Fast automatic camera network calibration through human mesh recovery

Camera calibration is a necessary preliminary step in computer vision for the estimation of the position of objects in the 3D world. Despite the intrinsic camera parameters can be easily computed offline, extrinsic parameters need to be computed each time a camera changes its position, thus not allo...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of real-time image processing Ročník 17; číslo 6; s. 1757 - 1768
Hlavní autori: Garau, Nicola, De Natale, Francesco G. B., Conci, Nicola
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Berlin/Heidelberg Springer Berlin Heidelberg 01.12.2020
Springer Nature B.V
Predmet:
ISSN:1861-8200, 1861-8219
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Camera calibration is a necessary preliminary step in computer vision for the estimation of the position of objects in the 3D world. Despite the intrinsic camera parameters can be easily computed offline, extrinsic parameters need to be computed each time a camera changes its position, thus not allowing for fast and dynamic network re-configuration. In this paper we present an unsupervised and automatic framework for the estimation of the extrinsic parameters of a camera network, which leverages on optimised 3D human mesh recovery from a single image, and which does not require the use of additional markers. We show how it is possible to retrieve the real-world position of the cameras in the network together with the floor plane, exploiting regular RGB images and with a weak prior knowledge of the internal parameters. Our framework can also work with a single camera and in real-time, allowing the user to add, re-position, or remove cameras from the network in a dynamic fashion.
AbstractList Camera calibration is a necessary preliminary step in computer vision for the estimation of the position of objects in the 3D world. Despite the intrinsic camera parameters can be easily computed offline, extrinsic parameters need to be computed each time a camera changes its position, thus not allowing for fast and dynamic network re-configuration. In this paper we present an unsupervised and automatic framework for the estimation of the extrinsic parameters of a camera network, which leverages on optimised 3D human mesh recovery from a single image, and which does not require the use of additional markers. We show how it is possible to retrieve the real-world position of the cameras in the network together with the floor plane, exploiting regular RGB images and with a weak prior knowledge of the internal parameters. Our framework can also work with a single camera and in real-time, allowing the user to add, re-position, or remove cameras from the network in a dynamic fashion.
Author Garau, Nicola
Conci, Nicola
De Natale, Francesco G. B.
Author_xml – sequence: 1
  givenname: Nicola
  surname: Garau
  fullname: Garau, Nicola
  email: nicola.garau@unitn.it
  organization: University of Trento
– sequence: 2
  givenname: Francesco G. B.
  surname: De Natale
  fullname: De Natale, Francesco G. B.
  organization: University of Trento
– sequence: 3
  givenname: Nicola
  surname: Conci
  fullname: Conci, Nicola
  organization: University of Trento
BookMark eNp9kLtOwzAUhi1UJNrCCzBFYg7YThzHI6paQEJigdk6cU_alCYutkPVt8c0CCSGTuf6ncs_IaPOdkjINaO3jFJ55xkTIk8ppymNCZ7uz8iYlQVLS87U6Nen9IJMvN9QWsgiE2MyX4APCfTBthAakxho0UHSYdhb9x7DbVO5WLFdEtbO9qt1su5b6JIW_TpxaOwnusMlOa9h6_Hqx07J22L-OntMn18enmb3z6nJuQqpkhKKZaGyus5Lwyq5VKKquclQcZCQVxmTmZQoi1JwLvIKagEMK4QSsDImm5KbYe7O2Y8efdAb27surtRcxRelKBSNXXzoMs5677DWO9e04A6aUf0tlx7k0lEufZRL7yNU_oNME46PBwfN9jSaDaiPe7oVur-rTlBfv3iCtQ
CitedBy_id crossref_primary_10_1016_j_neucom_2022_11_097
crossref_primary_10_1109_TCSVT_2023_3328371
crossref_primary_10_3390_s21031013
crossref_primary_10_1109_LRA_2025_3554102
crossref_primary_10_1016_j_eswa_2022_117172
crossref_primary_10_1109_LRA_2022_3192629
Cites_doi 10.1109/CVPR.2019.00576
10.1049/ip-vis:20010078
