An accelerated viscosity forward-backward splitting algorithm with the linesearch process for convex minimization problems

In this paper, we consider and investigate a convex minimization problem of the sum of two convex functions in a Hilbert space. The forward-backward splitting algorithm is one of the popular optimization methods for approximating a minimizer of the function; however, the stepsize of this algorithm d...

Full description

Saved in:
Bibliographic Details
Published in:Journal of inequalities and applications Vol. 2021; no. 1; pp. 1 - 19
Main Authors: Suantai, Suthep, Jailoka, Pachara, Hanjing, Adisak
Format: Journal Article
Language:English
Published: Cham Springer International Publishing 27.02.2021
Springer Nature B.V
SpringerOpen
Subjects:
ISSN:1029-242X, 1025-5834, 1029-242X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this paper, we consider and investigate a convex minimization problem of the sum of two convex functions in a Hilbert space. The forward-backward splitting algorithm is one of the popular optimization methods for approximating a minimizer of the function; however, the stepsize of this algorithm depends on the Lipschitz constant of the gradient of the function, which is not an easy work to find in general practice. By using a new modification of the linesearches of Cruz and Nghia [Optim. Methods Softw. 31:1209–1238, 2016 ] and Kankam et al. [Math. Methods Appl. Sci. 42:1352–1362, 2019 ] and an inertial technique, we introduce an accelerated viscosity-type algorithm without any Lipschitz continuity assumption on the gradient. A strong convergence result of the proposed algorithm is established under some control conditions. As applications, we apply our algorithm to solving image and signal recovery problems. Numerical experiments show that our method has a higher efficiency than the well-known methods in the literature.
AbstractList In this paper, we consider and investigate a convex minimization problem of the sum of two convex functions in a Hilbert space. The forward-backward splitting algorithm is one of the popular optimization methods for approximating a minimizer of the function; however, the stepsize of this algorithm depends on the Lipschitz constant of the gradient of the function, which is not an easy work to find in general practice. By using a new modification of the linesearches of Cruz and Nghia [Optim. Methods Softw. 31:1209–1238, 2016] and Kankam et al. [Math. Methods Appl. Sci. 42:1352–1362, 2019] and an inertial technique, we introduce an accelerated viscosity-type algorithm without any Lipschitz continuity assumption on the gradient. A strong convergence result of the proposed algorithm is established under some control conditions. As applications, we apply our algorithm to solving image and signal recovery problems. Numerical experiments show that our method has a higher efficiency than the well-known methods in the literature.
In this paper, we consider and investigate a convex minimization problem of the sum of two convex functions in a Hilbert space. The forward-backward splitting algorithm is one of the popular optimization methods for approximating a minimizer of the function; however, the stepsize of this algorithm depends on the Lipschitz constant of the gradient of the function, which is not an easy work to find in general practice. By using a new modification of the linesearches of Cruz and Nghia [Optim. Methods Softw. 31:1209–1238, 2016] and Kankam et al. [Math. Methods Appl. Sci. 42:1352–1362, 2019] and an inertial technique, we introduce an accelerated viscosity-type algorithm without any Lipschitz continuity assumption on the gradient. A strong convergence result of the proposed algorithm is established under some control conditions. As applications, we apply our algorithm to solving image and signal recovery problems. Numerical experiments show that our method has a higher efficiency than the well-known methods in the literature.
Abstract In this paper, we consider and investigate a convex minimization problem of the sum of two convex functions in a Hilbert space. The forward-backward splitting algorithm is one of the popular optimization methods for approximating a minimizer of the function; however, the stepsize of this algorithm depends on the Lipschitz constant of the gradient of the function, which is not an easy work to find in general practice. By using a new modification of the linesearches of Cruz and Nghia [Optim. Methods Softw. 31:1209–1238, 2016] and Kankam et al. [Math. Methods Appl. Sci. 42:1352–1362, 2019] and an inertial technique, we introduce an accelerated viscosity-type algorithm without any Lipschitz continuity assumption on the gradient. A strong convergence result of the proposed algorithm is established under some control conditions. As applications, we apply our algorithm to solving image and signal recovery problems. Numerical experiments show that our method has a higher efficiency than the well-known methods in the literature.
In this paper, we consider and investigate a convex minimization problem of the sum of two convex functions in a Hilbert space. The forward-backward splitting algorithm is one of the popular optimization methods for approximating a minimizer of the function; however, the stepsize of this algorithm depends on the Lipschitz constant of the gradient of the function, which is not an easy work to find in general practice. By using a new modification of the linesearches of Cruz and Nghia [Optim. Methods Softw. 31:1209–1238, 2016 ] and Kankam et al. [Math. Methods Appl. Sci. 42:1352–1362, 2019 ] and an inertial technique, we introduce an accelerated viscosity-type algorithm without any Lipschitz continuity assumption on the gradient. A strong convergence result of the proposed algorithm is established under some control conditions. As applications, we apply our algorithm to solving image and signal recovery problems. Numerical experiments show that our method has a higher efficiency than the well-known methods in the literature.
