Faster exact solution of sparse MaxCut and QUBO problems

The maximum-cut problem is one of the fundamental problems in combinatorial optimization. With the advent of quantum computers, both the maximum-cut and the equivalent quadratic unconstrained binary optimization problem have experienced much interest in recent years. This article aims to advance the...

Full description

Saved in:
Bibliographic Details
Published in:Mathematical programming computation Vol. 15; no. 3; pp. 445 - 470
Main Authors: Rehfeldt, Daniel, Koch, Thorsten, Shinano, Yuji
Format: Journal Article
Language:English
Published: Berlin/Heidelberg Springer Berlin Heidelberg 01.09.2023
Springer Nature B.V
Subjects:
ISSN:1867-2949, 1867-2957
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The maximum-cut problem is one of the fundamental problems in combinatorial optimization. With the advent of quantum computers, both the maximum-cut and the equivalent quadratic unconstrained binary optimization problem have experienced much interest in recent years. This article aims to advance the state of the art in the exact solution of both problems—by using mathematical programming techniques. The main focus lies on sparse problem instances, although also dense ones can be solved. We enhance several algorithmic components such as reduction techniques and cutting-plane separation algorithms, and combine them in an exact branch-and-cut solver. Furthermore, we provide a parallel implementation. The new solver is shown to significantly outperform existing state-of-the-art software for sparse maximum-cut and quadratic unconstrained binary optimization instances. Furthermore, we improve the best known bounds for several instances from the 7th DIMACS Challenge and the QPLIB, and solve some of them (for the first time) to optimality.
AbstractList The maximum-cut problem is one of the fundamental problems in combinatorial optimization. With the advent of quantum computers, both the maximum-cut and the equivalent quadratic unconstrained binary optimization problem have experienced much interest in recent years. This article aims to advance the state of the art in the exact solution of both problems—by using mathematical programming techniques. The main focus lies on sparse problem instances, although also dense ones can be solved. We enhance several algorithmic components such as reduction techniques and cutting-plane separation algorithms, and combine them in an exact branch-and-cut solver. Furthermore, we provide a parallel implementation. The new solver is shown to significantly outperform existing state-of-the-art software for sparse maximum-cut and quadratic unconstrained binary optimization instances. Furthermore, we improve the best known bounds for several instances from the 7th DIMACS Challenge and the QPLIB, and solve some of them (for the first time) to optimality.
Author Rehfeldt, Daniel
Shinano, Yuji
Koch, Thorsten
Author_xml – sequence: 1
  givenname: Daniel
  surname: Rehfeldt
  fullname: Rehfeldt, Daniel
  email: rehfeldt@zib.de
  organization: Applied Algorithmic Intelligence Methods departement, Zuse Institute Berlin
– sequence: 2
  givenname: Thorsten
  surname: Koch
  fullname: Koch, Thorsten
  organization: Applied Algorithmic Intelligence Methods departement, Zuse Institute Berlin, TU Berlin, Chair of Software and Algorithms for Discrete Optimization
– sequence: 3
  givenname: Yuji
  surname: Shinano
  fullname: Shinano, Yuji
  organization: Applied Algorithmic Intelligence Methods departement, Zuse Institute Berlin
BookMark eNp9kE9LAzEQxYNUsNZ-AU8Bz6uZZHeTHLX4DypFsOeQzWZly3ZTkyzUb2_qioKH5jCZw_vNm3nnaNK73iJ0CeQaCOE3AWjBaEYoy0gqZVaeoCmIkmdUFnzy2-fyDM1D2JD0GOWCySkSDzpE67HdaxNxcN0QW9dj1-Cw0z5Y_KL3iyFi3df4dX23wjvvqs5uwwU6bXQX7Pznn6H1w_3b4ilbrh6fF7fLzORUxkwKySomNJUgwLBGSzB5DblpSsMbbXNWccZB8KohopZacgDJCs2rOikLwWboapybjD8GG6LauMH3yVJRkUNeECCQVHRUGe9C8LZRO99utf9UQNQhJDWGpFI-6jskVSZI_INMG_Xh_uh12x1H2YiG5NO_W_-31RHqCxSOezw
CitedBy_id crossref_primary_10_1016_j_ejor_2025_07_063
crossref_primary_10_1287_ijoc_2024_0812
crossref_primary_10_1007_s42484_024_00219_3