10.1109/ICCV.2019.00234
10.1007/978-3-642-24028-7_30
10.1109/TPAMI.2017.2699648
10.1088/1361-6501/aab4d6
10.1109/ICASSP.2016.7471849
10.1016/j.imavis.2017.12.006
10.1109/34.888718
10.1109/TCSVT.2017.2731792
10.1145/3204949.3204969
10.1109/CVPR.2017.143
10.1109/ACCESS.2019.2891224
10.1109/CVPR.2017.603
10.1109/CVPRW.2009.5206754
10.1145/3272127.3275014
10.1145/3349801.3349803
10.1109/CVPR.2018.00744
10.1145/2398356.2398381
10.1007/978-3-319-10605-2_3
10.1049/ip-vis:20010574
10.1007/978-3-319-10584-0_11
10.1016/j.patcog.2015.11.019
10.1109/MRA.2006.1638022
10.1109/CVPR.2016.511
10.1109/ICRA.2012.6224570
10.1109/ICCV.2015.381
10.1109/CVPR.2011.5995316
10.1109/CVPR.2018.00250
ContentType Journal Article
Copyright The Author(s) 2020
The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2020
– notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.1007/s11554-020-01002-w
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central Database Suite (ProQuest)
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Collection (ProQuest)
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Advanced Technologies & Aerospace Collection

Database_xml – sequence: 1
  dbid: P5Z
  name: Advanced Technologies & Aerospace Database
  url: https://search.proquest.com/hightechjournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1861-8219
EndPage 1768
ExternalDocumentID 10_1007_s11554_020_01002_w
GrantInformation_xml – fundername: Universit├á degli Studi di Trento
GroupedDBID -59
-5G
-BR
-EM
-Y2
-~C
.VR
06D
0R~
0VY
1N0
203
29L
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
LLZTM
M4Y
MA-
N2Q
N9A
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P9O
PF0
PT4
QOS
R89
R9I
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z83
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c429t-977a6d693ff48c1b7d95bf2c3e92a7a4b317377e76852254baf5a1ebea8aebcc3
IEDL.DBID RSV
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000566041200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1861-8200
IngestDate Wed Nov 05 08:01:49 EST 2025
Sat Nov 29 03:23:16 EST 2025
Tue Nov 18 21:42:03 EST 2025
Fri Feb 21 02:39:40 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Camera calibration
Human mesh recovery
Pose estimation
3D matching
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c429t-977a6d693ff48c1b7d95bf2c3e92a7a4b317377e76852254baf5a1ebea8aebcc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://link.springer.com/10.1007/s11554-020-01002-w
PQID 2918675690
PQPubID 2044148
PageCount 12
ParticipantIDs proquest_journals_2918675690
crossref_primary_10_1007_s11554_020_01002_w
crossref_citationtrail_10_1007_s11554_020_01002_w
springer_journals_10_1007_s11554_020_01002_w
PublicationCentury 2000
PublicationDate 2020-12-01
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Journal of real-time image processing
PublicationTitleAbbrev J Real-Time Image Proc
PublicationYear 2020
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Joo, H., Liu, H., Tan, L., Gui, L., Nabbe, B., Matthews, I., Kanade, T., Nobuhara, S., Sheikh, Y.: Panoptic studio: A massively multiview system for social motion capture. In: 2015 IEEE International Conference on Computer Vision (ICCV), pp. 3334–3342 (2015)
Cao, Z., Simon, T., Wei, S., Sheikh, Y.: Realtime multi-person 2d pose estimation using part affinity fields. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1302–1310 (2017)
LoperMMahmoodNRomeroJPons-MollGBlackMJSmpl: a skinned multi-person linear modelACM Trans. Gr. (TOG)2015346248
Geiger, A., Moosmann, F., Car, Ö., Schuster, B.: Automaticcamera and range sensor calibration using a single shot. In: 2012IEEE International Conference on Robotics and Automation, pp. 3936–3943 (2012)
Durrant-WhyteHBaileyTSimultaneous localization and mapping: part iIEEE Robot. Autom. Mag.20061329911010.1109/MRA.2006.1638022
Tang, Z., Hwang, J., Lin, Y., Chuang, J.: Multiple-kernel adaptive segmentation and tracking (mast) for robust object tracking. In: 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1115–1119 (2016)
