1370067/617823.pdf. – reference: JuitaDBZKennedyEMMackieJCLow temperature oxidation of linseed oil: a reviewFire Sci Rev20121131:CAS:528:DC%2BC2cXntVyrsr8%3D10.1186/2193-0414-1-3 – reference: Ormsby B, Hagan E, Smithen P, Learner TJS. Comparing contemporary titanium white-based acrylic emulsion grounds and paints: characterisation, properties and conservation. In: preparation for painting: the artists’ choice and its consequences. London: Archetype Publications; 2008. p. 163–171. – reference: Busse F, Rehorn C, Küppers M, Ruiz N, Stege H, Blümich B. NMR relaxometry of oil paint binders. Magn Reson Chem. 2020;58(9):830–839. https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/abs/10.1002/mrc.5020. – reference: Mecklenburg MF, Tumosa CS, Erhardt D. The changing mechanical properties of aging oil paints. In: Vandiver PB, Mass JM, Murray A, editors. Materials issues in art and archeology VII. Warrendale, PA: Materials Research Society; 2004. p. 13–24. http://repository.si.edu/xmlui/handle/10088/36019. – reference: BrataszŁAkogluKGKékicheffPFracture saturation in paintings makes them less vulnerable to environmental variations in museumsHerit Sci.2020811110.1186/s40494-020-0352-0 – reference: Fuesers O, Zumbühl S. the influence of organic solvents on the mechanical properties of alkyd and oil paint. In: IR, NIR, VIS UV Raman. Jerusalem, Israel; 2008. p. 1–14. – reference: Zumbuhl S, Attanasio F, Scherrer NC, Muller W, Fenners N, Caseri W. Solvent action on dispersion paint systems and the influence on the morphology—changes and destruction of the latex microstructure. In: Modern paints uncovered: proceedings from the modern paints uncovered symposium. Los Angeles: Getty Conservation Institute; 2007. p. 257–268. – reference: Rothe A. Andrea Mantega’s “Adoration of the Magi”. In: Historical painting techniques, materials, and studio practice. Preprints from the Symposium at the University of Leiden, the Netherlands. The Getty Conservation Institute; 1995. p. 111–116. – reference: SauvageLStratisHHarrisonLPastel roundtableJ Paper Conserv.2018191333510.1080/18680860.2019.1580005 – reference: Hagan EWS, Charalambides MN, Young CRT, Learner TJS, Hackney S. Micromechanics models for predicting tensile properties of latex paint films. In: Proulx T, editor. Time dependent constitutive behavior and fracture/failure processes, Volume 3. Conference proceedings of the society for experimental mechanics series. New York, NY: Springer; 2011. p. 297–306. – reference: Groves RM, Pradarutti B, Kouloumpi E, Osten W, Notni G. 2D and 3D non-destructive evaluation of a wooden panel painting using shearography and terahertz imaging. NDT & E International. 2009;42(6):543–549. http://www.sciencedirect.com/science/article/pii/S0963869509000619. – reference: Young C. Measurement of the biaxial properties of nineteenth century canvas primings using electronic speckle pattern interferometry. Opt Lasers Eng 1999;31(2):163–170. http://www.sciencedirect.com/science/article/pii/S014381669900007X. – reference: Johnson AP, Robert Hannen W, Zuccari F. Vibration control during museum construction projects. J Am Inst Conserv. 