crossref_primary_10_1088_1612_202X_ad12ad
crossref_primary_10_1109_TETC_2024_3403871
crossref_primary_10_1103_PRXQuantum_5_040320
crossref_primary_10_1016_j_cor_2025_107137
crossref_primary_10_1103_PhysRevResearch_6_013223
crossref_primary_10_1287_ijoc_2024_0551
crossref_primary_10_1002_nav_22146
crossref_primary_10_1145_3711935
crossref_primary_10_1287_mnsc_2023_00314
Cites_doi 10.4230/LIPIcs.ESA.2019.63
10.1137/1.9781611977042.5
10.1287/ijoc.2017.0798
10.1016/j.ejor.2017.08.025
10.1137/S1052623400382467
10.1007/BF02612354
10.1007/BF01587084
10.1145/3514039
10.1007/978-3-030-73879-2_33
10.1137/1.9781611976007.3
10.1109/CVPR.2019.00625
10.1007/s12532-018-0147-4
10.1287/mnsc.44.3.336
10.1007/BF02592023
10.1007/978-3-319-63516-3_8
10.1109/IPDPS.2016.56
10.1007/978-1-4684-2001-2_9
10.1002/j.1538-7305.1970.tb01770.x
10.1287/ijoc.2018.0857
10.1007/s10589-021-00310-6
10.1007/s10107-008-0235-8
10.1287/opre.36.3.493
10.1007/978-3-642-85823-9
10.1007/s10107-005-0637-9
10.1287/ijoc.2020.1008
10.1145/3005345
10.1145/3459606
10.1007/s10107-013-0688-2
10.24963/ijcai.2017/73
10.1137/1.9780898719918
ContentType Journal Article
Copyright The Author(s) 2023
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
JQ2
DOI 10.1007/s12532-023-00236-6
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1867-2957
EndPage 470
ExternalDocumentID 10_1007_s12532_023_00236_6
GrantInformation_xml – fundername: Zuse-Institut Berlin (4269)
GroupedDBID -5D
-5G
-BR
-EM
-~C
06D
0R~
0VY
1N0
203
29M
2JY
2KG
2VQ
2~H
30V
4.4
406
408
409
40D
40E
6NX
8UJ
96X
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
ASPBG
AUKKA
AVWKF
AXYYD
AYJHY
AZFZN
BA0
BAPOH
BGNMA
C6C
CAG
COF
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ6
GQ7
GQ8
GXS
H13
HF~
HG6
HLICF
HMJXF
HQYDN
HRMNR
HZ~
I0C
IJ-
IKXTQ
IWAJR
IXC
IXD
IZIGR
I~X
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OK1
P9R
PT4
QOS
R89
RIG
RLLFE
ROL
RSV
S1Z
S27
S3B
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
Z45
Z83
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
JQ2
ID FETCH-LOGICAL-c429t-9893b38a29181c3fa91c4d14cf6c7fae43b737187bf08d9a9711935a7bd91c583
IEDL.DBID RSV
ISICitedReferencesCount 21
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000969461400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1867-2949
IngestDate Thu Oct 02 15:08:13 EDT 2025
Sat Nov 29 06:19:09 EST 2025
Tue Nov 18 22:22:46 EST 2025
Fri Feb 21 02:42:48 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords 90C10
90C27
Maximum-cut
Branch-and-cut
Quadratic unconstrained binary optimization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c429t-9893b38a29181c3fa91c4d14cf6c7fae43b737187bf08d9a9711935a7bd91c583
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://link.springer.com/10.1007/s12532-023-00236-6
PQID 2841450101
PQPubID 2044128
PageCount 26
ParticipantIDs proquest_journals_2841450101
crossref_primary_10_1007_s12532_023_00236_6
crossref_citationtrail_10_1007_s12532_023_00236_6
springer_journals_10_1007_s12532_023_00236_6
PublicationCentury 2000
PublicationDate 2023-09-01
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle A Publication of the Mathematical Optimization Society
PublicationTitle Mathematical programming computation
PublicationTitleAbbrev Math. Prog. Comp
PublicationYear 2023
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Gurobi Optimization, LLC: Gurobi Optimizer Reference Manual (2021). https://www.gurobi.com
RendlFRinaldiGWiegeleASolving max-cut to optimality by intersecting semidefinite and polyhedral relaxationsMath. Program.20101212307335252489310.1007/s10107-008-0235-81184.90118
IBM: CPLEX (2020). https://www.ibm.com/analytics/cplex-optimizer
Shinano, Y., Achterberg, T., Berthold, T., Heinz, S., Koch, T., Winkler, M.: Solving open MIP instances with parascip on supercomputers using up to 80, 000 cores. In: 2016 IEEE International Parallel and Distributed Processing Symposium, IPDPS 2016, Chicago, IL, USA, May 23-27, 2016, pp. 770–779. IEEE Computer Society (2016). doi:10.1109/IPDPS.2016.56
BonatoTJüngerMReineltGRinaldiGLifting and separation procedures for the cut polytopeMath. Program.20141461–2351378323261910.1007/s10107-013-0688-21297.90133