ZhaoFTamakiTKuritaTRaytchevBKanedaKMarker-based non-overlapping camera calibration methods with additional support camera viewsImage Vis. Comput.201870465410.1016/j.imavis.2017.12.006
Andriluka, M., Roth, S., Schiele, B.: Pictorial structures revisited: People detection and articulated pose estimation. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1014–1021 (2009)
Inomata, R., Terabayashi, K., Umeda, K., Godin, G.: Registration of 3d geometric model and color images using sift and range intensity images. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Wang, S., Kyungnam, K., Benes, B., Moreland, K., Borst, C., DiVerdi, S., Yi-Jen, Ming J. (Eds.), Advances in Visual Computing, Berlin, Heidelberg. Springer Berlin Heidelberg, pp. 325–336 (2011)
VasconcelosFBarretoJPBoyerEAutomatic camera calibration using multiple sets of pairwise correspondencesIEEE Trans. Pattern Anal. Mach. Intell.201840479180310.1109/TPAMI.2017.2699648
Cao, Z., Hidalgo, G., Simon, T., Wei, S.-E., Sheikh, Y.: Openpose: realtime multi-person 2d pose estimation using part affinity fields (2018). arXiv preprint arXiv:1812.08008
Garau, N., Conci, N.: Unsupervised continuous camera network pose estimation through human mesh recovery. In: Proceedings of the 13th International Conference on Distributed Smart Cameras, ICDSC 2019, New York, NY, USA (2019) (Association for Computing Machinery)
Wei, S., Ramakrishna, V., Kanade, T., Sheikh, Y.: Convolutional pose machines. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4724–4732 (2016)
Kanazawa, A., Zhang, J.Y., Felsen, P., Malik, J.: Learning 3d human dynamics from video. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5614–5623 (2019)
ZhangZA flexible new technique for camera calibrationIEEE Trans. Pattern Anal. Mach. Intell.200022111330133410.1109/34.888718
MiyataSSaitoHTakahashiKMikamiDIsogawaMKojimaAExtrinsic camera calibration without visible corresponding points using omnidirectional camerasIEEE Trans. Circuits Syst. Video Technol.20182892210221910.1109/TCSVT.2017.2731792
Hold-Geoffroy, Y., Sunkavalli, K., Eisenmann, J., Fisher, M., Gambaretto, E., Hadap, S., Lalonde, J.-F.: A perceptual measure for deep single image camera calibration. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2354–2363 (2018)
TangZLinYLeeKHwangJChuangJEsther: Joint camera self-calibration and automatic radial distortion correction from tracking of walking humansIEEE Access20197107541076610.1109/ACCESS.2019.2891224
RamakrishnaVMunozDHebertMAndrew BagnellJSheikhYFleetDPajdlaTSchieleBTuytelaarsTPose machines: articulated pose estimation via inference machinesComputer Vision—ECCV 20142014ChamSpringer334710.1007/978-3-319-10605-2_3
Desai, K., Prabhakaran, B., Raghuraman, S.: Skeleton-based continuous extrinsic calibration of multiple rgb-d kinect cameras. In: Proceedings of the 9th ACM Multimedia Systems Conference, MMSys’18, pp. 250–257, New York, NY, USA (2018) (Association for Computing Machinery)
Kanazawa, A., Black, M.J., Jacobs, D.W., Malik, J.: End-to-end recovery of human shape and pose. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7122–7131 (2018)
KimHHongKSPractical self-calibration of pan-tilt camerasIEE Proc. Vis. Image Signal Process.2001148534935510.1049/ip-vis:20010574
Tome, D., Russell, C., Agapito, L.: Lifting from the deep: Convolutional 3d pose estimation from a single image. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2500–2509 (2017)
ShottonJSharpTKipmanAFitzgibbonAFinocchioMBlakeACookMMooreRReal-time human pose recognition in parts from single depth imagesCommun. ACM201356111612410.1145/2398356.2398381
ZhangGZhaoHHongYMaYLiJGuoHOn-orbit space camera self-calibration based on the orthogonal vanishing points obtained from solar panelsMeas. Sci. Technol.201829606501310.1088/1361-6501/aab4d6
LoperMMBlackMJFleetDPajdlaTSchieleBTuytelaarsTOpendr: an approximate differentiable rendererComputer Vision–ECCV 20142014ChamSpringer15416910.1007/978-3-319-10584-0_11