2013;52(1):30–47. http://search.ebscohost.com/login.aspx?direct=true&db=asu&AN=86141021&site=ehost-live. – reference: Belgacem MN, Blayo A, Gandini A. organosolv lignin as a filler in inks, varnishes and paints. Ind Crops Products. 2003;18(2):145–153. http://www.sciencedirect.com/science/article/pii/S0926669003000426. – reference: Mecklenburg M, Tumosa C, McCormick-Goodhardt M. A general method for determining the mechanical properties needed for the computer analysis of polymeric structures subjected to changes in temperature and relative humidity. In: Materials research society symposium. vol. 267. San Francisco, CA: Materials Research Society; 1992. p. 337–358. – reference: Tiennot M, Paardekam E, Iannuzzi D, Hermens E. Mapping the mechanical properties of paintings via nanoindentation: a new approach for cultural heritage studies. Sci Rep. 2020;10(1):7924. https://www.nature.com/articles/s41598-020-64892-7. – reference: van Gorkum R, Bouwman E. The oxidative drying of alkyd paint catalysed by metal complexes. Coord Chem Rev. 2005;249(17):1709–1728. http://www.sciencedirect.com/science/article/pii/S0010854505000342. – reference: Sturdy L, Casadio F, Kokkori M, Muir K, Shull KR. Quartz Crystal Rheometry: A quantitative technique for studying curing and aging in artists’ paints. Polym Degrad Stabil. 2014;107:348–355. http://linkinghub.elsevier.com/retrieve/pii/S0141391014000573. – reference: Salvant J, Barthel E, Menu M. Nanoindentation and the micromechanics of van gogh oil paints. Appl Phys A. 2011;104(2):509–515. http://link.springer.com/10.1007/s00339-011-6486-x. – reference: Oyen ML, Cook RF. A practical guide for analysis of nanoindentation data. J Mech Behav Biomed Mater. 2009;2(4):396–407. http://www.sciencedirect.com/science/article/pii/S1751616108000805. – reference: Udell NA, Hodgkins RE, Berrie BH, Meldrum T. Physical and chemical properties of traditional and water-mixable oil paints assessed using single-sided NMR. Microchem J. 2017;133:31–36. https://www.sciencedirect.com/science/article/pii/S0026265X16306038. – reference: Whitmore PM, Colaluca VG. The natural and accelerated aging of an acrylic artists’ medium. Stud Conserv. 1995;40(1):51–64. https://www.jstor.org/stable/1506611. – reference: de Viguerie L, Ducouret G, Cotte M, Lequeux F, Walter P. New insights on the glaze technique through reconstruction of old glaze medium formulations. Colloids Surf A: Physicochem Eng Aspects. 2008;331(1):119–125. http://www.sciencedirect.com/science/article/pii/S0927775708004809. – reference: Groves RM, Li A, Liu X, Hackney S, Peng X, Osten W. 2.5D Virtual reality visualisation of shearography strain data from a canvas painting. In: Pezzati L, Salimbeni R, editors. SPIE Europe Optical Metrology. Munich, Germany; 2009. p. 739109. http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.827519. – reference: Young C, Hagan E. Cold temperature effects of modern paints used for priming flexible supports. In: Preparation for painting: the artists’ choice and its consequences. London: Archetype Publications; 2008. p. 172–179. – reference: Fuster-López L, Izzo FC, Damato V, Yusà-Marco DJ, Zendri E. An insight into the mechanical properties of selected commercial oil and alkyd paint films containing cobalt blue. J Cult Herit. 