Gamrath, G.: Enhanced predictions and structure exploitation in branch-and-bound. Technische Universitaet Berlin (Germany) (2020)
FuriniFTraversiEBelottiPFrangioniAGleixnerAMGouldNLibertiLLodiAMisenerRMittelmannHDSahinidisNVVigerskeSWiegeleAQPLIB: a library of quadratic programming instancesMath. Program. Comput.2019112237265394653710.1007/s12532-018-0147-41435.90099
HammerPLHansenPSimeoneBRoof duality, complementation and persistency in quadratic 0–1 optimizationMath. Program.198428212115573320610.1007/BF026123540574.90066
Tavares, G.: New algorithms for quadratic unconstrained binary optimization (qubo) with applications in engineering and social sciences. In: Ph.D. Thesis, Rutgers, the State University of New Jersey-New Brunswick (2008)
Bestuzheva, K., Besançon, M., Chen, W.K., Chmiela, A., Donkiewicz, T., van Doornmalen, J., Eifler, L., Gaul, O., Gamrath, G., Gleixner, A., Gottwald, L., Graczyk, C., Halbig, K., Hoen, A., Hojny, C., van der Hulst, R., Koch, T., Lübbecke, M., Maher, S.J., Matter, F., Mühmer, E., Müller, B., Pfetsch, M.E., Rehfeldt, D., Schlein, S., Schlösser, F., Serrano, F., Shinano, Y., Sofranac, B., Turner, M., Vigerske, S., Wegscheider, F., Wellner, P., Weninger, D., Witzig, J.: The SCIP Optimization Suite 8.0. ZIB-Report 21-41, Zuse Institute Berlin (2021). http://nbn-resolving.de/urn:nbn:de:0297-zib-85309
HrgaTPovhJMADAM: a parallel exact solver for max-cut based on semidefinite programming and ADMMComput. Optim. Appl.2021802347375431747610.1007/s10589-021-00310-61478.90079
Lange, J., Andres, B., Swoboda, P.: Combinatorial Persistency Criteria for Multicut and Max-Cut. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019, pp. 6093–6102. Computer Vision Foundation / IEEE (2019). https://doi.org/10.1109/CVPR.2019.00625
Achterberg, T.: Constraint integer programming. In: Ph.D. Thesis, Technische Universität Berlin (2007)
GusmeroliNHrgaTLužarBPovhJSiebenhoferMWiegeleABiqbin: A parallel branch-and-bound solver for binary quadratic problems with linear constraintsACM Trans. Math. Softw.2022445725610.1145/351403907666973
JüngerMMallachSExact facetial odd-cycle separation for maximum cut and binary quadratic optimizationINFORMS J. Comput.202133414191430434559610.1287/ijoc.2020.100807549342
KepnerJGilbertJGraph algorithms in the language of linear algebraSIAM201110.1137/1.97808987199181221.05010
Hammer, P.L., Rudeanu, S.: Boolean Methods in Operations Research and Related Areas. Springer (1968)
BarahonaFJüngerMReineltGExperiments in quadratic 0–1 programmingMath. Program.1989441–3127137100355610.1007/BF015870840677.90046
KernighanBWLinSAn efficient heuristic procedure for partitioning graphsBell Syst. Tech. J.197049229130710.1002/j.1538-7305.1970.tb01770.x0333.05001
Jünger, M., Mallach, S.: Odd-cycle separation for maximum cut and binary quadratic optimization. In: Bender, M.A., Svensson, O., Herman, G. (eds.) 27th Annual European Symposium on Algorithms, ESA 2019, September 9-11, 2019, Munich/Garching, Germany, LIPIcs, vol. 144, pp. 63:1–63:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019). https://doi.org/10.4230/LIPIcs.ESA.2019.63
GloverFWLewisMWKochenbergerGALogical and inequality implications for reducing the size and difficulty of quadratic unconstrained binary optimization problemsEur. J. Oper. Res.20182653829842372278710.1016/j.ejor.2017.08.0251374.90294
BurerSMonteiroRDCZhangYRank-two relaxation heuristics for MAX-CUT and other binary quadratic programsSIAM J. Optim.2002122503521188557310.1137/S10526234003824671152.90532
BillionnetAElloumiSUsing a mixed integer quadratic programming solver for the unconstrained quadratic 0–1 problemMath. Program.200710915568229403410.1007/s10107-005-0637-91278.90263
Ferizovic, D., Hespe, D., Lamm, S., Mnich, M., Schulz, C., Strash, D.: Engineering Kernelization for Maximum Cut. In: Blelloch, G.E., Finocchi, I. (eds.) Proceedings of the Symposium on Algorithm Engineering and Experiments, ALENEX 2020, Salt Lake City, UT, USA, January 5-6, 2020, pp. 27–41. SIAM (2020). https://doi.org/10.1137/1.9781611976007.3
