An Extreme Learning Machine and Gene Expression Programming-Based Hybrid Model for Daily Precipitation Prediction

Accurate daily precipitation prediction is crucially important. However, it is difficult to predict the precipitation accurately due to inherently complex meteorological factors and dynamic behavior of weather. Recently, considerable attention has been devoted in soft computing-based prediction appr...

Full description

Saved in:
Bibliographic Details
Published in:International journal of computational intelligence systems Vol. 12; no. 2; pp. 1512 - 1525
Main Authors: Peng, Yuzhong, Zhao, Huasheng, Zhang, Hao, Li, Wenwei, Qin, Xiao, Liao, Jianping, Liu, Zhiping, Li, Jie
Format: Journal Article
Language:English
Published: Dordrecht Springer Netherlands 01.01.2019
Springer Nature B.V
Springer
Subjects:
ISSN:1875-6891, 1875-6883, 1875-6883
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Accurate daily precipitation prediction is crucially important. However, it is difficult to predict the precipitation accurately due to inherently complex meteorological factors and dynamic behavior of weather. Recently, considerable attention has been devoted in soft computing-based prediction approaches. This work presents a scheme to reduce the risk of Extreme Learning Machine (ELM) modeling error using Gene Expression Programming (GEP) to improve the prediction performance, and develops an ELM-GEP hybrid model for regional daily quantitative precipitation prediction. In this study, firstly, we use ELM for modeling the data sample of daily rainfall to construct a main model. Secondly, we use GEP for modeling the error of the main model as a compensation of the main model to reduce the prediction error. We conducted eight experiments of two different types of daily precipitation prediction problems using five metrics to evaluate our proposed model performance. Experimental results show that our model is comparable or even superior to five state-of-the-art models with high reliability in terms of all metrics on all datasets. It indicates that the proposed method is a promising alternative prediction tool for higher accuracy and credibility of regional daily precipitation prediction.
AbstractList Accurate daily precipitation prediction is crucially important. However, it is difficult to predict the precipitation accurately due to inherently complex meteorological factors and dynamic behavior of weather. Recently, considerable attention has been devoted in soft computing-based prediction approaches. This work presents a scheme to reduce the risk of Extreme Learning Machine (ELM) modeling error using Gene Expression Programming (GEP) to improve the prediction performance, and develops an ELM-GEP hybrid model for regional daily quantitative precipitation prediction. In this study, firstly, we use ELM for modeling the data sample of daily rainfall to construct a main model. Secondly, we use GEP for modeling the error of the main model as a compensation of the main model to reduce the prediction error. We conducted eight experiments of two different types of daily precipitation prediction problems using five metrics to evaluate our proposed model performance. Experimental results show that our model is comparable or even superior to five state-of-the-art models with high reliability in terms of all metrics on all datasets. It indicates that the proposed method is a promising alternative prediction tool for higher accuracy and credibility of regional daily precipitation prediction.