SeoYHongKSTheory and practice on the self-calibration of a rotating and zooming camera from two viewsIEE Proceedings - Vision, Image and Signal Processing2001148316617210.1049/ip-vis:20010078
Peng, X.B., Kanazawa, A., Malik, J., Abbeel, P., Levine, S.: Sfv: Reinforcement learning of physical skills from videos. In: SIGGRAPH Asia 2018 Technical Papers. ACM, p. 178 (2018)
Hidalgo, G., Raaj, Y., Idrees, H., Xiang, D., Joo, H., Simon, T., Sheikh, Y.: Single-network whole-body pose estimation (2019). arXiv preprint arXiv:1909.13423
Nistér, D., Naroditsky, O., Bergen, J.: Visual odometry. In: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004, vol. 1. IEEE, pp. I–I (2004)
Simek, K.: Pinhole camera diagram, dissecting the camera matrix. http://ksimek.github.io/pinhole_camera_diagram/, 2013. Accessed 26 Apr 2019
Lucas, B.D., Kanade, T.: An iterative image registration technique with an application to stereo vision. pp. 674–679 (1981)
Kolotouros, N., Pavlakos, G., Black, M.J., Daniilidis, K.: Learning to reconstruct 3d human pose and shape via model-fitting in the loop (2019). arXiv preprint arXiv:1909.12828
CoughlanJMYuilleALLeenTKDietterichTGTrespVThe manhattan world assumption: Regularities in scene statistics which enable bayesian inferenceAdvances in Neural Information Processing Systems2001CambridgeMIT Press845851
PrestiLLCasciaML3d skeleton-based human action classification: a surveyPattern Recogn.20165313014710.1016/j.patcog.2015.11.019
Shotton, J., Fitzgibbon, A., Cook, M., Sharp, T., Finocchio, M., Moore, R., Kipman, A., Blake, A.: Real-time human pose recognition in parts from single depth images. In: CVPR 2011. Proceedings of the IEEE Computer Vision and Pattern Recognition (CVPR) 2011, pp. 1297–1304 (2011)
JM Coughlan (1002_CR4) 2001
1002_CR31
Z Zhang (1002_CR34) 2000; 22
LL Presti (1002_CR23) 2016; 53
1002_CR11
1002_CR33
1002_CR10
1002_CR13
1002_CR12
F Vasconcelos (1002_CR32) 2018; 40
H Durrant-Whyte (1002_CR6) 2006; 13
Y Seo (1002_CR25) 2001; 148
1002_CR7
1002_CR8
1002_CR5
1002_CR9
1002_CR14
1002_CR16
1002_CR3
1002_CR19
1002_CR1
1002_CR2
G Zhang (1002_CR35) 2018; 29
1002_CR22
1002_CR21
H Kim (1002_CR15) 2001; 148
M Loper (1002_CR18) 2015; 34
F Zhao (1002_CR36) 2018; 70
Z Tang (1002_CR30) 2019; 7
S Miyata (1002_CR20) 2018; 28
MM Loper (1002_CR17) 2014
1002_CR26
J Shotton (1002_CR27) 2013; 56
1002_CR28
V Ramakrishna (1002_CR24) 2014
1002_CR29
References_xml – reference: LoperMMahmoodNRomeroJPons-MollGBlackMJSmpl: a skinned multi-person linear modelACM Trans. Gr. (TOG)2015346248
– reference: Nistér, D., Naroditsky, O., Bergen, J.: Visual odometry. In: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004, vol. 1. IEEE, pp. I–I (2004)
– reference: Geiger, A., Moosmann, F., Car, Ö., Schuster, B.: Automaticcamera and range sensor calibration using a single shot. In: 2012IEEE International Conference on Robotics and Automation, pp. 3936–3943 (2012)
– reference: Cao, Z., Simon, T., Wei, S., Sheikh, Y.: Realtime multi-person 2d pose estimation using part affinity fields. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1302–1310 (2017)
– reference: TangZLinYLeeKHwangJChuangJEsther: Joint camera self-calibration and automatic radial distortion correction from tracking of walking humansIEEE Access20197107541076610.1109/ACCESS.2019.2891224
– reference: Kanazawa, A., Zhang, J.Y., Felsen, P., Malik, J.: Learning 3d human dynamics from video. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5614–5623 (2019)
– reference: Kanazawa, A., Black, M.J., Jacobs, D.W., Malik, J.: End-to-end recovery of human shape and pose. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7122–7131 (2018)
– reference: KimHHongKSPractical self-calibration of pan-tilt camerasIEE Proc. Vis. Image Signal Process.2001148534935510.1049/ip-vis:20010574
– reference: Kolotouros, N., Pavlakos, G., Black, M.J., Daniilidis, K.: Learning to reconstruct 3d human pose and shape via model-fitting in the loop (2019). arXiv preprint arXiv:1909.12828