2019;35:225–234. https://www.sciencedirect.com/science/article/pii/S1296207418301031. – ident: 529_CR55 – ident: 529_CR79 doi: 10.1016/0095-8522(50)90030-4 – ident: 529_CR19 doi: 10.1007/978-1-4419-9794-4_41 – ident: 529_CR3 doi: 10.1016/j.porgcoat.2011.08.021 – ident: 529_CR94 doi: 10.3791/60584-v – ident: 529_CR32 doi: 10.1179/sic.1995.40.1.51 – ident: 529_CR36 doi: 10.1557/PROC-852-OO3.1 – volume-title: Polymer engineering science and viscoelasticity: an introduction year: 2015 ident: 529_CR68 doi: 10.1007/978-1-4899-7485-3 – ident: 529_CR11 doi: 10.1016/j.porgcoat.2004.03.002 – ident: 529_CR134 doi: 10.1039/C9NJ00186G – ident: 529_CR9 – ident: 529_CR41 – ident: 529_CR123 doi: 10.1016/j.engfracmech.2013.09.011 – ident: 529_CR76 doi: 10.1021/acs.macromol.8b00890 – volume: 8 start-page: 11 issue: 1 year: 2020 ident: 529_CR116 publication-title: Herit Sci. doi: 10.1186/s40494-020-0352-0 – ident: 529_CR82 doi: 10.1016/j.colsurfa.2008.07.037 – ident: 529_CR86 doi: 10.1016/j.crhy.2018.11.003 – ident: 529_CR81 – ident: 529_CR29 – volume: 13 start-page: 149 issue: 2 year: 2009 ident: 529_CR46 publication-title: Mech Time Depend Mater. doi: 10.1007/s11043-009-9076-y – ident: 529_CR98 – ident: 529_CR99 doi: 10.1007/s00339-011-6486-x – ident: 529_CR6 – ident: 529_CR27 doi: 10.1016/j.culher.2020.08.007 – ident: 529_CR73 – ident: 529_CR18 doi: 10.1016/j.porgcoat.2010.05.008 – ident: 529_CR37 doi: 10.1557/PROC-852-OO2.9 – volume: 63 start-page: 216 issue: sup1 year: 2018 ident: 529_CR57 publication-title: Stud Conserv. doi: 10.1080/00393630.2018.1504434 – volume: 61 start-page: 324 issue: 6 year: 2016 ident: 529_CR52 publication-title: Stud Conserv doi: 10.1080/00393630.2016.1140428 – ident: 529_CR67 – ident: 529_CR74 doi: 10.1007/s10973-006-7725-9 – ident: 529_CR15 – ident: 529_CR39 doi: 10.1557/PROC-852-OO3.2 – ident: 529_CR135 doi: 10.1038/nmat5070 – volume: 4 start-page: 1099 issue: 5 year: 2003 ident: 529_CR90 publication-title: Biomacromolecules. doi: 10.1021/bm020116i – start-page: 951 volume-title: Fringe 2013 year: 2014 ident: 529_CR113 doi: 10.1007/978-3-642-36359-7_180 – volume: 295–296 start-page: 165 year: 2005 ident: 529_CR109 publication-title: Key Energy Mater. doi: 10.4028/www.scientific.net/KEM.295-296.165 – volume: 63 start-page: 418 issue: sup1 year: 2018 ident: 529_CR126 publication-title: Stud Conserv doi: 10.1080/00393630.2018.1504444 – ident: 529_CR28 – ident: 529_CR20 doi: 10.1016/j.nuclphysa.2005.02.152 – ident: 529_CR84 doi: 10.1016/j.culher.2017.08.001 – ident: 529_CR122 doi: 10.1016/j.tafmec.2020.102779 – ident: 529_CR103 doi: 10.1038/s41598-020-64892-7 – ident: 529_CR125 – volume: 8 start-page: 52 issue: 1 year: 2020 ident: 529_CR59 publication-title: Herit Sci. doi: 10.1186/s40494-020-00396-x – volume: 48 start-page: 145 issue: 3 year: 2003 ident: 529_CR34 publication-title: Stud Conserv doi: 10.1179/sic.2003.48.3.145 – ident: 529_CR54 doi: 10.1016/j.porgcoat.2016.10.019 – ident: 529_CR83 doi: 10.1016/j.crhy.2009.08.006 – ident: 529_CR43 – ident: 529_CR62 – ident: 529_CR132 doi: 10.1002/mrc.5053 – ident: 529_CR10 doi: 10.1016/0300-9440(76)80010-0 – ident: 529_CR16 doi: 10.1016/j.colsurfa.2014.02.055 – ident: 529_CR112 doi: 10.1016/j.ndteint.2009.04.002 – ident: 529_CR85 doi: 10.1002/anie.201611136 – volume: 19 start-page: 33 issue: 1 year: 2018 ident: 529_CR127 publication-title: J Paper Conserv. doi: 10.1080/18680860.2019.1580005 – volume: 225 start-page: 1 issue: 1 year: 2020 ident: 529_CR121 publication-title: Int J Fract. doi: 10.1007/s10704-020-00461-3 – ident: 529_CR77 doi: 10.1007/978-3-030-19254-9_32 – ident: 529_CR133 doi: 10.1002/mrc.4164 – ident: 529_CR58 doi: 10.1016/j.culher.2018.12.007 – ident: 529_CR100 doi: 10.1007/978-3-030-19254-9_32 – volume: 16 start-page: 263 issue: 2 year: 2019 ident: 529_CR80 publication-title: J Coat Technol Res. doi: 10.1007/s11998-019-00187-5 – ident: 529_CR61 doi: 10.1179/019713694806124739 – ident: 529_CR93 – ident: 529_CR129 doi: 10.1016/j.microc.2017.03.013 – ident: 529_CR65 doi: 10.1179/sic.1999.44.2.129 – ident: 529_CR8 – ident: 529_CR131 doi: 10.1002/mrc.5020 – ident: 529_CR40 – ident: 529_CR48 doi: 10.5479/si.19492359.3.1 – ident: 529_CR114 doi: 10.1117/12.958089 – volume: 31 start-page: 503 year: 1998 ident: 529_CR23 publication-title: Comput Humanit. doi: 10.1023/A:1001031931132 – ident: 529_CR56 doi: 10.1557/opl.2014.828 – ident: 529_CR105 doi: 10.1021/acs.macromol.8b01426 – ident: 529_CR110 doi: 10.1117/12.727497 – ident: 529_CR95 doi: 10.1016/j.polymdegradstab.2014.02.009 – volume: 59 start-page: 27 issue: 1 year: 2020 ident: 529_CR102 publication-title: J Am Inst Conserv. doi: 10.1080/01971360.2019.1603062 – ident: 529_CR117 doi: 10.1557/PROC-267-337 – ident: 529_CR5 – volume: 121 start-page: 823 issue: 3 year: 2015 ident: 529_CR50 publication-title: Appl Phys A. doi: 10.1007/s00339-015-9423-6 – ident: 529_CR26 doi: 10.1063/1.4960438 – ident: 529_CR33 doi: 10.1557/mrs2001.19 – ident: 529_CR66 doi: 10.1016/S0143-8166(99)00007-X – ident: 529_CR45 – volume: 73 start-page: 119 issue: 1 year: 2003 ident: 529_CR72 publication-title: J Therm Anal Calorim. doi: 10.1023/A:1025133508109 – ident: 529_CR136 – start-page: 285 volume-title: Conservation of easel paintings: principles and practice year: 2012 ident: 529_CR24 – ident: 529_CR30 doi: 10.1557/PROC-267-359 – ident: 529_CR31 – volume: 50 start-page: 143 issue: 2 year: 2005 ident: 529_CR38 publication-title: Stud Conserv. doi: 10.1179/sic.2005.50.2.143 – ident: 529_CR106 doi: 10.1021/acs.macromol.9b01378 – ident: 529_CR60 – ident: 529_CR25 – ident: 529_CR35 doi: 10.1016/j.eurpolymj.2003.10.017 – ident: 529_CR101 doi: 10.1016/j.matdes.2019.108174 – ident: 529_CR97 doi: 10.1016/j.jmbbm.2008.10.002 – ident: 529_CR120 doi: 10.1016/j.jmps.2019.103683 – volume: 58 start-page: 12485 issue: 28 year: 2019 ident: 529_CR4 publication-title: Ind Eng Chem Res. doi: 10.1021/acs.iecr.9b02567 – ident: 529_CR108 doi: 10.1117/12.482923 – ident: 529_CR71 doi: 10.1016/0040-6031(94)02387-4 – ident: 529_CR88 doi: 10.1016/S0926-6690(03)00042-6 – ident: 529_CR47 doi: 10.5479/si.19492359.3.1 – volume: 14 start-page: 9 issue: 1 year: 1969 ident: 529_CR21 publication-title: Stud Conserv doi: 10.1179/sic.1969.002 – ident: 529_CR42 – ident: 529_CR49 doi: 10.5479/si.19492359.3.1 – ident: 529_CR51 doi: 10.1016/j.microc.2015.08.023 – ident: 529_CR1 doi: 10.1016/j.ccr.2005.02.002 – volume: 42 start-page: 129 issue: 3 year: 1997 ident: 529_CR22 publication-title: Stud Conserv doi: 10.1179/sic.1997.42.3.129 – volume: 30 start-page: 10566 issue: 35 year: 2014 ident: 529_CR104 publication-title: Langmuir. doi: 10.1021/la404925h – volume: 63 start-page: 22 issue: sup1 year: 2018 ident: 529_CR119 publication-title: Stud Conserv. doi: 10.1080/00393630.2018.1504433 – ident: 529_CR69 doi: 10.1016/j.polymer.2016.09.063 – ident: 529_CR64 doi: 10.5479/si.11342126.v1 – ident: 529_CR7 – ident: 529_CR17 doi: 10.1016/j.polymer.2020.122222 – volume: 9 start-page: 28 issue: 1 year: 2021 ident: 529_CR78 publication-title: Herit Sci. doi: 10.1186/s40494-021-00501-8 – ident: 529_CR92 doi: 10.1007/978-3-319-07836-6 – ident: 529_CR87 doi: 10.1016/S0926-6690(01)00079-6 – ident: 529_CR96 doi: 10.1557/JMR.1992.1564 – ident: 529_CR63 doi: 10.1179/sic.2000.45.Supplement-1.65 – volume: 81 start-page: 7960 issue: 19 year: 2009 ident: 529_CR12 publication-title: Anal Chem. doi: 10.1021/ac901141v – ident: 529_CR115 doi: 10.1111/str.12269 – volume: 57 start-page: 7401 issue: 25 year: 2018 ident: 529_CR13 publication-title: Angewandte Chemie Int Edn. doi: 10.1002/anie.201713413 – volume: 8 start-page: 43 issue: 1 year: 2020 ident: 529_CR128 publication-title: Herit Sci. doi: 10.1186/s40494-020-00388-x – ident: 529_CR130 – ident: 529_CR89 doi: 10.1016/j.ijadhadh.2015.12.026 – ident: 529_CR118 – ident: 529_CR111 doi: 10.1117/12.827519 – ident: 529_CR75 – ident: 529_CR53 doi: 10.1515/aut-2015-0023 – ident: 529_CR44 – ident: 529_CR107 – volume: 37 start-page: 2067 issue: 9 year: 1991 ident: 529_CR70 publication-title: J Therm Anal doi: 10.1007/BF01905579 – ident: 529_CR14 doi: 10.1038/s41598-020-75040-6 – ident: 529_CR91 doi: 10.1039/b803960g – ident: 529_CR124 doi: 10.1179/0197136012Z.0000000003 – volume: 1 start-page: 3 issue: 1 year: 2012 ident: 529_CR2 publication-title: Fire Sci Rev doi: 10.1186/2193-0414-1-3 |
| SSID | ssj0000993267 |
| Score | 2.359302 |
| SecondaryResourceType | review_article |
| Snippet | While the chemistry of artists’ paints has previously been studied and reviewed, these studies only capture a portion of the properties affecting the response... Abstract While the chemistry of artists’ paints has previously been studied and reviewed, these studies only capture a portion of the properties affecting the... |