ArticleNumber 42
Author Jailoka, Pachara
Suantai, Suthep
Hanjing, Adisak
Author_xml – sequence: 1
  givenname: Suthep
  surname: Suantai
  fullname: Suantai, Suthep
  organization: Data Science Research Center, Department of Mathematics, Faculty of Science, Chiang Mai University
– sequence: 2
  givenname: Pachara
  surname: Jailoka
  fullname: Jailoka, Pachara
  organization: Data Science Research Center, Department of Mathematics, Faculty of Science, Chiang Mai University
– sequence: 3
  givenname: Adisak
  surname: Hanjing
  fullname: Hanjing, Adisak
  email: adisak_h@cmu.ac.th
  organization: Data Science Research Center, Department of Mathematics, Faculty of Science, Chiang Mai University
BookMark eNp9UU1vFSEUnZia2Fb_gCsS16PDN7NsGj-aNOmmJu7IhYH3eM7AE2hr--vlvTFqXHQB3MA55x7uOetOYoqu697i4T3GSnwomAox9APBbXGJe_6iO8UDGXvCyLeTf-pX3Vkpu6EhqWKn3dNFRGCtm12G6iZ0H4pNJdRH5FN-gDz1Buz3Q4HKfg61hrhBMG9SDnW7oIe2o7p1aA7RFQfZbtE-J-tKOQggm-K9-4mWEMMSnqCGFA_vZnZLed299DAX9-b3ed59_fTx9vJLf33z-ery4rq3jIy1V36SSnBjnCRSOuCGKoPdwOjIpRmVooQAEZKBAUGU9Ix6LCfLhaWS25Ged1er7pRgp_c5LJAfdYKgjxcpbzTkGuzstLBi9IYBwYNnnuBxmgRTos2O4-bDN613q1b7xI87V6repbscm31N2EiVIpKphiIryuZUSnb-T1c86ENees1LtxT0MS_NG0n9R7KhHidWM4T5eSpdqaX1iRuX_7p6hvULIBmuWw
CitedBy_id crossref_primary_10_1080_02331934_2024_2398776
crossref_primary_10_1155_2022_3455998
crossref_primary_10_1007_s12215_024_01134_z
crossref_primary_10_1007_s40314_022_02042_7
crossref_primary_10_3390_sym15010007
Cites_doi 10.1088/0266-5611/18/2/310
10.1137/0314056
10.1016/0022-247X(76)90152-9
10.1006/jmaa.1999.6615
10.3390/math8030378
10.1016/j.jmaa.2004.04.059
10.1137/050626090
10.3934/jimo.2020063
10.1007/s11117-012-0161-0
10.37193/CJM.2020.01.04
10.1080/10556788.2016.1214959
10.1080/10556788.2018.1472259
10.1007/978-1-4419-9467-7
10.1002/mma.5420
10.1080/02331934.2020.1808648
10.1109/JSTSP.2007.910264
10.1016/j.na.2011.09.005
10.1109/TIP.2003.814255
10.1109/TIP.2003.819861
10.1137/080716542
10.2140/pjm.1970.33.209
10.1137/S0363012998338806
10.1016/0041-5553(64)90137-5
10.1111/j.2517-6161.1996.tb02080.x
10.3390/math8010042
10.1137/0716071
10.1002/cpa.20042
ContentType Journal Article
Copyright The Author(s) 2021
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
7TB
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
M7S
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOA
DOI 10.1186/s13660-021-02571-5
DatabaseName Springer Nature OA Free Journals
CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
EISSN 1029-242X
EndPage 19
ExternalDocumentID oai_doaj_org_article_6c69fb4a210f4f219dd6486029518fdf
10_1186_s13660_021_02571_5
GroupedDBID -A0
0R~
29K
2WC
4.4
40G
5GY
5VS
8FE
8FG
8R4
8R5
AAFWJ
AAJSJ
AAKKN
ABDBF
ABEEZ
ABFTD
ABJCF
ACACY
ACGFO
ACGFS
ACIPV
ACIWK
ACUHS
ACULB
ADBBV
ADINQ
AENEX
AFGXO
AFKRA
AFPKN
AHBYD
AHYZX
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
ARAPS
BCNDV
BENPR
BGLVJ
C24
C6C
CCPQU
CS3
D-I
DU5
EBLON
EBS
ESX
GROUPED_DOAJ
HCIFZ
J9A
K6V
K7-
KQ8
L6V
M7S
M~E
OK1
P2P
P62
PIMPY
PROAC
PTHSS
Q2X
REM
RHU
RNS
RSV
SMT
SOJ
TUS
U2A
~8M
AASML
AAYXX
AMVHM
CITATION
OVT
7TB
8FD
ABUWG
AZQEC
DWQXO
FR3
GNUQQ
JQ2
KR7
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c429t-8fd7865bbe7277ea5b38b1e043957b988322a2674aba6287f43f17dc56c375c93
IEDL.DBID DOA
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000624607800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1029-242X
1025-5834
IngestDate Fri Oct 03 12:31:52 EDT 2025
Sat Oct 18 22:49:51 EDT 2025
Sat Nov 29 06:10:36 EST 2025
Tue Nov 18 22:37:51 EST 2025
Fri Feb 21 02:49:30 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Strong convergence
65K05
90C30
Inertial techniques
90C25
Forward-backward splitting
Convex minimization problems
Linesearch
Viscosity approximation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c429t-8fd7865bbe7277ea5b38b1e043957b988322a2674aba6287f43f17dc56c375c93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doaj.org/article/6c69fb4a210f4f219dd6486029518fdf
PQID 2493882748
PQPubID 237789
PageCount 19
ParticipantIDs doaj_primary_oai_doaj_org_article_6c69fb4a210f4f219dd6486029518fdf
proquest_journals_2493882748
crossref_primary_10_1186_s13660_021_02571_5
crossref_citationtrail_10_1186_s13660_021_02571_5
springer_journals_10_1186_s13660_021_02571_5
PublicationCentury 2000
