Grooved electrodes for high-power-density fuel cells

Proton exchange membrane fuel cells (PEMFCs) are leading candidates to decarbonize the transport sector, but widespread deployment will require improvements in lifetime, fuel economy and cost. Here we present the grooved electrode, an alternative electrode structure that enhances PEMFC performance a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature energy Jg. 8; H. 7; S. 685 - 694
Hauptverfasser: Lee, ChungHyuk, Kort-Kamp, Wilton J. M., Yu, Haoran, Cullen, David A., Patterson, Brian M., Arman, Tanvir Alam, Komini Babu, Siddharth, Mukundan, Rangachary, Borup, Rod L., Spendelow, Jacob S.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London Nature Publishing Group UK 01.07.2023
Nature Publishing Group
Schlagworte:
ISSN:2058-7546, 2058-7546
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Proton exchange membrane fuel cells (PEMFCs) are leading candidates to decarbonize the transport sector, but widespread deployment will require improvements in lifetime, fuel economy and cost. Here we present the grooved electrode, an alternative electrode structure that enhances PEMFC performance and durability by coupling high ionomer (ion-conducting binder) content for improved H + transport with grooves for rapid O 2 transport. Grooved electrodes provide up to 50% higher performance than state-of-the-art conventional electrodes under standard operating conditions. Fuel cell diagnostics combined with multiphysics modelling demonstrate that grooved electrodes provide facile O 2 transport despite their high ionomer content, enabling improved reaction rate uniformity. Grooved electrodes also provide improved durability, with less performance loss after carbon corrosion compared with baseline electrodes. Machine learning analysis demonstrates the potential to further optimize grooved structures for next-generation PEMFCs with enhanced performance and durability, enabling smaller and cheaper fuel cell stacks with higher fuel efficiency. The way catalysts are arranged and interfaced to form fuel cell electrodes is just as important as the catalysts themselves. Here Lee et al. report an up to 50% increase in performance and superior durability using grooved, rather than conventional flat, electrodes for hydrogen fuel cells.
AbstractList Proton exchange membrane fuel cells (PEMFCs) are leading candidates to decarbonize the transport sector, but widespread deployment will require improvements in lifetime, fuel economy and cost. Here we present the grooved electrode, an alternative electrode structure that enhances PEMFC performance and durability by coupling high ionomer (ion-conducting binder) content for improved H+ transport with grooves for rapid O2 transport. Grooved electrodes provide up to 50% higher performance than state-of-the-art conventional electrodes under standard operating conditions. Fuel cell diagnostics combined with multiphysics modelling demonstrate that grooved electrodes provide facile O2 transport despite their high ionomer content, enabling improved reaction rate uniformity. Grooved electrodes also provide improved durability, with less performance loss after carbon corrosion compared with baseline electrodes. Machine learning analysis demonstrates the potential to further optimize grooved structures for next-generation PEMFCs with enhanced performance and durability, enabling smaller and cheaper fuel cell stacks with higher fuel efficiency.The way catalysts are arranged and interfaced to form fuel cell electrodes is just as important as the catalysts themselves. Here Lee et al. report an up to 50% increase in performance and superior durability using grooved, rather than conventional flat, electrodes for hydrogen fuel cells.
Proton exchange membrane fuel cells (PEMFCs) are leading candidates to decarbonize the transport sector, but widespread deployment will require improvements in lifetime, fuel economy and cost. Here we present the grooved electrode, an alternative electrode structure that enhances PEMFC performance and durability by coupling high ionomer (ion-conducting binder) content for improved H + transport with grooves for rapid O 2 transport. Grooved electrodes provide up to 50% higher performance than state-of-the-art conventional electrodes under standard operating conditions. Fuel cell diagnostics combined with multiphysics modelling demonstrate that grooved electrodes provide facile O 2 transport despite their high ionomer content, enabling improved reaction rate uniformity. Grooved electrodes also provide improved durability, with less performance loss after carbon corrosion compared with baseline electrodes. Machine learning analysis demonstrates the potential to further optimize grooved structures for next-generation PEMFCs with enhanced performance and durability, enabling smaller and cheaper fuel cell stacks with higher fuel efficiency.