AchterbergTBixbyREGuZRothbergEWeningerDPresolve reductions in mixed integer programmingINFORMS J. Comput.2020322473506410369110.1287/ijoc.2018.085707290858
Beasley, J.: Heuristic algorithms for the unconstrained binary quadratic programming problem. Tech. Rep. (1998)
Boros, E., Hammer, P.L., Tavares, G.: Preprocessing of unconstrained quadratic binary optimization. Tech. Rep. (2006)
BarahonaFMahjoubAROn the cut polytopeMath. Program.198636215717386698610.1007/BF025920230616.90058
Wiegele, A.: BiqMac Library: A collection of Max-Cut and quadratic 0-1 programming instances of medium size. Tech. Rep. (2007)
Charfreitag, J., Jünger, M., Mallach, S., Mutzel, P.: McSparse: Exact solutions of sparse maximum cut and sparse unconstrained binary quadratic optimization problems. In: Phillips, C.A., Speckmann, B. eds.) Proceedings of the Symposium on Algorithm Engineering and Experiments (ALENEX 2022), online first (2022
DunningIGuptaSSilberholzJWhat works best when? A systematic evaluation of heuristics for max-cut and QUBOINFORMS J. Comput.201830360862410.1287/ijoc.2017.079807277784
GloverFKochenbergerGAAlidaeeBAdaptive memory tabu search for binary quadratic programsManag. Sci.199844333634510.1287/mnsc.44.3.3360989.90072
BarahonaFGrötschelMJüngerMReineltGAn application of combinatorial optimization to statistical physics and circuit layout designOper. Res.198836349351310.1287/opre.36.3.4930646.90084
Karp, R.: Reducibility among combinatorial problems. In: R. Miller, J. Thatcher (eds.) Complexity of Computer Computations, pp. 85–103. Plenum Press (1972). https://doi.org/10.1007/978-1-4684-2001-2_9
Liers, F.: Contributions to determining exact ground-states of ising spin-glasses and to their physics. In: Ph.D. Thesis, University of Cologne (2004)
RalphsTShinanoYBertholdTKochTParallel Solvers for Mixed Integer Linear Optimization2018ChamSpringer International Publishing28333610.1007/978-3-319-63516-3_8
JüngerMLobeEMutzelPReineltGRendlFRinaldiGStollenwerkTQuantum annealing versus digital computing: an experimental comparisonACM J. Exp. Algorithmics2021428615310.1145/34596061499.68123
KrislockNMalickJRoupinFBiqcrunch: a semidefinite branch-and-bound method for solving binary quadratic problemsACM Trans. Math. Softw.2017363856910.1145/30053451380.90284
Rehfeldt, D., Koch, T.: Implications, Conflicts, and Reductions for Steiner Trees. In: Singh, M., Williamson, D.P. (eds.) Integer Programming and Combinatorial Optimization - 22nd International Conference, IPCO 2021, Atlanta, GA, USA, May 19-21, 2021, Proceedings, Lecture Notes in Computer Science, vol. 12707, pp. 473–487. Springer (2021). https://doi.org/10.1007/978-3-030-73879-2_33
Lin, J., Cai, S., Luo, C., Su, K.: A reduction based method for coloring very large graphs. In: Sierra, C. (ed.) Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI 2017, Melbourne, Australia, August 19-25, 2017, pp. 517–523. ijcai.org (2017). https://doi.org/10.24963/ijcai.2017/73
T Achterberg (236_CR2) 2020; 32
236_CR22
A Billionnet (236_CR8) 2007; 109
T Bonato (236_CR9) 2014; 146
236_CR24
S Burer (236_CR11) 2002; 12
236_CR26
M Jünger (236_CR27) 2021; 33
J Kepner (236_CR29) 2011
236_CR28
N Gusmeroli (236_CR20) 2022
236_CR40
T Ralphs (236_CR35) 2018
M Jünger (236_CR25) 2021
I Dunning (236_CR13) 2018; 30
F Glover (236_CR17) 1998; 44
236_CR19
236_CR1
T Hrga (236_CR23) 2021; 80
F Barahona (236_CR4) 1989; 44
236_CR7
236_CR6
236_CR10
236_CR32
236_CR33
236_CR12
FW Glover (236_CR18) 2018; 265
236_CR34
F Rendl (236_CR37) 2010; 121
236_CR14
236_CR36
236_CR16
236_CR38
236_CR39
F Barahona (236_CR3) 1988; 36
F Barahona (236_CR5) 1986; 36
F Furini (236_CR15) 2019; 11
BW Kernighan (236_CR30) 1970; 49
PL Hammer (236_CR21) 1984; 28
N Krislock (236_CR31) 2017
References_xml – reference: RalphsTShinanoYBertholdTKochTParallel Solvers for Mixed Integer Linear Optimization2018ChamSpringer International Publishing28333610.1007/978-3-319-63516-3_8
– reference: Rehfeldt, D., Koch, T.: Implications, Conflicts, and Reductions for Steiner Trees. In: Singh, M., Williamson, D.P. (eds.) Integer Programming and Combinatorial Optimization - 22nd International Conference, IPCO 2021, Atlanta, GA, USA, May 19-21, 2021, Proceedings, Lecture Notes in Computer Science, vol. 12707, pp. 473–487. Springer (2021). https://doi.org/10.1007/978-3-030-73879-2_33