PublicationDate 2021-02-27
PublicationDateYYYYMMDD 2021-02-27
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-27
  day: 27
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Heidelberg
PublicationTitle Journal of inequalities and applications
PublicationTitleAbbrev J Inequal Appl
PublicationYear 2021
Publisher Springer International Publishing
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
– name: SpringerOpen
References KankamK.PholasaN.CholamjiakP.On convergence and complexity of the modified forward-backward method involving new linesearches for convex minimizationMath. Methods Appl. Sci.20194213521362392815610.1002/mma.5420
LionsP.L.MercierB.Splitting algorithms for the sum of two nonlinear operatorsSIAM J. Numer. Anal.19791696497955131910.1137/0716071
RockafellarR.T.Monotone operators and the proximal point algorithmSIAM J. Control Optim.19761787789841048310.1137/0314056
ByrneC.Iterative oblique projection onto convex sets and the split feasibility problemInverse Probl.200218441453191024810.1088/0266-5611/18/2/310
CombettesP.L.PesquetJ.C.A Douglas-Rachford splitting approach to nonsmooth convex variational signal recoveryIEEE J. Sel. Top. Signal Process.2007156457410.1109/JSTSP.2007.910264
MoreauJ.J.Fonctions convexes duales et points proximaux dans un espace hilbertienC. R. Acad. Sci. Paris, Sér. A Math.1962255289728991441880118.10502
PolyakB.T.Some methods of speeding up the convergence of iteration methodsUSSR Comput. Math. Math. Phys.1964411710.1016/0041-5553(64)90137-5
BertsekasD.P.TsitsiklisJ.N.Parallel and Distributed Computation: Numerical Methods1997BelmontAthena Scientific1325.65001
XuH.K.Viscosity approximation methods for nonexpansive mappingsJ. Math. Anal. Appl.2004298279291208654610.1016/j.jmaa.2004.04.059
FigueiredoM.NowakR.An EM algorithm for wavelet-based image restorationIEEE Trans. Image Process.200312906916200865810.1109/TIP.2003.814255
BauschkeH.H.CombettesP.L.Convex Analysis and Monotone Operator Theory in Hilbert Spaces2011New YorkSpringer10.1007/978-1-4419-9467-7
SuantaiS.KankamK.CholamjiakP.A novel forward-backward algorithm for solving convex minimization problem in Hilbert spacesMathematics2020810.3390/math8010042
TibshiraniR.Regression shrinkage and selection via the lassoJ. R. Stat. Soc., Ser. B, Methodol.19965826728813792420850.62538
Aremu, K.O., Izuchukwu, C., Grace, O.N., Mewomo, O.T.: Multi-step iterative algorithm for minimization and fixed point problems in p-uniformly convex metric spaces. J. Ind. Manag. Optim. 13(5) (2020). https://doi.org/10.3934/jimo.2020063
NesterovY.A method for solving the convex programming problem with convergence rate O(1/k2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$O(1/k^{2})$\end{document}Dokl. Akad. Nauk SSSR1983269543547701288
OkekeC.C.IzuchukwuC.A strong convergence theorem for monotone inclusion and minimization problems in complete CAT(0) spacesOptim. Methods Softw.201934611681183401440110.1080/10556788.2018.1472259
BussabanL.SuantaiS.KaewkhaoA.A parallel inertial S-iteration forward-backward algorithm for regression and classification problemsCarpath. J. Math.20203635444119681
HanjingA.SuantaiS.A fast image restoration algorithm based on a fixed point and optimizationMathematics2020810.3390/math8030378
MartinetB.Régularisation d’inéquations variationnelles par approximations successivesRev. Fr. Inform. Rech. Oper.197041541580215.21103
RockafellarR.T.On the maximal monotonicity of subdifferential mappingsPac. J. Math.19703320921626282710.2140/pjm.1970.33.209
BeckA.TeboulleM.A fast iterative shrinkage-thresholding algorithm for linear inverse problemsSIAM J. Imaging Sci.20092183202248652710.1137/080716542
TsengP.A modified forward-backward splitting method for maximal monotone mappingsSIAM J. Control Optim.200038431446174114710.1137/S0363012998338806
CombettesP.L.WajsV.R.Signal recovery by proximal forward-backward splittingMultiscale Model. Simul.2005411681200220384910.1137/050626090
CruzJ.Y.B.NghiaT.T.A.On the convergence of the forward-backward splitting method with linesearchesOptim. Methods Softw.20163112091238354706310.1080/10556788.2016.1214959
DaubechiesI.DefriseM.MolC.D.An iterative thresholding algorithm for linear inverse problems with a sparsity constraintCommun. Pure Appl. Math.20045714131457207770410.1002/cpa.20042