– reference: Tome, D., Russell, C., Agapito, L.: Lifting from the deep: Convolutional 3d pose estimation from a single image. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2500–2509 (2017)
– reference: Simek, K.: Pinhole camera diagram, dissecting the camera matrix. http://ksimek.github.io/pinhole_camera_diagram/, 2013. Accessed 26 Apr 2019
– reference: Garau, N., Conci, N.: Unsupervised continuous camera network pose estimation through human mesh recovery. In: Proceedings of the 13th International Conference on Distributed Smart Cameras, ICDSC 2019, New York, NY, USA (2019) (Association for Computing Machinery)
– reference: VasconcelosFBarretoJPBoyerEAutomatic camera calibration using multiple sets of pairwise correspondencesIEEE Trans. Pattern Anal. Mach. Intell.201840479180310.1109/TPAMI.2017.2699648
– reference: PrestiLLCasciaML3d skeleton-based human action classification: a surveyPattern Recogn.20165313014710.1016/j.patcog.2015.11.019
– reference: Hold-Geoffroy, Y., Sunkavalli, K., Eisenmann, J., Fisher, M., Gambaretto, E., Hadap, S., Lalonde, J.-F.: A perceptual measure for deep single image camera calibration. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2354–2363 (2018)
– reference: Joo, H., Liu, H., Tan, L., Gui, L., Nabbe, B., Matthews, I., Kanade, T., Nobuhara, S., Sheikh, Y.: Panoptic studio: A massively multiview system for social motion capture. In: 2015 IEEE International Conference on Computer Vision (ICCV), pp. 3334–3342 (2015)
– reference: LoperMMBlackMJFleetDPajdlaTSchieleBTuytelaarsTOpendr: an approximate differentiable rendererComputer Vision–ECCV 20142014ChamSpringer15416910.1007/978-3-319-10584-0_11
– reference: SeoYHongKSTheory and practice on the self-calibration of a rotating and zooming camera from two viewsIEE Proceedings - Vision, Image and Signal Processing2001148316617210.1049/ip-vis:20010078
– reference: Inomata, R., Terabayashi, K., Umeda, K., Godin, G.: Registration of 3d geometric model and color images using sift and range intensity images. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Wang, S., Kyungnam, K., Benes, B., Moreland, K., Borst, C., DiVerdi, S., Yi-Jen, Ming J. (Eds.), Advances in Visual Computing, Berlin, Heidelberg. Springer Berlin Heidelberg, pp. 325–336 (2011)
– reference: Wei, S., Ramakrishna, V., Kanade, T., Sheikh, Y.: Convolutional pose machines. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4724–4732 (2016)
– reference: ZhangGZhaoHHongYMaYLiJGuoHOn-orbit space camera self-calibration based on the orthogonal vanishing points obtained from solar panelsMeas. Sci. Technol.201829606501310.1088/1361-6501/aab4d6
– reference: Hidalgo, G., Raaj, Y., Idrees, H., Xiang, D., Joo, H., Simon, T., Sheikh, Y.: Single-network whole-body pose estimation (2019). arXiv preprint arXiv:1909.13423
– reference: Lucas, B.D., Kanade, T.: An iterative image registration technique with an application to stereo vision. pp. 674–679 (1981)
– reference: ZhangZA flexible new technique for camera calibrationIEEE Trans. Pattern Anal. Mach. Intell.200022111330133410.1109/34.888718
– reference: Cao, Z., Hidalgo, G., Simon, T., Wei, S.-E., Sheikh, Y.: Openpose: realtime multi-person 2d pose estimation using part affinity fields (2018). arXiv preprint arXiv:1812.08008
– reference: Andriluka, M., Roth, S., Schiele, B.: Pictorial structures revisited: People detection and articulated pose estimation. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1014–1021 (2009)
– reference: Desai, K., Prabhakaran, B., Raghuraman, S.: Skeleton-based continuous extrinsic calibration of multiple rgb-d kinect cameras. In: Proceedings of the 9th ACM Multimedia Systems Conference, MMSys’18, pp. 250–257, New York, NY, USA (2018) (Association for Computing Machinery)
– reference: CoughlanJMYuilleALLeenTKDietterichTGTrespVThe manhattan world assumption: Regularities in scene statistics which enable bayesian inferenceAdvances in Neural Information Processing Systems2001CambridgeMIT Press845851