Author Peng, Yuzhong
Liao, Jianping
Zhao, Huasheng
Li, Jie
Qin, Xiao
Liu, Zhiping
Zhang, Hao
Li, Wenwei
Author_xml – sequence: 1
  givenname: Yuzhong
  surname: Peng
  fullname: Peng, Yuzhong
  email: jedison@163.com
  organization: Key Lab of Scientific Computing and Intelligent Information Processing in Universities of Guangxi, Nanning Normal University, School of Computer science, Fudan University
– sequence: 2
  givenname: Huasheng
  surname: Zhao
  fullname: Zhao, Huasheng
  organization: Guangxi Research Institute of Meteorological Disasters Mitigation
– sequence: 3
  givenname: Hao
  surname: Zhang
  fullname: Zhang, Hao
  organization: School of Computer science, Fudan University
– sequence: 4
  givenname: Wenwei
  surname: Li
  fullname: Li, Wenwei
  organization: School of Computer science, Fudan University
– sequence: 5
  givenname: Xiao
  surname: Qin
  fullname: Qin, Xiao
  organization: Key Lab of Scientific Computing and Intelligent Information Processing in Universities of Guangxi, Nanning Normal University
– sequence: 6
  givenname: Jianping
  surname: Liao
  fullname: Liao, Jianping
  organization: Key Lab of Scientific Computing and Intelligent Information Processing in Universities of Guangxi, Nanning Normal University
– sequence: 7
  givenname: Zhiping
  surname: Liu
  fullname: Liu, Zhiping
  organization: Guangxi Research Institute of Meteorological Disasters Mitigation
– sequence: 8
  givenname: Jie
  surname: Li
  fullname: Li, Jie
  organization: Department of Mathematical and Computer Sciences, Guangxi Science & Technology Normal University
BookMark eNp9UU1PJCEUJBtN1lX_gCcSzz0LNE3DUd1ZNRmjBz0TPl7PMpmBEdrE-feirWviwRPFo6pSvPqF9mKKgNAJJTOmFP0dVi6UmZ9RRSkTM0LoD3RAZd81Qsp27z9W9Cc6LmVFCGGUE8L5AXo8i3j-PGbYAF6AyTHEJb4x7l-IgE30-BIqmD9vM5QSUsR3OS2z2Wwqrzk3BTy-2tkcPL5JHtZ4SBn_MWG9q0RwYRtGM04y8MG9wiO0P5h1geP38xA9_J3fX1w1i9vL64uzReM4U2MjpeisoIPkpvOtYtxa2vY9G1ouBYCwnWrJYAklvuNSSevrTQ1Kdao-Mt8eouvJ1yez0tscNibvdDJBvw1SXmqTx-DWoIknBDh13pmO97a3HpSkfcs7IetKZfU6nby2OT0-QRn1Kj3lWONrxkVfowjWV5acWC6nUjIM2r1_f8x1JZoS_dqXfutLez31pWtfVcq-SD8CfytqJ1Gp5LiE_JnqG9UL8jCs9w
CitedBy_id crossref_primary_10_1016_j_eswa_2023_121907
ContentType Journal Article
Copyright The Authors 2019
2019. This work is licensed under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Authors 2019
– notice: 2019. This work is licensed under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
7SC
8FD
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOA
DOI 10.2991/ijcis.d.191126.001
DatabaseName Springer Nature OA Free Journals
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Health Research Premium Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Databases
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Computer Science Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1875-6883
EndPage 1525
ExternalDocumentID oai_doaj_org_article_0d00e41cdca547b7bde9817345681128
10_2991_ijcis_d_191126_001
GroupedDBID 0R~
4.4
5GY
AAFWJ
AAJSJ
AAKKN
AAYZJ
ABEEZ
ABFIM
ACACY
ACGFS
ACULB
ADBBV
ADCVX
ADMSI
AENEX
AFGXO
AFKRA
AFPKN
AHDSZ
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARCSS
AVBZW
BCNDV
BENPR
BGLVJ
C24
C6C
CS3
DU5
EBLON
EBS
EJD
GROUPED_DOAJ
GTTXZ
H13
HCIFZ
HZ~
IL9
IPNFZ
J~4
K7-
M4Z
O9-
OK1
PIMPY
RIG
RSV
SOJ
TDBHL
TFL
TFW
TR2
AASML
AAYXX
AFFHD
AQTUD
CCPQU
CITATION
PHGZM
PHGZT
PQGLB
7SC
8FD
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
L7M
L~C
L~D
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c429t-8865b61f84a5d3924bb13772f3486ee6b5930fb010d54898bd0fb9f9959e6b2d3
IEDL.DBID K7-
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000515063600048&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1875-6891
1875-6883
IngestDate Fri Oct 03 12:50:38 EDT 2025
Tue Oct 21 12:47:53 EDT 2025