Proton exchange membrane fuel cells (PEMFCs) are leading candidates to decarbonize the transport sector, but widespread deployment will require improvements in lifetime, fuel economy and cost. Here we present the grooved electrode, an alternative electrode structure that enhances PEMFC performance and durability by coupling high ionomer (ion-conducting binder) content for improved H + transport with grooves for rapid O 2 transport. Grooved electrodes provide up to 50% higher performance than state-of-the-art conventional electrodes under standard operating conditions. Fuel cell diagnostics combined with multiphysics modelling demonstrate that grooved electrodes provide facile O 2 transport despite their high ionomer content, enabling improved reaction rate uniformity. Grooved electrodes also provide improved durability, with less performance loss after carbon corrosion compared with baseline electrodes. Machine learning analysis demonstrates the potential to further optimize grooved structures for next-generation PEMFCs with enhanced performance and durability, enabling smaller and cheaper fuel cell stacks with higher fuel efficiency. The way catalysts are arranged and interfaced to form fuel cell electrodes is just as important as the catalysts themselves. Here Lee et al. report an up to 50% increase in performance and superior durability using grooved, rather than conventional flat, electrodes for hydrogen fuel cells.
Author Kort-Kamp, Wilton J. M.
Arman, Tanvir Alam
Mukundan, Rangachary
Spendelow, Jacob S.
Komini Babu, Siddharth
Borup, Rod L.
Patterson, Brian M.
Cullen, David A.
Lee, ChungHyuk
Yu, Haoran
Author_xml – sequence: 1
  givenname: ChungHyuk
  orcidid: 0000-0002-8428-1502
  surname: Lee
  fullname: Lee, ChungHyuk
  organization: Materials Physics and Applications Division, Los Alamos National Laboratory, Department of Chemical Engineering, Toronto Metropolitan University
– sequence: 2
  givenname: Wilton J. M.
  orcidid: 0000-0002-0679-6690
  surname: Kort-Kamp
  fullname: Kort-Kamp, Wilton J. M.
  organization: Theoretical Division, Los Alamos National Laboratory
– sequence: 3
  givenname: Haoran
  orcidid: 0000-0001-7304-2840
  surname: Yu
  fullname: Yu, Haoran
  organization: Center for Nanophase Materials Sciences, Oak Ridge National Laboratory
– sequence: 4
  givenname: David A.
  orcidid: 0000-0002-2593-7866
  surname: Cullen
  fullname: Cullen, David A.
  organization: Center for Nanophase Materials Sciences, Oak Ridge National Laboratory
– sequence: 5
  givenname: Brian M.
  surname: Patterson
  fullname: Patterson, Brian M.
  organization: Materials Science and Technology Division, Los Alamos National Laboratory
– sequence: 6
  givenname: Tanvir Alam
  orcidid: 0000-0003-1130-4731
  surname: Arman
  fullname: Arman, Tanvir Alam
  organization: Materials Physics and Applications Division, Los Alamos National Laboratory
– sequence: 7
  givenname: Siddharth
  orcidid: 0000-0001-5724-8486
  surname: Komini Babu
  fullname: Komini Babu, Siddharth
  organization: Materials Physics and Applications Division, Los Alamos National Laboratory
– sequence: 8
  givenname: Rangachary
  orcidid: 0000-0002-5679-3930
  surname: Mukundan
  fullname: Mukundan, Rangachary
  organization: Materials Physics and Applications Division, Los Alamos National Laboratory, Energy Technologies Area, Lawrence Berkeley National Laboratory
– sequence: 9
  givenname: Rod L.
  orcidid: 0000-0001-7647-1624
  surname: Borup
  fullname: Borup, Rod L.
  organization: Materials Physics and Applications Division, Los Alamos National Laboratory
– sequence: 10
  givenname: Jacob S.
  orcidid: 0000-0002-8111-7782
  surname: Spendelow
  fullname: Spendelow, Jacob S.