IzuchukwuC.GraceO.N.MewomoO.T.An inertial method for solving generalized split feasibility problems over the solution set of monotone variational inclusionsOptimization202010.1080/02331934.2020.1808648
Hale, E., Yin, W., Zhang, Y.: A fixed-point continuation method for l1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$l_{1}$\end{document}-regularized minimization with applications to compressed sensing, Rice University: Department of Computational and Applied Mathematics (2007)
DunnJ.C.Convexity, monotonicity, and gradient processes in Hilbert spaceJ. Math. Anal. Appl.19765314515838817610.1016/0022-247X(76)90152-9
MoudafiA.Viscosity approximation method for fixed-points problemsJ. Math. Anal. Appl.20002414655173833210.1006/jmaa.1999.6615
ThungK.RaveendranP.A survey of image quality measuresProceedings of the International Conference for Technical Postgraduates (TECHPOS)2009Los AlamitosIEEE Comput. Soc.14
SaejungS.YotkaewP.Approximation of zeros of inverse strongly monotone operators in Banach spacesNonlinear Anal.201275724750284745310.1016/j.na.2011.09.005
WangZ.BovikA.C.SheikhH.R.SimoncelliE.P.Image quality assessment: from error visibility to structural similarityIEEE Trans. Image Process.20041360061210.1109/TIP.2003.819861
LinL.J.TakahashiW.A general iterative method for hierarchical variational inequality problems in Hilbert spaces and applicationsPositivity201216429453297430810.1007/s11117-012-0161-0
TakahashiW.Introduction to Nonlinear and Convex Analysis2009YokohamaYokohama Publishers1183.46001
B.T. Polyak (2571_CR24) 1964; 4
Z. Wang (2571_CR33) 2004; 13
Y. Nesterov (2571_CR22) 1983; 269
S. Suantai (2571_CR28) 2020; 8
J.Y.B. Cruz (2571_CR9) 2016; 31
J.C. Dunn (2571_CR11) 1976; 53
K. Kankam (2571_CR16) 2019; 42
A. Beck (2571_CR3) 2009; 2
2571_CR13
C. Byrne (2571_CR6) 2002; 18
A. Hanjing (2571_CR14) 2020; 8
P.L. Lions (2571_CR18) 1979; 16
S. Saejung (2571_CR27) 2012; 75
P.L. Combettes (2571_CR8) 2005; 4
R. Tibshirani (2571_CR31) 1996; 58
2571_CR1
R.T. Rockafellar (2571_CR25) 1970; 33
J.J. Moreau (2571_CR20) 1962; 255
W. Takahashi (2571_CR29) 2009
H.K. Xu (2571_CR34) 2004; 298
C.C. Okeke (2571_CR23) 2019; 34
B. Martinet (2571_CR19) 1970; 4
P.L. Combettes (2571_CR7) 2007; 1
L. Bussaban (2571_CR5) 2020; 36
R.T. Rockafellar (2571_CR26) 1976; 17
K. Thung (2571_CR30) 2009
A. Moudafi (2571_CR21) 2000; 241
H.H. Bauschke (2571_CR2) 2011
L.J. Lin (2571_CR17) 2012; 16
M. Figueiredo (2571_CR12) 2003; 12
P. Tseng (2571_CR32) 2000; 38
I. Daubechies (2571_CR10) 2004; 57
D.P. Bertsekas (2571_CR4) 1997
C. Izuchukwu (2571_CR15) 2020
References_xml – reference: Hale, E., Yin, W., Zhang, Y.: A fixed-point continuation method for l1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$l_{1}$\end{document}-regularized minimization with applications to compressed sensing, Rice University: Department of Computational and Applied Mathematics (2007)
– reference: TakahashiW.Introduction to Nonlinear and Convex Analysis2009YokohamaYokohama Publishers1183.46001
– reference: RockafellarR.T.On the maximal monotonicity of subdifferential mappingsPac. J. Math.19703320921626282710.2140/pjm.1970.33.209
– reference: SaejungS.YotkaewP.Approximation of zeros of inverse strongly monotone operators in Banach spacesNonlinear Anal.201275724750284745310.1016/j.na.2011.09.005
– reference: LinL.J.TakahashiW.A general iterative method for hierarchical variational inequality problems in Hilbert spaces and applicationsPositivity201216429453297430810.1007/s11117-012-0161-0
– reference: MartinetB.Régularisation d’inéquations variationnelles par approximations successivesRev. Fr. Inform. Rech. Oper.197041541580215.21103
– reference: OkekeC.C.IzuchukwuC.A strong convergence theorem for monotone inclusion and minimization problems in complete CAT(0) spacesOptim. Methods Softw.201934611681183401440110.1080/10556788.2018.1472259
– reference: WangZ.BovikA.C.SheikhH.R.SimoncelliE.P.Image quality assessment: from error visibility to structural similarityIEEE Trans. Image Process.20041360061210.1109/TIP.2003.819861
– reference: IzuchukwuC.GraceO.N.MewomoO.T.An inertial method for solving generalized split feasibility problems over the solution set of monotone variational inclusionsOptimization202010.1080/02331934.2020.1808648