Sat Nov 29 02:36:51 EST 2025
Tue Nov 18 21:26:00 EST 2025
Fri Feb 21 02:40:37 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Gene Expression Programming
Extreme Learning Machine
Soft computing
Quantitative precipitation prediction
Rainfall prediction
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c429t-8865b61f84a5d3924bb13772f3486ee6b5930fb010d54898bd0fb9f9959e6b2d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doaj.org/article/0d00e41cdca547b7bde9817345681128
PQID 2467593627
PQPubID 4869256
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_0d00e41cdca547b7bde9817345681128
proquest_journals_2467593627
crossref_citationtrail_10_2991_ijcis_d_191126_001
crossref_primary_10_2991_ijcis_d_191126_001
springer_journals_10_2991_ijcis_d_191126_001
PublicationCentury 2000
PublicationDate 2019-01-01
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – month: 01
  year: 2019
  text: 2019-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
– name: Abingdon
PublicationTitle International journal of computational intelligence systems
PublicationTitleAbbrev Int J Comput Intell Syst
PublicationYear 2019
Publisher Springer Netherlands
Springer Nature B.V
Springer
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
– name: Springer
References Cheng, Yang (CR12) 2016; 31
CR19
Dufek, Augusto, Dias, Barbosa (CR24) 2017; 106
CR16
CR15
Zhao, Jin, Huang, Jin (CR27) 2014; 73
Venkatesh, Devi, Arulmozhivarman (CR29) 2016; 13
CR13
CR11
Partal, Kişi (CR17) 2007; 342
Sharma, Goyal (CR23) 2016; 26
CR32
Nasseri, Asghari, Abedini (CR9) 2008; 35
Kim, Seo, Lee (CR28) 2016; 154
Huang, Jiang (CR39) 2012; 42
Kashiwao, Nakayama, Ando, Ikeda, Lee, Bahadori (CR10) 2017; 56
Huang, Zhou, Ding, Zhang (CR36) 2012; 42
Wu, Chau (CR18) 2013; 26
Chu, He (CR5) 2010; 14
Acharya, Shrivastava, Panigrahi, Mohanty (CR14) 2014; 43
Huang, Zhu, Siew (CR31) 2006; 70
CR2
Kuligowski, Barros (CR8) 1998; 13
CR4
Ranjannayak, Mahapatra, Mishra (CR26) 2014; 72
Sheng, Gao, Xue (CR1) 2006; 94
Prakash, Mahesh, Gairola, Buyantogtokh (CR3) 2012; 2
Ferreira (CR33) 2001; 13
CR7
CR25
CR22
Sun, Huang, Cheung, Liu, Huang (CR40) 2005; 2
CR21
CR20
Jedrzejowicz, Jedrzejowicz (CR35) 2018; 2018
Jin, Zhu, Huang, Zhao, Lin, Jin (CR38) 2015; 119
Roushangar, Alizadeh, Nourani (CR37) 2018; 20
Marques, Ferreira, Rocha, Castanheira, Melo-Gonçalves, Vaz, Dias (CR6) 2006; 31
Unnikrishnan, Jothiprakash (CR30) 2018; 20
Peng, Yuan, Qin, Huang, Shi (CR34) 2014; 137
References_xml – ident: CR22
– volume: 137
  start-page: 293
  year: 2014
  end-page: 301
  ident: CR34
  article-title: An improved gene expression programming approach for symbolic regression problems
  publication-title: Neurocomputing.
– volume: 106
  start-page: 139
  year: 2017
  end-page: 149
  ident: CR24
  article-title: Application of evolutionary computation on ensemble forecast of quantitative precipitation
  publication-title: Comput. Geosci.
– volume: 20
  start-page: 645
  year: 2018
  end-page: 667
  ident: CR30
  article-title: Data-driven multi-time-step ahead daily rainfall forecasting using singular spectrum analysis-based data pre-processing
  publication-title: J. Hydroinform.
– ident: CR4
– ident: CR2
– ident: CR16
– volume: 26
  start-page: 641
  year: 2016
  end-page: 655
  ident: CR23
  article-title: A comparison of three soft computing techniques, bayesian regression, support vector regression, and wavelet regression, for monthly rainfall forecast
  publication-title: J. Intell. Syst.
– volume: 56
  start-page: 317
  year: 2017
  end-page: 330
  ident: CR10
  article-title: A neural network-based local rainfall prediction system using meteorological data on the internet: a case study using data from the japan meteorological agency
  publication-title: Appl. Soft Comput.