| SourceID | doaj proquest crossref springer |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Artists Chemistry and Materials Science Dynamic mechanical analysis Finite element method Magnetic properties Materials Science Mechanical properties Microbalances Model testing Nanoindentation NMR Nuclear magnetic resonance Optics Paints Quartz crystal microbalance Quartz crystals Relative humidity Review Rheometry Shear rheometry Shearography Tensile testing Tensile tests Vibration analysis |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LbtQwFLWqikU3iEcRQwvyouqmWI0Tv8KuIKouUMWCou6s6xcIwXQ0CVTd8Rv8Hl-Cr50ZWiRg000Wjp1YPjfxubbvuYTsueQSh5RYvgATQRnmdBJM9y4pDc7rkpLl_Rt9emrOz_u311J94ZmwKg9cB-5QxgSoUeWNF6LxYLiHoLWRnofodAnzbXR_zZn6VHlP5iV6FSVj1OEgUAmF4YmEsrvFLm_MREWw_wbL_GNjtMw3x_fI3Yko0qPawftkI84fkO2q6nFF9ylKxkJJy3v1kIxHmOqbZjJHF9nVH-lHGGjIXnB4QYHW8BR6keiImhrzD3St3DrQTFpp0Zgt5fkBXyIGAyN2dIEr9UuUXMXGOFbDOPz8_qO-ZJucHb9-9-qETfkUmM-zzsj6KDPDCdnh6Tsnuthy17Ve9j5572SMImmlm9DpIAWkXAukCwD5DxSlcNx3j8jm_GIeHxPKUzItKOkdBxFE76BTHEL2xpxXYOSM8NXYWj-JjWPOi8-2OB1G2YqHzXjYgoe9nJGDdZtFldr4Z-2XCNm6Jspkl4JsPHYyHvs_45mR3RXgdvp2B9tKVHtqlBEz8nxlBL9v_71LT26jSztkqy1Gqlijd8nmuPwan5I7_luGePmsWPkvppEDwg priority: 102 providerName: Directory of Open Access Journals – databaseName: SpringerLINK dbid: C24 link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagcOBCeRSxtEU-IC5gsU78Cre2ouKAKg6AerPGr0IF2dUmbdUbf4O_xy_B4ySLigAJLjk448TyzMTfxJ5vCHnikkscUmL5AkwEZZjTSTDduKQ0OK9LSZYPb_TRkTk-bt6OSWHddNp92pIsX-ri1ka96ARSmTA8UlC2p9jFdXJDctPgQb6DMcfhdMA8GZPoKUPmt12vrEKFrP8KwvxlU7SsNYeb_zfKO-T2iC3p3mAMd8m12N4jWwMRyCV9SpFlFkol38v7pN_D6uA04z-6hE9tTz9CR0MOnMNLCnTIaKGLRHuk4WhP6JrstaMZ59JCS1va8wO-RMwfRnXTJf7cXyFLK3ZGu-z67vvXb8NLtsj7w1fvDl6zsQQD83mh6lkTZQZFIcdITe1EHSvu6srLxifvnYxRJK30PNQ6SAEpS4F0ASB_tKIUjvv6AdloF218SChPyVSgpHccRBCNg1pxCDmAc16BkTPCJ5VYP_KTY5mMz7bEKUbZYW5tnltb5tZezMizdZ_lwM7xV-l91PRaEpm1S8NidWJHR7UyJkBONG-8EHMPhnsIWhvpeYhOmxnZmezEju7e2UoiQdRcGTEjzye7-Hn7z0N69G_i2-RWVUxLsbneIRv96izukpv-PCtz9bi4wQ_hYgc4 priority: 102 providerName: Springer Nature |
| Title | After the paint has dried: a review of testing techniques for studying the mechanical properties of artists’ paint |
| URI | https://link.springer.com/article/10.1186/s40494-021-00529-w https://www.proquest.com/docview/2537380684 https://doaj.org/article/5efa8302c8c440ca81cad7785c1deb78 |
| Volume | 9 |
| WOSCitedRecordID | wos000658252600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMedCentral customDbUrl: eissn: 2050-7445 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000993267 issn: 2050-7445 databaseCode: RBZ dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAON databaseName: Directory of Open Access Journals (DOAJ) customDbUrl: eissn: 2050-7445 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000993267 issn: 2050-7445 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2050-7445 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000993267 issn: 2050-7445 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAVX databaseName: SpringerLINK customDbUrl: eissn: 2050-7445 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000993267 