– reference: XuH.K.Viscosity approximation methods for nonexpansive mappingsJ. Math. Anal. Appl.2004298279291208654610.1016/j.jmaa.2004.04.059
– reference: DaubechiesI.DefriseM.MolC.D.An iterative thresholding algorithm for linear inverse problems with a sparsity constraintCommun. Pure Appl. Math.20045714131457207770410.1002/cpa.20042
– reference: CruzJ.Y.B.NghiaT.T.A.On the convergence of the forward-backward splitting method with linesearchesOptim. Methods Softw.20163112091238354706310.1080/10556788.2016.1214959
– reference: BauschkeH.H.CombettesP.L.Convex Analysis and Monotone Operator Theory in Hilbert Spaces2011New YorkSpringer10.1007/978-1-4419-9467-7
– reference: CombettesP.L.PesquetJ.C.A Douglas-Rachford splitting approach to nonsmooth convex variational signal recoveryIEEE J. Sel. Top. Signal Process.2007156457410.1109/JSTSP.2007.910264
– reference: KankamK.PholasaN.CholamjiakP.On convergence and complexity of the modified forward-backward method involving new linesearches for convex minimizationMath. Methods Appl. Sci.20194213521362392815610.1002/mma.5420
– reference: ThungK.RaveendranP.A survey of image quality measuresProceedings of the International Conference for Technical Postgraduates (TECHPOS)2009Los AlamitosIEEE Comput. Soc.14
– reference: LionsP.L.MercierB.Splitting algorithms for the sum of two nonlinear operatorsSIAM J. Numer. Anal.19791696497955131910.1137/0716071
– reference: Aremu, K.O., Izuchukwu, C., Grace, O.N., Mewomo, O.T.: Multi-step iterative algorithm for minimization and fixed point problems in p-uniformly convex metric spaces. J. Ind. Manag. Optim. 13(5) (2020). https://doi.org/10.3934/jimo.2020063
– reference: NesterovY.A method for solving the convex programming problem with convergence rate O(1/k2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$O(1/k^{2})$\end{document}Dokl. Akad. Nauk SSSR1983269543547701288
– reference: MoudafiA.Viscosity approximation method for fixed-points problemsJ. Math. Anal. Appl.20002414655173833210.1006/jmaa.1999.6615
– reference: PolyakB.T.Some methods of speeding up the convergence of iteration methodsUSSR Comput. Math. Math. Phys.1964411710.1016/0041-5553(64)90137-5
– reference: HanjingA.SuantaiS.A fast image restoration algorithm based on a fixed point and optimizationMathematics2020810.3390/math8030378
– reference: FigueiredoM.NowakR.An EM algorithm for wavelet-based image restorationIEEE Trans. Image Process.200312906916200865810.1109/TIP.2003.814255
– reference: BussabanL.SuantaiS.KaewkhaoA.A parallel inertial S-iteration forward-backward algorithm for regression and classification problemsCarpath. J. Math.20203635444119681
– reference: TsengP.A modified forward-backward splitting method for maximal monotone mappingsSIAM J. Control Optim.200038431446174114710.1137/S0363012998338806
– reference: BeckA.TeboulleM.A fast iterative shrinkage-thresholding algorithm for linear inverse problemsSIAM J. Imaging Sci.20092183202248652710.1137/080716542
– reference: SuantaiS.KankamK.CholamjiakP.A novel forward-backward algorithm for solving convex minimization problem in Hilbert spacesMathematics2020810.3390/math8010042
– reference: CombettesP.L.WajsV.R.Signal recovery by proximal forward-backward splittingMultiscale Model. Simul.2005411681200220384910.1137/050626090
– reference: MoreauJ.J.Fonctions convexes duales et points proximaux dans un espace hilbertienC. R. Acad. Sci. Paris, Sér. A Math.1962255289728991441880118.10502
– reference: RockafellarR.T.Monotone operators and the proximal point algorithmSIAM J. Control Optim.19761787789841048310.1137/0314056
– reference: DunnJ.C.Convexity, monotonicity, and gradient processes in Hilbert spaceJ. Math. Anal. Appl.19765314515838817610.1016/0022-247X(76)90152-9
– reference: BertsekasD.P.TsitsiklisJ.N.Parallel and Distributed Computation: Numerical Methods1997BelmontAthena Scientific1325.65001
– reference: ByrneC.Iterative oblique projection onto convex sets and the split feasibility problemInverse Probl.200218441453191024810.1088/0266-5611/18/2/310
– reference: TibshiraniR.Regression shrinkage and selection via the lassoJ. R. Stat. Soc., Ser. B, Methodol.19965826728813792420850.62538
– volume: 18
  start-page: 441
  year: 2002
  ident: 2571_CR6
  publication-title: Inverse Probl.