– volume: 14
  start-page: 659
  year: 2010
  end-page: 669
  ident: CR5
  article-title: Long-range prediction of hawaiian winter rainfall using canonical correlation analysis
  publication-title: Int. J. Climatol.
– volume: 154
  start-page: 1231
  year: 2016
  end-page: 1236
  ident: CR28
  article-title: Modeling of rainfall by combining neural computation and wavelet technique
  publication-title: Procedia Eng.
– volume: 72
  start-page: 32
  year: 2014
  end-page: 40
  ident: CR26
  article-title: A survey on rainfall prediction using artificial neural network
  publication-title: Int. J. Comput. Appl.
– volume: 35
  start-page: 1415
  year: 2008
  end-page: 1421
  ident: CR9
  article-title: Optimized scenario for rainfall forecasting using genetic algorithm coupled with artificial neural network
  publication-title: Expert Syst. Appl.
– volume: 13
  start-page: 417
  year: 2016
  end-page: 427
  ident: CR29
  article-title: Performance comparison of artificial neural network models for daily rainfall prediction
  publication-title: Int. J. Automat. Comput.
– volume: 13
  start-page: 87
  year: 2001
  end-page: 129
  ident: CR33
  article-title: Gene expression programming: a new adaptive algorithm for solving problems
  publication-title: Complex Syst.
– ident: CR25
– volume: 73
  start-page: 427
  year: 2014
  end-page: 437
  ident: CR27
  article-title: An objective prediction model for typhoon rainstorm using particle swarm optimization: neural network ensemble
  publication-title: Nat. Hazards.
– volume: 70
  start-page: 489
  year: 2006
  end-page: 501
  ident: CR31
  article-title: Extreme learning machine: theory and applications
  publication-title: Neurocomputing.
– volume: 42
  start-page: 1489
  year: 2012
  end-page: 500
  ident: CR39
  article-title: A general cpl-ads methodology for fixing dynamic parameters in dual environments
  publication-title: IEEE Trans. Syst. Man Cybern. Part B Cybern. Publ. IEEE Syst. Man Cybern. Soc.
– volume: 2018
  start-page: 1
  year: 2018
  end-page: 13
  ident: CR35
  article-title: Incremental gene expression programming classifier with metagenes and data reduction
  publication-title: Complexity.
– ident: CR21
– ident: CR19
– volume: 31
  start-page: 1172
  year: 2006
  end-page: 1179
  ident: CR6
  article-title: Singular spectrum analysis and forecasting of hydrological time series
  publication-title: Phy. Chem. Earth.
– volume: 94
  start-page: 167
  year: 2006
  end-page: 183
  ident: CR1
  article-title: Short-range prediction of a heavy precipitation event by assimilating chinese cinrad-sa radar reflectivity data using complex cloud analysis
  publication-title: Meteorol. Atmos. Phy.
– volume: 119
  start-page: 791
  year: 2015
  end-page: 807
  ident: CR38
  article-title: A nonlinear statistical ensemble model for short-range rainfall prediction
  publication-title: Theor. Appl. Climatol.
– ident: CR15
– volume: 26
  start-page: 997
  year: 2013
  end-page: 1007
  ident: CR18
  article-title: Prediction of rainfall time series using modular soft computingmethods
  publication-title: Eng. Appl. Artif. Intell.
– volume: 342
  start-page: 199
  year: 2007
  end-page: 212
  ident: CR17
  article-title: Wavelet and neuro-fuzzy conjunction model for precipitation forecasting
  publication-title: J. Hydrol.
– ident: CR13
– ident: CR11
– ident: CR32
– volume: 2
  start-page: 108
  year: 2005
  end-page: 112
  ident: CR40
  article-title: Using fcmc, fvs, and pca techniques for feature extraction of multi-spectral images
  publication-title: IEEE Geosci. Remote Sensing Lett.
– volume: 2
  start-page: 138
  year: 2012
  end-page: 152
  ident: CR3
  article-title: A feasibility of six-hourly rainfall forecast over central India using model output and remote sensing data
  publication-title: Int. J. Hydrol. Sci. Technol.