– reference: Tang, Z., Hwang, J., Lin, Y., Chuang, J.: Multiple-kernel adaptive segmentation and tracking (mast) for robust object tracking. In: 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1115–1119 (2016)
– reference: Peng, X.B., Kanazawa, A., Malik, J., Abbeel, P., Levine, S.: Sfv: Reinforcement learning of physical skills from videos. In: SIGGRAPH Asia 2018 Technical Papers. ACM, p. 178 (2018)
– reference: Shotton, J., Fitzgibbon, A., Cook, M., Sharp, T., Finocchio, M., Moore, R., Kipman, A., Blake, A.: Real-time human pose recognition in parts from single depth images. In: CVPR 2011. Proceedings of the IEEE Computer Vision and Pattern Recognition (CVPR) 2011, pp. 1297–1304 (2011)
– reference: Durrant-WhyteHBaileyTSimultaneous localization and mapping: part iIEEE Robot. Autom. Mag.20061329911010.1109/MRA.2006.1638022
– reference: MiyataSSaitoHTakahashiKMikamiDIsogawaMKojimaAExtrinsic camera calibration without visible corresponding points using omnidirectional camerasIEEE Trans. Circuits Syst. Video Technol.20182892210221910.1109/TCSVT.2017.2731792
– reference: ShottonJSharpTKipmanAFitzgibbonAFinocchioMBlakeACookMMooreRReal-time human pose recognition in parts from single depth imagesCommun. ACM201356111612410.1145/2398356.2398381
– reference: RamakrishnaVMunozDHebertMAndrew BagnellJSheikhYFleetDPajdlaTSchieleBTuytelaarsTPose machines: articulated pose estimation via inference machinesComputer Vision—ECCV 20142014ChamSpringer334710.1007/978-3-319-10605-2_3
– reference: ZhaoFTamakiTKuritaTRaytchevBKanedaKMarker-based non-overlapping camera calibration methods with additional support camera viewsImage Vis. Comput.201870465410.1016/j.imavis.2017.12.006
– ident: 1002_CR14
  doi: 10.1109/CVPR.2019.00576
– volume: 148
  start-page: 166
  issue: 3
  year: 2001
  ident: 1002_CR25
  publication-title: IEE Proceedings - Vision, Image and Signal Processing
  doi: 10.1049/ip-vis:20010078
– volume: 34
  start-page: 248
  issue: 6
  year: 2015
  ident: 1002_CR18
  publication-title: ACM Trans. Gr. (TOG)
– ident: 1002_CR21
– ident: 1002_CR16
  doi: 10.1109/ICCV.2019.00234
– start-page: 845
  volume-title: Advances in Neural Information Processing Systems
  year: 2001
  ident: 1002_CR4
– ident: 1002_CR11
  doi: 10.1007/978-3-642-24028-7_30
– volume: 40
  start-page: 791
  issue: 4
  year: 2018
  ident: 1002_CR32
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2017.2699648
– volume: 29
  start-page: 065013
  issue: 6
  year: 2018
  ident: 1002_CR35
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/1361-6501/aab4d6
– ident: 1002_CR29
  doi: 10.1109/ICASSP.2016.7471849
– volume: 70
  start-page: 46
  year: 2018
  ident: 1002_CR36
  publication-title: Image Vis. Comput.
  doi: 10.1016/j.imavis.2017.12.006
– volume: 22
  start-page: 1330
  issue: 11
  year: 2000
  ident: 1002_CR34
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.888718
– volume: 28
  start-page: 2210
  issue: 9
  year: 2018
  ident: 1002_CR20
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2017.2731792
– ident: 1002_CR5
  doi: 10.1145/3204949.3204969
– ident: 1002_CR2
  doi: 10.1109/CVPR.2017.143
– ident: 1002_CR28
– volume: 7
  start-page: 10754
  year: 2019
  ident: 1002_CR30
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2891224
– ident: 1002_CR31
  doi: 10.1109/CVPR.2017.603
– ident: 1002_CR1
  doi: 10.1109/CVPRW.2009.5206754
– ident: 1002_CR22
  doi: 10.1145/3272127.3275014
– ident: 1002_CR7
  doi: 10.1145/3349801.3349803
– ident: 1002_CR9
– ident: 1002_CR13
  doi: 10.1109/CVPR.2018.00744
– volume: 56
  start-page: 116
  issue: 1
  year: 2013
  ident: 1002_CR27
  publication-title: Commun. ACM
  doi: 10.1145/2398356.2398381
– start-page: 33
  volume-title: Computer Vision—ECCV 2014
  year: 2014
  ident: 1002_CR24
  doi: 10.1007/978-3-319-10605-2_3
– volume: 148
  start-page: 349
  issue: 5
  year: 2001
  ident: 1002_CR15
  publication-title: IEE Proc. Vis. Image Signal Process.