  doi: 10.1088/0266-5611/18/2/310
– volume: 269
  start-page: 543
  year: 1983
  ident: 2571_CR22
  publication-title: Dokl. Akad. Nauk SSSR
– volume-title: Introduction to Nonlinear and Convex Analysis
  year: 2009
  ident: 2571_CR29
– volume: 17
  start-page: 877
  year: 1976
  ident: 2571_CR26
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/0314056
– volume: 53
  start-page: 145
  year: 1976
  ident: 2571_CR11
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/0022-247X(76)90152-9
– volume: 241
  start-page: 46
  year: 2000
  ident: 2571_CR21
  publication-title: J. Math. Anal. Appl.
  doi: 10.1006/jmaa.1999.6615
– volume: 8
  year: 2020
  ident: 2571_CR14
  publication-title: Mathematics
  doi: 10.3390/math8030378
– volume: 298
  start-page: 279
  year: 2004
  ident: 2571_CR34
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2004.04.059
– volume-title: Parallel and Distributed Computation: Numerical Methods
  year: 1997
  ident: 2571_CR4
– volume: 4
  start-page: 1168
  year: 2005
  ident: 2571_CR8
  publication-title: Multiscale Model. Simul.
  doi: 10.1137/050626090
– start-page: 1
  volume-title: Proceedings of the International Conference for Technical Postgraduates (TECHPOS)
  year: 2009
  ident: 2571_CR30
– ident: 2571_CR1
  doi: 10.3934/jimo.2020063
– volume: 16
  start-page: 429
  year: 2012
  ident: 2571_CR17
  publication-title: Positivity
  doi: 10.1007/s11117-012-0161-0
– volume: 36
  start-page: 35
  year: 2020
  ident: 2571_CR5
  publication-title: Carpath. J. Math.
  doi: 10.37193/CJM.2020.01.04
– volume: 31
  start-page: 1209
  year: 2016
  ident: 2571_CR9
  publication-title: Optim. Methods Softw.
  doi: 10.1080/10556788.2016.1214959
– ident: 2571_CR13
– volume: 34
  start-page: 1168
  issue: 6
  year: 2019
  ident: 2571_CR23
  publication-title: Optim. Methods Softw.
  doi: 10.1080/10556788.2018.1472259
– volume-title: Convex Analysis and Monotone Operator Theory in Hilbert Spaces
  year: 2011
  ident: 2571_CR2
  doi: 10.1007/978-1-4419-9467-7
– volume: 42
  start-page: 1352
  year: 2019
  ident: 2571_CR16
  publication-title: Math. Methods Appl. Sci.
  doi: 10.1002/mma.5420
– year: 2020
  ident: 2571_CR15
  publication-title: Optimization
  doi: 10.1080/02331934.2020.1808648
– volume: 1
  start-page: 564
  year: 2007
  ident: 2571_CR7
  publication-title: IEEE J. Sel. Top. Signal Process.
  doi: 10.1109/JSTSP.2007.910264
– volume: 75
  start-page: 724
  year: 2012
  ident: 2571_CR27
  publication-title: Nonlinear Anal.
  doi: 10.1016/j.na.2011.09.005
– volume: 12
  start-page: 906
  year: 2003
  ident: 2571_CR12
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2003.814255
– volume: 13
  start-page: 600
  year: 2004
  ident: 2571_CR33
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2003.819861
– volume: 255
  start-page: 2897
  year: 1962
  ident: 2571_CR20
  publication-title: C. R. Acad. Sci. Paris, Sér. A Math.
– volume: 2
  start-page: 183
  year: 2009
  ident: 2571_CR3
  publication-title: SIAM J. Imaging Sci.
  doi: 10.1137/080716542
– volume: 33
  start-page: 209
  year: 1970
  ident: 2571_CR25
  publication-title: Pac. J. Math.
  doi: 10.2140/pjm.1970.33.209
– volume: 38
  start-page: 431
  year: 2000
  ident: 2571_CR32
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/S0363012998338806
– volume: 4
  start-page: 1
  year: 1964
  ident: 2571_CR24
  publication-title: USSR Comput. Math. Math. Phys.
  doi: 10.1016/0041-5553(64)90137-5
– volume: 58
  start-page: 267
  year: 1996
  ident: 2571_CR31
  publication-title: J. R. Stat. Soc., Ser. B, Methodol.
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– volume: 4
  start-page: 154
  year: 1970
  ident: 2571_CR19
  publication-title: Rev. Fr. Inform. Rech. Oper.
– volume: 8
  year: 2020
  ident: 2571_CR28
  publication-title: Mathematics
  doi: 10.3390/math8010042
– volume: 16
  start-page: 964
  year: 1979
  ident: 2571_CR18
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0716071
– volume: 57
  start-page: 1413
  year: 2004
  ident: 2571_CR10
  publication-title: Commun. Pure Appl. Math.
  doi: 10.1002/cpa.20042
SSID ssj0021384
ssib044744598
ssib008501289
Score 2.2823467
Snippet In this paper, we consider and investigate a convex minimization problem of the sum of two convex functions in a Hilbert space. The forward-backward splitting...
