Grammar-based generation of stochastic local search heuristics through automatic algorithm configuration tools

Several grammar-based genetic programming algorithms have been proposed in the literature to automatically generate heuristics for hard optimization problems. These approaches specify the algorithmic building blocks and the way in which they can be combined in a grammar; the best heuristic for the p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & operations research Jg. 51; S. 190 - 199
Hauptverfasser: Mascia, Franco, López-Ibáñez, Manuel, Dubois-Lacoste, Jérémie, Stützle, Thomas
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Kidlington Elsevier Ltd 01.11.2014
Elsevier
Pergamon Press Inc
Schlagworte:
ISSN:0305-0548, 1873-765X, 0305-0548
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Several grammar-based genetic programming algorithms have been proposed in the literature to automatically generate heuristics for hard optimization problems. These approaches specify the algorithmic building blocks and the way in which they can be combined in a grammar; the best heuristic for the problem being tackled is found by an evolutionary algorithm that searches in the algorithm design space defined by the grammar. In this work, we propose a novel representation of the grammar by a sequence of categorical, integer, and real-valued parameters. We then use a tool for automatic algorithm configuration to search for the best algorithm for the problem at hand. Our experimental evaluation on the one-dimensional bin packing problem and the permutation flowshop problem with weighted tardiness objective shows that the proposed approach produces better algorithms than grammatical evolution, a well-established variant of grammar-based genetic programming. The reasons behind such improvement lie both in the representation proposed and in the method used to search the algorithm design space.
Bibliographie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ISSN:0305-0548
1873-765X
0305-0548
DOI:10.1016/j.cor.2014.05.020