– ident: CR7
– volume: 13
  start-page: 1194
  year: 1998
  end-page: 1204
  ident: CR8
  article-title: Localized precipitation forecasts from a numerical weather prediction model using artificial neural networks
  publication-title: Weather Forecast.
– volume: 31
  start-page: 915
  year: 2016
  end-page: 925
  ident: CR12
  article-title: A novel rainfall forecast model based on the integrated non-linear attribute selection method and support vector regression
  publication-title: J. Intell. Fuzzy Syst.
– volume: 42
  start-page: 513
  year: 2012
  end-page: 529
  ident: CR36
  article-title: Extreme learning machine for regression and multiclass classification
  publication-title: IEEE Trans. Syst. Man Cybern. B Cybern.
– volume: 43
  start-page: 1303
  year: 2014
  end-page: 1310
  ident: CR14
  article-title: Development of an artificial neural network based multi-model ensemble to estimate the northeast monsoon rainfall over south peninsular India: an application of extreme learning machine
  publication-title: Clim. Dyn.
– volume: 20
  start-page: 69
  year: 2018
  end-page: 87
  ident: CR37
  article-title: Improving capability of conceptual modeling of watershed rainfallcrunoff using hybrid wavelet-extreme learning machine approach
  publication-title: J. Hydroinform.
– ident: CR20
SSID ssj0002140044
ssib050732782
Score 2.133985
Snippet Accurate daily precipitation prediction is crucially important. However, it is difficult to predict the precipitation accurately due to inherently complex...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1512
SubjectTerms Artificial neural networks
Errors
Extreme Learning Machine
Gene expression
Gene Expression Programming
Machine learning
Modelling
Precipitation
Quantitative precipitation prediction
Rainfall
Rainfall prediction
Regional development
Research Article
Soft computing
Weather
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxELZQxYELz1YNBOQDN9jG6_Wu7WMLrXqAKAeQcrPWaxttlW7TZEHk3zPjdUqCRLlw9HpWsjzjedgz3xDyVupa8tKHjDnLM1FzldnAfCYscwFMYCNchMz_JKdTNZ_r2U6rL8wJG-CBh42bMMeYF3njmroU0krrvFa5LAQiZ4FyRe3LpN4JplAH8xxlUwxVMqBx80l71bTrE3cC8UnO4wPEniWKgP17XuYfD6PR3lw8JY-To0hPhwU-Iw9895w82TZhoOlMviC3px09_9njNR9NYKnf6OeYIulp3TmKwNJAkRJeOzobMrKugS47Axvm6OUGy7YotkVbUHBi6ce6XWyA0DftMmF448i1sQjikHy9OP_y4TJLfRSyBqxNnylVlbbKgxJ16cAfEtYiziAPhVCV95UtdcGChcjMQfyilXUw0gGRyGCSu-KIHHQ3nT8mlEutQiVkIUsw_cgNgaW1QfLKS6bZiOTbPTVNWiD2ulgYCDaQDybywTgz8AFT6kbk3d0_ywFi417qM2TVHSXCY8cPIDQmCY35l9CMyHjLaJPO7NpwsBnY35DLEXm_Zf7v6b8v6eX_WNIr8gh8MT3c7ozJQb_67l-Th82Pvl2v3kTp_gWwL_zZ
  priority: 102
  providerName: Directory of Open Access Journals
Title An Extreme Learning Machine and Gene Expression Programming-Based Hybrid Model for Daily Precipitation Prediction
URI https://link.springer.com/article/10.2991/ijcis.d.191126.001
https://www.proquest.com/docview/2467593627
https://doaj.org/article/0d00e41cdca547b7bde9817345681128
Volume 12