– reference: RendlFRinaldiGWiegeleASolving max-cut to optimality by intersecting semidefinite and polyhedral relaxationsMath. Program.20101212307335252489310.1007/s10107-008-0235-81184.90118
– reference: Liers, F.: Contributions to determining exact ground-states of ising spin-glasses and to their physics. In: Ph.D. Thesis, University of Cologne (2004)
– reference: DunningIGuptaSSilberholzJWhat works best when? A systematic evaluation of heuristics for max-cut and QUBOINFORMS J. Comput.201830360862410.1287/ijoc.2017.079807277784
– reference: JüngerMLobeEMutzelPReineltGRendlFRinaldiGStollenwerkTQuantum annealing versus digital computing: an experimental comparisonACM J. Exp. Algorithmics2021428615310.1145/34596061499.68123
– reference: HrgaTPovhJMADAM: a parallel exact solver for max-cut based on semidefinite programming and ADMMComput. Optim. Appl.2021802347375431747610.1007/s10589-021-00310-61478.90079
– reference: Wiegele, A.: BiqMac Library: A collection of Max-Cut and quadratic 0-1 programming instances of medium size. Tech. Rep. (2007)
– reference: BonatoTJüngerMReineltGRinaldiGLifting and separation procedures for the cut polytopeMath. Program.20141461–2351378323261910.1007/s10107-013-0688-21297.90133
– reference: AchterbergTBixbyREGuZRothbergEWeningerDPresolve reductions in mixed integer programmingINFORMS J. Comput.2020322473506410369110.1287/ijoc.2018.085707290858
– reference: FuriniFTraversiEBelottiPFrangioniAGleixnerAMGouldNLibertiLLodiAMisenerRMittelmannHDSahinidisNVVigerskeSWiegeleAQPLIB: a library of quadratic programming instancesMath. Program. Comput.2019112237265394653710.1007/s12532-018-0147-41435.90099
– reference: Gamrath, G.: Enhanced predictions and structure exploitation in branch-and-bound. Technische Universitaet Berlin (Germany) (2020)
– reference: Achterberg, T.: Constraint integer programming. In: Ph.D. Thesis, Technische Universität Berlin (2007)
– reference: Charfreitag, J., Jünger, M., Mallach, S., Mutzel, P.: McSparse: Exact solutions of sparse maximum cut and sparse unconstrained binary quadratic optimization problems. In: Phillips, C.A., Speckmann, B. eds.) Proceedings of the Symposium on Algorithm Engineering and Experiments (ALENEX 2022), online first (2022)
– reference: Shinano, Y., Achterberg, T., Berthold, T., Heinz, S., Koch, T., Winkler, M.: Solving open MIP instances with parascip on supercomputers using up to 80, 000 cores. In: 2016 IEEE International Parallel and Distributed Processing Symposium, IPDPS 2016, Chicago, IL, USA, May 23-27, 2016, pp. 770–779. IEEE Computer Society (2016). doi:10.1109/IPDPS.2016.56
– reference: Tavares, G.: New algorithms for quadratic unconstrained binary optimization (qubo) with applications in engineering and social sciences. In: Ph.D. Thesis, Rutgers, the State University of New Jersey-New Brunswick (2008)
– reference: Bestuzheva, K., Besançon, M., Chen, W.K., Chmiela, A., Donkiewicz, T., van Doornmalen, J., Eifler, L., Gaul, O., Gamrath, G., Gleixner, A., Gottwald, L., Graczyk, C., Halbig, K., Hoen, A., Hojny, C., van der Hulst, R., Koch, T., Lübbecke, M., Maher, S.J., Matter, F., Mühmer, E., Müller, B., Pfetsch, M.E., Rehfeldt, D., Schlein, S., Schlösser, F., Serrano, F., Shinano, Y., Sofranac, B., Turner, M., Vigerske, S., Wegscheider, F., Wellner, P., Weninger, D., Witzig, J.: The SCIP Optimization Suite 8.0. ZIB-Report 21-41, Zuse Institute Berlin (2021). http://nbn-resolving.de/urn:nbn:de:0297-zib-85309
– reference: KrislockNMalickJRoupinFBiqcrunch: a semidefinite branch-and-bound method for solving binary quadratic problemsACM Trans. Math. Softw.2017363856910.1145/30053451380.90284
– reference: Beasley, J.: Heuristic algorithms for the unconstrained binary quadratic programming problem. Tech. Rep. (1998)
– reference: GloverFKochenbergerGAAlidaeeBAdaptive memory tabu search for binary quadratic programsManag. Sci.199844333634510.1287/mnsc.44.3.3360989.90072