  doi: 10.1049/ip-vis:20010574
– start-page: 154
  volume-title: Computer Vision–ECCV 2014
  year: 2014
  ident: 1002_CR17
  doi: 10.1007/978-3-319-10584-0_11
– volume: 53
  start-page: 130
  year: 2016
  ident: 1002_CR23
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2015.11.019
– ident: 1002_CR3
  doi: 10.1109/CVPR.2017.143
– volume: 13
  start-page: 99
  issue: 2
  year: 2006
  ident: 1002_CR6
  publication-title: IEEE Robot. Autom. Mag.
  doi: 10.1109/MRA.2006.1638022
– ident: 1002_CR33
  doi: 10.1109/CVPR.2016.511
– ident: 1002_CR19
– ident: 1002_CR8
  doi: 10.1109/ICRA.2012.6224570
– ident: 1002_CR12
  doi: 10.1109/ICCV.2015.381
– ident: 1002_CR26
  doi: 10.1109/CVPR.2011.5995316
– ident: 1002_CR10
  doi: 10.1109/CVPR.2018.00250
SSID ssj0067635
Score 2.2732663
Snippet Camera calibration is a necessary preliminary step in computer vision for the estimation of the position of objects in the 3D world. Despite the intrinsic...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1757
SubjectTerms Accuracy
Calibration
Cameras
Color imagery
Computation
Computer Graphics
Computer Science
Computer vision
Deep learning
Image Processing and Computer Vision
Multimedia Information Systems
Parameters
Pattern Recognition
Recovery
Sensors
Signal,Image and Speech Processing
Special Issue Paper
Surveillance
SummonAdditionalLinks – databaseName: Computer Science Database
  dbid: K7-
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09T8MwELWgMLBQPkWhIA9sYBHny8mEEGrFgCoGkLpFtuMIJGhLk1Lx77lzHCKQ6MIYJbGiPPvuPX-8I-RcRioQRWhgfIcgUIJcMYmOQyKIUhV6uVaFPSh8L0ajZDxOH9yEW-m2VTYx0QbqfKpxjvzKT9F6LQIxdz17Z1g1CldXXQmNdbLBfQjCuCgrWBOJYzRbQ8GVxJxBpvPcoZn66BwmUobiyUMXUrb8mZhatvlrgdTmnWH3v1-8Q7Yd46Q3dRfZJWtmske6TTUH6gb3PhkMZVlRuaim1sWVaonzVXRS7xOHS6usEUfqivtQW-CPvpnymaKwhlHxeUCehoPH2zvmiiwwDamoYsD_ZJzHaVAUYaK5EnkaqcLXgUl9KWSogGAEQhiQJUDVolDJIpIcoJeJNErr4JB0JtOJOSIUpZpn4ijlOfASCA2FFwP9AULCdW643yO8-cOZdg7kWAjjNWu9kxGVDFDJLCrZskcuvt-Z1f4bK5_uN1BkbiyWWYtDj1w2YLa3_27teHVrJ2TLx_5j97b0SaeaL8wp2dQf1Us5P7M98QtqC-Lt
  priority: 102
  providerName: ProQuest
Title Fast automatic camera network calibration through human mesh recovery
URI https://link.springer.com/article/10.1007/s11554-020-01002-w
https://www.proquest.com/docview/2918675690
Volume 17
WOSCitedRecordID wos000566041200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1861-8219
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0067635
  issn: 1861-8200
  databaseCode: P5Z
  dateStart: 20060301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1861-8219
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0067635
  issn: 1861-8200
  databaseCode: K7-
  dateStart: 20060301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1861-8219
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0067635
  issn: 1861-8200
  databaseCode: BENPR