WOSCitedRecordID wos000515063600048&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1875-6883
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002140044
  issn: 1875-6891
  databaseCode: DOA
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1875-6883
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib050732782
  issn: 1875-6891
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1875-6883
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002140044
  issn: 1875-6891
  databaseCode: K7-
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1875-6883
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002140044
  issn: 1875-6891
  databaseCode: BENPR
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELag5cCF8hRbysoHbuDWcZzYOaEubNUDrFYIpN6s-JEq1ZLd7i4V_ffMOE6rItELx8STyNbYM-N5fEPIO1XVShShYdxbwWQtNLMND0xa7htQgU76CJn_Rc1m-uysmieH2yalVQ4yMQpqv3ToIz8ScKKx-5xQH1eXDLtGYXQ1tdB4SHYzAUIYg7KKDfsJTJ1cDGjtKJlFhjs2BprBTGelrrK-jgZkcnbUXrh2c-gP4QaTiRiiuKOrIqT_HTv0r9Bp1Egne_-7lqfkSbJF6XG_eZ6RB6F7TvaGPg80HfsX5PK4o9PfW_Qk0oTHek6_xizMQOvOU8SuBoqUU9vReZ_09RPo2ATUpKen11gZRrHz2oKCnUw_1-3iGgiDa1cJJhyffBvrLF6SHyfT759OWWrVwBwotC3TuixsmTVa1oUHk0tai1CGosmlLkMoLSyXNxYufx6uSJW2Hp6qBsHOYFD4_BXZ6ZZdeE2oUJVuSqlyVYB1YZX1Eqt3GyXKoHjFRyQbmGJcmiC201gYuM8gI01kpPGmZyRm7Y3I-5tvVj2Kx73UE-T1DSUicMcXy_W5SQfacM95kJnzri6kwmmGSmcql4joBkp_RA4G3pskFjbmlvEj8mHYPbfD_57S_v1_e0MegyFX9a6hA7KzXf8Kb8kjd7VtN-sx2Z1MZ_Nv4-hvGMcj8gcHWBOH
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VggQXylMECuwBTrCtvd541weEWtoqVdKohyL1tni968ooOGkSHvlT_EZm1narItFbDxwdT5xN8s1rd-YbgDcqy5Xo-5JHzgouc6G5LSPPpY1ciS6wkC5Q5o_UeKxPT7PjNfjd9cJQWWVnE4OhdtOC9si3BWo0TZ8T6uPsnNPUKDpd7UZoNLAY-tVPTNkWHw738P99K8TB_smnAW-nCvACbe-Sa532bRqXWuZ9h9GBtJZY90SZSJ16n1r8lKi0mKc4jOYzbR1eZSXxcuFN4RJ87i24LROtSK-Ginf4xdAqER07PHkCEZOGhINtTAt4qrO46dtBHxBvV1-LarHltjBjikU4ErniG8MIgStx719HtcEDHmz8b7_dA7jfxtpsp1GOh7Dm60ew0c2xYK1ZewznOzXb_7WknVLW8s2esaNQZepZXjtG3Nwo0dYM1-y4KWr7hnJ8F8MAxwYr6nxjNFluwjAPYHt5NVmhoC-qWUuDTleuCn0kT-DzjXzxp7BeT2v_DJhQmS5TqRLVx-jJKuskdSeXSqReRVnUg7gDgSnaBdK4kInBfI2AYwJwjDMNcKgqsQfvLt4za1hKrpXeJWxdSBLDeHhhOj8zrcEykYsiL-PCFXlfKlqmz3SsEkmMdRjU9GCzw5ppzd7CXAKtB-87tF7e_veSnl__tNdwd3ByNDKjw_HwBdzDoDVrtsE2YX05_-5fwp3ix7JazF8FhWTw5aZR_AdthGxh
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Extreme+Learning+Machine+and+Gene+Expression+Programming-Based+Hybrid+Model+for+Daily+Precipitation+Prediction&rft.jtitle=International+journal+of+computational+intelligence+systems&rft.au=Peng%2C+Yuzhong&rft.au=Zhao%2C+Huasheng&rft.au=Zhang%2C+Hao&rft.au=Li%2C+Wenwei&rft.date=2019-01-01&rft.issn=1875-6883&rft.eissn=1875-6883&rft.volume=12&rft.issue=2&rft.spage=1512&rft_id=info:doi/10.2991%2Fijcis.d.191126.001&rft.externalDBID=n%2Fa&rft.externalDocID=10_2991_ijcis_d_191126_001
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1875-6891&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1875-6891&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1875-6891&client=summon