– reference: GloverFWLewisMWKochenbergerGALogical and inequality implications for reducing the size and difficulty of quadratic unconstrained binary optimization problemsEur. J. Oper. Res.20182653829842372278710.1016/j.ejor.2017.08.0251374.90294
– reference: IBM: CPLEX (2020). https://www.ibm.com/analytics/cplex-optimizer
– reference: Boros, E., Hammer, P.L., Tavares, G.: Preprocessing of unconstrained quadratic binary optimization. Tech. Rep. (2006)
– reference: KernighanBWLinSAn efficient heuristic procedure for partitioning graphsBell Syst. Tech. J.197049229130710.1002/j.1538-7305.1970.tb01770.x0333.05001
– reference: Lange, J., Andres, B., Swoboda, P.: Combinatorial Persistency Criteria for Multicut and Max-Cut. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019, pp. 6093–6102. Computer Vision Foundation / IEEE (2019). https://doi.org/10.1109/CVPR.2019.00625
– reference: GusmeroliNHrgaTLužarBPovhJSiebenhoferMWiegeleABiqbin: A parallel branch-and-bound solver for binary quadratic problems with linear constraintsACM Trans. Math. Softw.2022445725610.1145/351403907666973
– reference: BarahonaFGrötschelMJüngerMReineltGAn application of combinatorial optimization to statistical physics and circuit layout designOper. Res.198836349351310.1287/opre.36.3.4930646.90084
– reference: HammerPLHansenPSimeoneBRoof duality, complementation and persistency in quadratic 0–1 optimizationMath. Program.198428212115573320610.1007/BF026123540574.90066
– reference: Gurobi Optimization, LLC: Gurobi Optimizer Reference Manual (2021). https://www.gurobi.com
– reference: BarahonaFMahjoubAROn the cut polytopeMath. Program.198636215717386698610.1007/BF025920230616.90058
– reference: BarahonaFJüngerMReineltGExperiments in quadratic 0–1 programmingMath. Program.1989441–3127137100355610.1007/BF015870840677.90046
– reference: JüngerMMallachSExact facetial odd-cycle separation for maximum cut and binary quadratic optimizationINFORMS J. Comput.202133414191430434559610.1287/ijoc.2020.100807549342
– reference: Ferizovic, D., Hespe, D., Lamm, S., Mnich, M., Schulz, C., Strash, D.: Engineering Kernelization for Maximum Cut. In: Blelloch, G.E., Finocchi, I. (eds.) Proceedings of the Symposium on Algorithm Engineering and Experiments, ALENEX 2020, Salt Lake City, UT, USA, January 5-6, 2020, pp. 27–41. SIAM (2020). https://doi.org/10.1137/1.9781611976007.3
– reference: Hammer, P.L., Rudeanu, S.: Boolean Methods in Operations Research and Related Areas. Springer (1968)
– reference: BurerSMonteiroRDCZhangYRank-two relaxation heuristics for MAX-CUT and other binary quadratic programsSIAM J. Optim.2002122503521188557310.1137/S10526234003824671152.90532
– reference: BillionnetAElloumiSUsing a mixed integer quadratic programming solver for the unconstrained quadratic 0–1 problemMath. Program.200710915568229403410.1007/s10107-005-0637-91278.90263
– reference: Jünger, M., Mallach, S.: Odd-cycle separation for maximum cut and binary quadratic optimization. In: Bender, M.A., Svensson, O., Herman, G. (eds.) 27th Annual European Symposium on Algorithms, ESA 2019, September 9-11, 2019, Munich/Garching, Germany, LIPIcs, vol. 144, pp. 63:1–63:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019). https://doi.org/10.4230/LIPIcs.ESA.2019.63
– reference: KepnerJGilbertJGraph algorithms in the language of linear algebraSIAM201110.1137/1.97808987199181221.05010
– reference: Lin, J., Cai, S., Luo, C., Su, K.: A reduction based method for coloring very large graphs. In: Sierra, C. (ed.) Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI 2017, Melbourne, Australia, August 19-25, 2017, pp. 517–523. ijcai.org (2017). https://doi.org/10.24963/ijcai.2017/73
– reference: Karp, R.: Reducibility among combinatorial problems. In: R. Miller, J. Thatcher (eds.) Complexity of Computer Computations, pp. 85–103. Plenum Press (1972). https://doi.org/10.1007/978-1-4684-2001-2_9
– ident: 236_CR40
– ident: 236_CR26
  doi: 10.4230/LIPIcs.ESA.2019.63
– ident: 236_CR1
– ident: 236_CR12
  doi: 10.1137/1.9781611977042.5
– volume: 30
  start-page: 608
  issue: 3
  year: 2018
  ident: 236_CR13
  publication-title: INFORMS J. Comput.