Abstract In this paper, we consider and investigate a convex minimization problem of the sum of two convex functions in a Hilbert space. The forward-backward...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Analysis
Applications of Mathematics
Approximation
Convex minimization problems
Forward-backward splitting
Hilbert space
Inertial techniques
Linesearch
Mathematical analysis
Mathematics
Mathematics and Statistics
Optimization
Signal reconstruction
Splitting
Strong convergence
Viscosity
Viscosity approximation
SummonAdditionalLinks – databaseName: Engineering Database
  dbid: M7S
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagcIADhQJioSAfuIHV2vErJ1QQFRcqJEDqzfIjLpW2u8tmWxV-PTOOk6pI9MItShzLiT_Py-P5CHnNecgAI8FkG8BBEfuWhU4GZoXPbZZNMCIVsglzdGSPj9svNeDW17TKUSYWQZ2WEWPke-AmNGANGmnfrX4yZI3C3dVKoXGb3MEqCbyk7n2d8GQVit9JXUtppFTttMsgeFMYiTlSuirbyPFQjdV7PW-03meYwABPDWfqmuIq9f2vGaV_7aMW9XS4_b8f9pA8qIYpPRiQ9Ijc6hY7ZLsaqbSKgH6H3P88FXrtH5PfBwvqYwTdhSUnEr047SOmgf2iYAyXhNyAAUK4oD30VJKsqZ-fwAA2P84oRoEpdEfnhQkTFx1dDUcXsANacuIvKdY_OasHRmmlwOmfkO-HH799-MQqnQOLoPQ2zOZkrFYhdGAzmc6r0NjAOzybq0xoLcoWL7SRPngNjhwgJXOTotKxMSq2zVOytVguumeECtHJGHUS1mqplLDepsRzBoUP6IpmRvg4Vy7WWudIuTF3xeex2g3z62B-XZlfp2bkzfTOaqj0cWPr9wiBqSVW6S43lusTVxe901G3OUgPbnWWGXRDSrqQfoFZC38jz8juCAlXRUfvrvAwI29HUF09_veQnt_c2wtyTwxwZsLskq3N-rx7Se7Gi81pv35VFs4foBEbhA
  priority: 102
  providerName: ProQuest
– databaseName: SpringerOpen
  dbid: C24
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxQxDLagcIADhULFQkE5cIOIJpPXHEtFxYWKA0i9RXlMykrb3WqzVMCvx8lkFhUBEtxGmSSKHDu2k882wAvGfEI24lT0Hh0UfmioH4SnhrvUJ9F5zWMtNqFPT83ZWf-hBYXlCe0-PUnWk7qKtVGvM-uUOqQFUoB6WjMqb8ItyUxfgHzHJcahuVmsM2IKj_ntuGsqqGbqv2Ze_vIiWhXNye7_LfE-3GuGJTkaOeEB3BiWe7DbjEzSRDjvwd3320St-SF8P1oSFwLqnpIyIpKreQ4FxvWNoDFbAbW-XPDhB8k4UwVJE7c4X63nm88XpNziEpyOLGolyyI05HIMPSgTkIpp_0pK_pKLFvBJWgmb_Ag-nbz9ePyOtnIMNKDS2lCTojZKej-gzaMHJ31nPBtKbK3UvjflbHBcaeG8U-iI4U4npmOQKnRahr7bh53lajk8BsL5IEJQkRujhJTcOBMjSwkVNnJH0DNg0w7Z0HKVl5IZC1t9FqPsSGqLpLaV1FbO4OV2zOWYqeOvvd-Ujd_2LFm2a8NqfW6b0FoVVJ-8cOgWJ5HwbI9R1aJdaJYiNdIMDia2sU30s0V_tkO3RQszg1cTm_z8_eclPfm37k_hDh85jXJ9ADub9ZfhGdwOV5t5Xj-vIvEDC5MHsg
  priority: 102
  providerName: Springer Nature
Title An accelerated viscosity forward-backward splitting algorithm with the linesearch process for convex minimization problems
URI https://link.springer.com/article/10.1186/s13660-021-02571-5
https://www.proquest.com/docview/2493882748
https://doaj.org/article/6c69fb4a210f4f219dd6486029518fdf
Volume 2021
WOSCitedRecordID wos000624607800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1029-242X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021384
  issn: 1029-242X
  databaseCode: DOA
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1029-242X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib044744598
  issn: 1029-242X
  databaseCode: M~E
  dateStart: 0
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAVX
  databaseName: SpringerOpen
  customDbUrl:
  eissn: 1029-242X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021384
  issn: 1029-242X
  databaseCode: C24