issn: 2050-7445 databaseCode: C24 dateStart: 20131201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELb64MAFKBR1oax8QFzAdJP4lV5Qt9oKBF2tEKBysvwsSJBdNqFVL4i_wd_jl-Bxkq2KRC9cfHBsx9J8Hs-M7W8QemyCCZkOgcRCE-q4JEYESkRpAhfaWJFSsnx4I6ZTeXJSzrqAW91dq-x1YlLUbm4hRr6XM-DgGXFJXyy-EcgaBaerXQqNdbQJTGUR55vjyXT2dhVlifZPtE9E_1pG8r2aAiMKgZsJ6ZSLnF_ZkRJx_xVr868D0rTvHN3-3xnfQbc6ixMftBDZQmu-uou2W3qQC_wEA_esTvl9L-6h5gByhuNoFeKF_lw1-JOusYvutNvHGrfvXPA84AbIOapTvKKArXG0fnEiq031cYCvHl4VAwjwAkL-S-Buhc6A1rqpf__81f5kG70_mrw7fEm6xAzExu2rIaVn0VRy0XMqC0MLn2emyC0rbbDWMO9pEFyMXCEcozrEVpoZp3VUZZ5Rk9niPtqo5pXfQTgLQeaaM2syTR0tjS54pl1064zlWrIBynrhKNuxlkPyjC8qeS-Sq1agKgpUJYGq8wF6uuqzaDk7rm09BpmvWgLfdqqYL09Vt3wV80EDU5qVltKR1TKz2gkhmc2cN0IO0G6PAdUpgVpdAmCAnvUouvz87yk9uH60h-hmnvDLyUjsoo1m-d0_QjfsWRTectgtgSFaP8zpMMUYYvl6_DyWxz8m8fvs1fHs4x9XaBfT |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwELbKFgku_BaxUMAH4AJWN4kdO0gIlZ-qq25XeyionIx_20qQXTaB1d54DV6Ch-JJ8DjJVkWitx645ODYTmR_Mx57PN8g9Fh77RPlPQkPRajNBdHcU8IL7XOutOExJcuHER-PxeFhMVlDv7pYGLhW2enEqKjt1MAZ-VbKgINnkAv6avaVQNYo8K52KTQaWOy55SJs2aqXw7dhfp-k6c67gze7pM0qQEzQvTUpHAvrvA1mf5Fpmrk00VlqWGG8MZo5Rz3P-cBm3DKqfKilmLZKBTl0jOrEZKHfS2idAth7aH0y3J98XJ3qBHsr2EO8i84R-VZFgYGFwE2I6FUjizMrYEwUcMa6_cshG9e5nev_2wjdQNdaixpvNyJwE6258hbaaOhPlvgpBm5dFfMXL2-jehtyouNg9eKZOilrfKwqbOfBDn-BFW7iePDU4xrIR8ojvKK4rXCw7nEk443loYMvDqKmAeR4Bi6NOXDTQmOQxqqufv_42XxkA72_kAG4g3rltHR3EU68F6nKmdGJopYWWmV5omzYtmqTK8H6KOnAIE3Lyg7JQT7LuDsTuWwAJAOAZASQXPTRs1WbWcNJcm7t14CxVU3gE48F0_mRbNWTZM4rYIIzwlA6MEokRlnOBTOJdZqLPtrsMCdbJVfJU8D10fMOtaev__1L987v7RG6snuwP5Kj4XjvPrqaRtnJyYBvol49_-YeoMvme5jI-cNW_DD6dNF4_gOR6XBi |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VLUJc-C1ioYAPwAWs3SR27CAhVCgrVi2rPQAqJ-PfthLsLklgtTdeg1fhcXgSbCfZqkj01gOXHBzbiexvxjMe-xuAh8opl0jnsH9ITEzOsWKOYFYolzOpNIspWT7ss8mEHxwU0w341d2FCccqO50YFbWZ67BHPkhp4OAZ5pwMXHssYro7erH4ikMGqRBp7dJpNBDZs6uld9-q5-NdP9eP0nT0-t2rN7jNMIC118M1Liz1a77xLkCRKZLZNFFZqmmhndaKWkscy9nQZMxQIp2vJakyUnqZtJSoRGe-3wuw6U1ykvZgczp-O_243uHxtpe3jVh3U4fng4oENhYcTkXECBtenloNY9KAU5buX8HZuOaNrv7Po3UNrrSWNtppROM6bNjZDdhqaFFW6DEKnLsy5jVe3YR6J-RKR94aRgt5PKvRkayQKb19_gxJ1NzvQXOH6kBKMjtEa-rbCnmrH0WS3ljuO_hiw23qAH60CKGOMnDWhsZBSqu6-v3jZ_ORLXh_LgNwC3qz-czeBpQ4x1OZU60SSQwplMzyRBrvziqdS077kHTAELplaw9JQz6L6LXxXDRgEh5MIoJJLPvwZN1m0XCVnFn7ZcDbumbgGY8F8_JQtGpLUOtkYIjTXBMy1JInWhrGONWJsYrxPmx3-BOt8qvECfj68LRD8Mnrf__SnbN7ewCXPIjF_niydxcup1GMcjxk29Cry2_2HlzU3_08lvdbSUTw6bzh_AdrEHki |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=After+the+paint+has+dried%3A+a+review+of+testing+techniques+for+studying+the+mechanical+properties+of+artists%E2%80%99+paint&rft.jtitle=Heritage+science&rft.au=dePolo+Gwen&rft.au=Walton%2C+Marc&rft.au=Keune+Katrien&rft.au=Shull%2C+Kenneth+R&rft.date=2021-06-07&rft.pub=Springer+Nature+B.V&rft.eissn=2050-7445&rft.volume=9&rft.issue=1&rft_id=info:doi/10.1186%2Fs40494-021-00529-w&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7445&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7445&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7445&client=summon |