  doi: 10.1287/ijoc.2017.0798
– volume: 265
  start-page: 829
  issue: 3
  year: 2018
  ident: 236_CR18
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2017.08.025
– volume: 12
  start-page: 503
  issue: 2
  year: 2002
  ident: 236_CR11
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623400382467
– volume: 28
  start-page: 121
  issue: 2
  year: 1984
  ident: 236_CR21
  publication-title: Math. Program.
  doi: 10.1007/BF02612354
– volume: 44
  start-page: 127
  issue: 1–3
  year: 1989
  ident: 236_CR4
  publication-title: Math. Program.
  doi: 10.1007/BF01587084
– year: 2022
  ident: 236_CR20
  publication-title: ACM Trans. Math. Softw.
  doi: 10.1145/3514039
– ident: 236_CR36
  doi: 10.1007/978-3-030-73879-2_33
– ident: 236_CR14
  doi: 10.1137/1.9781611976007.3
– ident: 236_CR32
  doi: 10.1109/CVPR.2019.00625
– ident: 236_CR6
– volume: 11
  start-page: 237
  issue: 2
  year: 2019
  ident: 236_CR15
  publication-title: Math. Program. Comput.
  doi: 10.1007/s12532-018-0147-4
– volume: 44
  start-page: 336
  issue: 3
  year: 1998
  ident: 236_CR17
  publication-title: Manag. Sci.
  doi: 10.1287/mnsc.44.3.336
– ident: 236_CR19
– volume: 36
  start-page: 157
  issue: 2
  year: 1986
  ident: 236_CR5
  publication-title: Math. Program.
  doi: 10.1007/BF02592023
– start-page: 283
  volume-title: Parallel Solvers for Mixed Integer Linear Optimization
  year: 2018
  ident: 236_CR35
  doi: 10.1007/978-3-319-63516-3_8
– ident: 236_CR38
  doi: 10.1109/IPDPS.2016.56
– ident: 236_CR39
– ident: 236_CR28
  doi: 10.1007/978-1-4684-2001-2_9
– volume: 49
  start-page: 291
  issue: 2
  year: 1970
  ident: 236_CR30
  publication-title: Bell Syst. Tech. J.
  doi: 10.1002/j.1538-7305.1970.tb01770.x
– volume: 32
  start-page: 473
  issue: 2
  year: 2020
  ident: 236_CR2
  publication-title: INFORMS J. Comput.
  doi: 10.1287/ijoc.2018.0857
– volume: 80
  start-page: 347
  issue: 2
  year: 2021
  ident: 236_CR23
  publication-title: Comput. Optim. Appl.
  doi: 10.1007/s10589-021-00310-6
– volume: 121
  start-page: 307
  issue: 2
  year: 2010
  ident: 236_CR37
  publication-title: Math. Program.
  doi: 10.1007/s10107-008-0235-8
– volume: 36
  start-page: 493
  issue: 3
  year: 1988
  ident: 236_CR3
  publication-title: Oper. Res.
  doi: 10.1287/opre.36.3.493
– ident: 236_CR22
  doi: 10.1007/978-3-642-85823-9
– ident: 236_CR24
– volume: 109
  start-page: 55
  issue: 1
  year: 2007
  ident: 236_CR8
  publication-title: Math. Program.
  doi: 10.1007/s10107-005-0637-9
– volume: 33
  start-page: 1419
  issue: 4
  year: 2021
  ident: 236_CR27
  publication-title: INFORMS J. Comput.
  doi: 10.1287/ijoc.2020.1008
– year: 2017
  ident: 236_CR31
  publication-title: ACM Trans. Math. Softw.
  doi: 10.1145/3005345
– ident: 236_CR7
– ident: 236_CR10
– year: 2021
  ident: 236_CR25
  publication-title: ACM J. Exp. Algorithmics
  doi: 10.1145/3459606
– volume: 146
  start-page: 351
  issue: 1–2
  year: 2014
  ident: 236_CR9
  publication-title: Math. Program.