  dateStart: 20060301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1861-8219
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0067635
  issn: 1861-8200
  databaseCode: RSV
  dateStart: 20060301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFD646YMvzitO58iDbxroLb08qmwIyhjeGL6UJE1R0E7WzuG_9yRLHYoK-lIoTUM5Jyfn-5rkOwCHnAk_ygOF8R0gQfEzQblWHIp8lojAyaTIzUHhy2gwiEejZGgPhZX1bvd6SdLM1IvDbjr1UU13HK0bSmcNWGZabUZz9Ou7ev4NtcSapllx6FLMb449KvN9H5_T0QJjflkWNdmm3_rfd67DmkWX5GQ-HDZgSRWb0KorNxAbyFvQ6_OyInxajY1iK5Fc_5sixXxPON4aFq19RmwhH2KK-ZFnVT4QTaIxAt624bbfuzk7p7agApWYdiqKWI-HWZj4eR7E0hVRljCRe9JXiccjHggEE34UKaQgCMtYIHjOuItu5jFXQkp_B5rFuFC7QDQtc1TIEjdDDILTQO6ECHUQfLgyU67XBre2ayqt2rguevGULnSStZ1StFNq7JTO2nD08c7LXGvj19ad2l2pjbsy9RIt0MeQ8rfhuHbP4vHPve39rfk-rHraw2ZfSwea1WSqDmBFvlaP5aQLy6e9wfCqC42LiOJ1yO67Zoy-A4GC3RA
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LS8NAEB5qK-jF-sRq1T3oSYN5pzmI-GipWIuIgre4u9mgoG1tUkv_lL_RmTwsCnrz4DEkWUjm9c3szjcAu9wRlhfZCu3bxgTFCoXGiXHIsxxf2HooRZQ2Cne8brdxf-9fl-C96IWhY5WFT0wdddiXVCM_NH2iXnMwmTsevGo0NYp2V4sRGplaXKrJGFO2-OjiHOW7Z5qt5u1ZW8unCmgSfW-iIeDhbuj6VhTZDWkIL_QdEZnSUr7JPW4LjKiW5ynE4YhNHFvwyOEGfitvcCWktHDdGajYlu06ZaicNrvXN4Xvd4nejVK8hmtoGFv1vE0na9aj0K1RuqYT76k2_hoKp_j225ZsGula1f_2jxZhIcfU7CQzgiUoqd4yVIt5FSx3XyvQbPE4YXyU9FOeWiY5VeRYLzsJj5dp7YA0leXji1g6wpC9qPiRUekA7X6yCnd_8jFrUO71e2odGCWjunId3wgReaHzi3QXAR5CLkOGyjBrYBQSDWTOsU6jPp6DKTs0aUGAWhCkWhCMa7D_-c4gYxj59el6Ifog9zZxMJV7DQ4K5Zne_nm1jd9X24G59u1VJ-hcdC83Yd4k3U1P8tShnAxHagtm5VvyFA-3cztg8PDXavUBOOpDsA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60inixPrFadQ_eNJh3skfRFsVSii96C7ubDQqalia1-O-d3SRGRQXxGJIsYWdn5_uyM98AHDKPO0HiSvRvFwmKE3ODKcWhwPEod81Y8EQXCveCfj8cDungQxW_znavjiSLmgal0pTmJ-M4OakL31QYNBT1MZWGqDGbhwUXmYxK6rq-ua_2Yl_JrSnKFfqWgbHOLMtmvh_jc2iq8eaXI1IdebrN_3_zKqyUqJOcFstkDeZkug7NqqMDKR18AzpdluWETfORVnIlgql_ViQtcsXxUrNrZUtSNvghuskfeZbZA1HkGj3jdRPuup3bswujbLRgCAxHuYEYkPmxT50kcUNh8SCmHk9s4Uhqs4C5HEGGEwQSqQnCNc_lLPGYheZnIZNcCGcLGukoldtAFF0zpe9RK0ZsgttDYvoIgRCUWCKWlt0Cq5rjSJQq5KoZxlNU6yereYpwniI9T9GsBUfv74wLDY5fn25XpotKf8wimyrhPs-nZguOK1PVt38ebedvjx_A0uC8G_Uu-1e7sGwrY-vUlzY08slU7sGieMkfs8m-XqZvrQflbg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+automatic+camera+network+calibration+through+human+mesh+recovery&rft.jtitle=Journal+of+real-time+image+processing&rft.au=Garau%2C+Nicola&rft.au=De+Natale%2C+Francesco+G.+B.&rft.au=Conci%2C+Nicola&rft.date=2020-12-01&rft.issn=1861-8200&rft.eissn=1861-8219&rft.volume=17&rft.issue=6&rft.spage=1757&rft.epage=1768&rft_id=info:doi/10.1007%2Fs11554-020-01002-w&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11554_020_01002_w
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1861-8200&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1861-8200&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1861-8200&client=summon