  email: spendelow@lanl.gov
  organization: Materials Physics and Applications Division, Los Alamos National Laboratory
BookMark eNp9kLFOwzAQhi1UJErpCzBFYjb4LrbjjKiCFqkSC8yWm1zaVCEudgrq25MSJBBDp7vh_-4_fZds1PqWGLsGcQsiNXdRgtKCC0y5ANQpxzM2RqEMz5TUoz_7BZvGuBVCYI6oDIyZnAfvP6hMqKGiC76kmFQ-JJt6veE7_0mBl9TGujsk1Z6apKCmiVfsvHJNpOnPnLDXx4eX2YIvn-dPs_slLyTmHc_AZOBWaVZqklKiESU648CsVJ5Cjoa0wgyKnFxWAhYacwVGl7RClJKqdMJuhru74N_3FDu79fvQ9pUWjQQEJRX2KRxSRfAxBqrsLtRvLhwsCHsUZAdBthdkvwXZI2T-QUXdua72bRdc3ZxG0wGNfU-7pvD71QnqCxZSee4
CitedBy_id crossref_primary_10_1016_j_gce_2024_03_003
crossref_primary_10_1016_j_joule_2023_11_015
crossref_primary_10_1016_j_energy_2025_134378
crossref_primary_10_1016_j_jpowsour_2025_237498
crossref_primary_10_1002_adsu_202400904
crossref_primary_10_1002_smll_202406848
crossref_primary_10_1016_j_icheatmasstransfer_2025_109603
crossref_primary_10_1016_j_pecs_2025_101220
crossref_primary_10_1002_anie_202421013
crossref_primary_10_1002_adma_202504059
crossref_primary_10_1016_j_jpowsour_2024_235624
crossref_primary_10_1016_j_ijheatmasstransfer_2025_127000
crossref_primary_10_1016_j_cej_2024_154424
crossref_primary_10_1088_2516_1083_ad8abd
crossref_primary_10_1002_ente_202500137
crossref_primary_10_1016_j_renene_2025_122536
crossref_primary_10_1021_acs_nanolett_5c01757
crossref_primary_10_1002_adfm_202401261
crossref_primary_10_1021_jacs_4c10742
crossref_primary_10_1002_fuce_70001
crossref_primary_10_1002_adma_202412525
crossref_primary_10_1016_j_jpowsour_2024_235182
crossref_primary_10_1002_adfm_202508864
crossref_primary_10_1021_acs_nanolett_5c02954
crossref_primary_10_1016_j_jpowsour_2025_237303
crossref_primary_10_1016_j_ijheatmasstransfer_2024_125870
crossref_primary_10_1002_smll_202405008
crossref_primary_10_1016_j_checat_2025_101303
crossref_primary_10_1126_science_adq2259
crossref_primary_10_1002_aenm_202303011
crossref_primary_10_1016_j_matt_2023_11_009
crossref_primary_10_1016_j_fuel_2025_136684
crossref_primary_10_1016_j_jclepro_2023_140344
crossref_primary_10_1021_acsaem_5c00425
crossref_primary_10_1016_j_enconman_2024_119089
crossref_primary_10_1016_j_renene_2025_123691
crossref_primary_10_1038_s41467_024_46389_3
crossref_primary_10_1016_j_ijhydene_2024_05_215
crossref_primary_10_1016_j_cej_2025_165138
crossref_primary_10_1038_s41467_025_61794_y
crossref_primary_10_1016_j_enchem_2024_100142
crossref_primary_10_1002_anie_202503934
crossref_primary_10_1039_D4EE00646A
crossref_primary_10_1016_j_ijhydene_2024_10_008
crossref_primary_10_1039_D5SE00552C
crossref_primary_10_26599_NR_2025_94907684
crossref_primary_10_1002_adfm_202514280
crossref_primary_10_1016_j_ijhydene_2025_04_216
crossref_primary_10_1016_j_etran_2024_100327
crossref_primary_10_1016_j_jpowsour_2024_234238
crossref_primary_10_1016_j_apenergy_2023_122442
crossref_primary_10_1016_j_joule_2024_06_005
crossref_primary_10_1002_adfm_202313844
crossref_primary_10_1002_cssc_202301265
crossref_primary_10_1039_D5CS00604J
crossref_primary_10_1002_smll_202504253
crossref_primary_10_1016_j_ces_2025_121592
crossref_primary_10_1002_advs_202303914
crossref_primary_10_1021_jacs_5c04479
crossref_primary_10_1021_acssuschemeng_5c05951
crossref_primary_10_1016_j_jpowsour_2024_235441
crossref_primary_10_1002_ange_202421013
crossref_primary_10_1002_ange_202503934
crossref_primary_10_1016_j_electacta_2024_145632
crossref_primary_10_1039_D4RA08446B
crossref_primary_10_3390_en18164270