  doi: 10.1007/s10107-013-0688-2
– ident: 236_CR34
  doi: 10.24963/ijcai.2017/73
– year: 2011
  ident: 236_CR29
  publication-title: SIAM
  doi: 10.1137/1.9780898719918
– ident: 236_CR16
– ident: 236_CR33
SSID ssj0000327839
Score 2.4853354
Snippet The maximum-cut problem is one of the fundamental problems in combinatorial optimization. With the advent of quantum computers, both the maximum-cut and the...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 445
SubjectTerms Algorithms
Combinatorial analysis
Exact solutions
Full Length Paper
Mathematical analysis
Mathematical programming
Mathematics
Mathematics and Statistics
Mathematics of Computing
Operations Research/Decision Theory
Optimization
Quantum computers
Solvers
Theory of Computation
Title Faster exact solution of sparse MaxCut and QUBO problems
URI https://link.springer.com/article/10.1007/s12532-023-00236-6
https://www.proquest.com/docview/2841450101
Volume 15
WOSCitedRecordID wos000969461400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer Nature Consortium list (Orbis Cascade Alliance)
  customDbUrl:
  eissn: 1867-2957
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000327839
  issn: 1867-2949
  databaseCode: RSV
  dateStart: 20090701
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA46PejB3-J0Sg7eNNAkTZMcdTi8bP6c7FbSpAFBOlk72Z9v0rWrigp6LH0N5X2v7z2avO8D4JQrIVyawyhijKNQJxYJHFAHCCGeLt1E2JRiE3wwEKORvK2GwvL6tHu9JVlm6mbYjTBKkKsxqKQ9R9EyWHHlTnjBhvuHp8WflYB69Qjf93qyNkRkKKtpme-X-VyRmjbzy85oWXB6m_971S2wUTWY8GIeEdtgKc12wPoH2kF31V9wtea7QPSUJ0uA6UzpAtahCMcWumQzyVPYV7PutIAqM_BueHkDKw2afA8Me1eP3WtU6Skg7eAokHS9SUKFctAIrKlVEuvQ4FDbSHOr0pAmnLpaxRMbCCOV5Ni1d0zxxDhLJug-aGXjLD0AkCRaSME8v5cNSYIVo4Yw4oWMA2oNawNc-zTWFdm417x4iRuaZO-j2LknLn0UR21wtnjmdU618at1p4Yqrj67PHa1FofM0-a1wXkNTXP759UO_2Z-BNZIia4_a9YBrWIyTY_Bqn4rnvPJSRmO77lP02E
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS8MwED50CuqDv8Xp1Dz4poEmadr0UYdj4jZ_bbK3kqYtCNLJ2sn-fJOuXVVU0MfSayj3Xe87mtx3AKeuFEKnOYIdzl1sqyDGglhMA0KpkUsPHRLmwybcXk8Mh95d0RSWlqfdyy3JPFNXzW6UM4o1x-Bc9hw7i7Bka8YyivkPj0_zPysWM9MjTN1rxNow9Wyv6Jb5fpnPjFSVmV92RnPCaW3871U3Yb0oMNHFLCK2YCFKtmHtg-ygvurOtVrTHRAtacQSUDSVKkNlKKJRjHSyGacR6sppc5IhmYTofnB5i4oZNOkuDFpX_WYbF_MUsNJwZNjTtUnAhNTQCKJYLD2i7JDYKnaUG8vIZoHLNFe5QWyJ0JOeS3R5x6UbhNqSC7YHtWSURPuAaKCEJ7jR94ptGhDJWUg5NYOMLRaHvA6k9KmvCrFxM_Pixa9kko2PfO0eP_eR79ThbP7M60xq41frRgmVX3x2qa-5ltjcyObV4byEprr982oHfzM_gZV2v9vxO9e9m0NYpTnS5txZA2rZeBIdwbJ6y57T8XEemu-qwNZF
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fS8MwED78heiDv8Xp1Dz4pmFL0rTpo06HopuKTvZW0qQBQTpZq_jnm3TtpqKC-FiahHLfNXdt7r4P4CCQQthtjmCf8wB7KjZYkCazgFDq6NK1T3QhNhF0u6LfD28-dPEX1e7VkeSop8GxNKV541mbxqTxjXJGsY03uKBAx_40zHqukN59r989jP-yNJlTknA5sCNuwzT0wrJz5vtlPkenScr55ZS0CD7t5f8_9goslYknOh55yipMJekaLH6gI7RXnTGHa7YOoi0diQJK3qTKUeWiaGCQ3YSGWYI68q31kiOZanTbO7lGpTZNtgG99tl96xyXOgtYWZhyHNqcJWZCWsgEUczIkChPE08ZXwVGJh6LA2ZjWBCbptChDANi0z4ug1jbkVywTZhJB2myBYjGSoSCO94v49GYSM405dQJHDeZ0bwGpLJvpEoScqeF8RRN6JOdjSJrnqiwUeTX4HA853lEwfHr6HoFW1S-jllkYzDxuKPTq8FRBdPk9s-rbf9t-D7M35y2o6uL7uUOLNACaFeOVoeZfPiS7MKces0fs-Fe4aXvjXbfKQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Faster+exact+solution+of+sparse+MaxCut+and+QUBO+problems&rft.jtitle=Mathematical+programming+computation&rft.au=Rehfeldt%2C+Daniel&rft.au=Koch%2C+Thorsten&rft.au=Shinano%2C+Yuji&rft.date=2023-09-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1867-2949&rft.eissn=1867-2957&rft.volume=15&rft.issue=3&rft.spage=445&rft.epage=470&rft_id=info:doi/10.1007%2Fs12532-023-00236-6&rft.externalDocID=10_1007_s12532_023_00236_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1867-2949&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1867-2949&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1867-2949&client=summon