  dateStart: 20051201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5B4cCFN2KhrHzgBlY3jl85tlUrEGIV8ZAKF8uPGFbabqvNUrX8esaOUygScOFiRYkdWZ7PmfmceQA8ryoXEUaM8sYhQWEzTV3HHdXMxiby2ikWcrEJNZ_ro6Om_aXUV_IJG9IDDwu3I71souMWqUnkEfdXCDIXTkLTQMcQ09d3ppqRTBWqVdWajyEyWu70VS3ljCZ3BNTxqqLiihrK2fqvmJi__RXNyubwLtwuViLZHWZ3D651q_twp1iMpOzH_gF8310R6z2qjpTxIZCzRe-TF9YFQVs0-8O6dD6HF6THsdnHmdjll5P1YvP1mKRDWIIWIFnmQpQJ8-R0iBxILyDZJf2cpPQjxyVek5QKNP1D-Hh48GH_FS3VFKhHnbOhuFhKS-FchyaL6qxwtXZVl0JjhXKNTlvbMqm4dVYij0JBxUoFL6SvlfBN_Qi2Vier7jEQxjruvQxMa8mFYNrqEKoYUd-icL2aQDUurvEl1XiqeLE0mXJoaQaBGBSIyQIxYgIvLsecDok2_tp7L8nssmdKkp1vIHRMgY75F3QmsD1K3JSd2xukozWyDsX1BF6OKPj5-M9TevI_pvQUbrEBpZSpbdjarL91z-CmP9ss-vUUbuwdzNt3U7i-z_g0Ix7bN4pOk8vqe2xb8Rl7ta_ftp9-AIgaBlo
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELaqggQcKBQqFgr4ACewunb8ygGh8qhabbviUKTeTOzEpdJ2d9kshfKj-I3MOI-qSPTWA7coDytxvnnZM_MR8oJzHwFGgsncQ4Aihpb5SnpmRRHzKDNvRJnIJsx4bI-O8k8r5HdXC4NplZ1OTIq6nAVcI9-CMCEDb9BI-3b-jSFrFO6udhQaDSxG1fkPCNnqN3sf4P--FGLn4-H7XdayCrAAunfJbCyN1cr7Cky3qQrlM-t5hSWiyvjcIsQLoY0sfKEhnoAXjtyUQemQGRWw-RKo_BsyswblamRYj1-rUN337oGURkqV97sagmeJAZkjhayymeyKeKzeqnmm9ZBhwgRcNZypS4Yy8QlccoL_2rdN5nBn7X-byHvkbut40-1GUu6TlWq6TtZaJ5y2Kq5eJ3cO-ka29QPya3tKixDANmNLjZKendQB09zOKTj7KeHY4wIoHNAaRkpJ5LSYHMMHL7-eUlzlpjAcnSSmT_xoOm9KM3AAmnL-f1Ls73LaFsTSluKnfkg-X8t8bJDV6WxaPSJUiEqGoEthrZZKCVvYsuQxgkMD0hPMgPAOGy60vdyRUmTiUkxntWvw5ABPLuHJqQF51T8zbzqZXHn3O4Rcfyd2IU8nZotj1yo1p4POo5eF4MMoI9i-stSJ1AzcdpiNOCCbHQRdqxprd4G_AXndgfji8r9f6fHVoz0nt3YPD_bd_t549ITcFo0oMWE2yepy8b16Sm6Gs-VJvXiWhJaSL9cN7j-_2HaS
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELaqghAcKBQQCwV8gBNEu3b8ygGhQqmoCqs9gFRxMbEdl0rb3WWzFMpP49cx4zyqItFbD9yiOLEc5_M87Jn5CHnKmIsAI56JwoGDwkcmc5VwmeFlLKLIneYhkU3o8dgcHBSTNfK7y4XBsMpOJiZBHeYe98iH4CbkYA1qYYaxDYuY7Oy-WnzLkEEKT1o7Oo0GIvvV6Q9w3-qXezvwr59xvvv245t3WcswkHmQw6vMxKCNks5VoMZ1VUqXG8cqTBeV2hUG4V5ypUXpSgW-BQw-Mh28VD7X0mMhJhD_VzT4mBhOOJGfeywbiaK_NxWE0ELIoj_h4CxPbMgM6WSlyUWX0GPUsGa5UqMMgyegVbNMnlOaiVvgnEH81xluUo27G__zpN4iN1uDnG43K-g2Watmm2SjNc5pK_rqTXLjQ1_gtr5Dfm3PaOk96GwstRHoyVHtMfztlIITkAKRHW6MwgWtoacUXE7L6SF88OrrMcXdbwrd0WliAMWPposmZQM7oCkX4CfFui_HbaIsbal_6rvk06XMxz2yPpvPqvuEcl4J71XgxighJTelCYHFCIYOrCqvB4R1OLG-rfGOVCNTm3w9o2yDLQvYsglbVg7I8_6dRVPh5MKnXyP8-iexOnm6MV8e2lbYWeVVEZ0oORtFEUEnhqAS2RmY8zAbcUC2OjjaVmTW9gyLA_KiA_RZ87-H9ODi3p6Qa4Bp-35vvP-QXOfNqsq43iLrq-X36hG56k9WR_XycVq_lHy5bGz_AdCaf7Y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+accelerated+viscosity+forward-backward+splitting+algorithm+with+the+linesearch+process+for+convex+minimization+problems&rft.jtitle=Journal+of+inequalities+and+applications&rft.au=Suantai%2C+Suthep&rft.au=Jailoka%2C+Pachara&rft.au=Hanjing%2C+Adisak&rft.date=2021-02-27&rft.issn=1029-242X&rft.eissn=1029-242X&rft.volume=2021&rft.issue=1&rft_id=info:doi/10.1186%2Fs13660-021-02571-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s13660_021_02571_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-242X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-242X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-242X&client=summon