crossref_primary_10_1007_s12274_024_6800_5
crossref_primary_10_1002_adfm_202412311
crossref_primary_10_1039_D5TA02793D
crossref_primary_10_1002_aenm_202303952
crossref_primary_10_1149_1945_7111_addd6a
crossref_primary_10_1360_SSC_2025_0014
crossref_primary_10_1002_advs_202505304
crossref_primary_10_1039_D5EE03461B
crossref_primary_10_1002_ange_202312001
crossref_primary_10_1007_s00158_024_03901_z
crossref_primary_10_1016_j_coche_2024_101053
crossref_primary_10_1109_TTE_2024_3444692
crossref_primary_10_1088_1361_6528_ad7e30
crossref_primary_10_1016_j_ijhydene_2025_150669
crossref_primary_10_1016_j_renene_2024_121006
crossref_primary_10_1016_j_jcis_2025_01_065
crossref_primary_10_1021_jacs_4c13494
crossref_primary_10_1016_j_cclet_2025_111720
crossref_primary_10_1002_adma_202413658
crossref_primary_10_1016_j_ijhydene_2023_11_056
crossref_primary_10_1016_j_ijhydene_2025_02_398
crossref_primary_10_1016_j_apsusc_2024_159332
crossref_primary_10_1016_j_energy_2025_138029
crossref_primary_10_1016_j_cej_2024_155261
crossref_primary_10_1038_s41560_023_01277_w
crossref_primary_10_1002_anie_202424179
crossref_primary_10_1016_j_jpowsour_2025_238395
crossref_primary_10_1016_j_cherd_2024_11_004
crossref_primary_10_1016_j_ijheatmasstransfer_2025_126987
crossref_primary_10_1039_D4GC06444E
crossref_primary_10_3390_en17092093
crossref_primary_10_1002_cjce_25049
crossref_primary_10_1007_s42114_024_00883_w
crossref_primary_10_1016_j_jpowsour_2025_237794
crossref_primary_10_1002_adma_202308989
crossref_primary_10_1002_adsu_202500457
crossref_primary_10_1002_ange_202424179
crossref_primary_10_1016_j_enconman_2024_119329
crossref_primary_10_1016_j_ijhydene_2024_11_003
crossref_primary_10_1016_j_mser_2025_101028
crossref_primary_10_1016_j_cej_2024_155378
crossref_primary_10_1007_s40820_024_01558_3
crossref_primary_10_1016_j_jpowsour_2025_236612
crossref_primary_10_1002_ange_202512315
crossref_primary_10_1016_j_jiec_2025_03_054
crossref_primary_10_1016_j_ijhydene_2023_08_270
crossref_primary_10_1021_acsaem_5c01839
crossref_primary_10_1016_j_jpowsour_2024_235083
crossref_primary_10_1016_j_ijhydene_2024_08_438
crossref_primary_10_3390_mi15060700
crossref_primary_10_1016_j_energy_2025_137039
crossref_primary_10_1016_j_ijhydene_2024_08_313
crossref_primary_10_1007_s40820_025_01719_y
crossref_primary_10_1002_smll_202409650
crossref_primary_10_1002_anie_202312001
crossref_primary_10_1016_j_jpowsour_2024_235758
crossref_primary_10_1016_j_nanoms_2024_04_009
crossref_primary_10_1002_adma_202503254
crossref_primary_10_1002_advs_202503749
crossref_primary_10_1002_anie_202512315
crossref_primary_10_1016_j_cej_2024_152256
crossref_primary_10_1039_D5SE00028A
crossref_primary_10_1016_j_coelec_2024_101595
crossref_primary_10_1016_j_jpowsour_2025_237315
crossref_primary_10_1021_jacs_5c07815
crossref_primary_10_1016_j_apcatb_2025_125887
crossref_primary_10_1016_j_ceja_2025_100843
crossref_primary_10_1016_j_gee_2023_11_002
crossref_primary_10_1016_j_mcat_2025_115121
crossref_primary_10_1016_j_jcis_2025_02_205
crossref_primary_10_1088_2515_7655_adf6e3
crossref_primary_10_1016_S1872_2067_25_64654_7
Cites_doi 10.1149/2.0161411jes
10.1038/nchem.623
10.1002/fuce.201200017
10.1149/07711.1325ecst
10.1038/s41586-021-03943-z
10.1016/j.electacta.2015.01.028
10.1002/adma.201503557
10.1126/science.1249061
10.1038/s41467-021-25301-3
10.1149/2.049306jes
10.1021/acs.nanolett.8b02606
10.1002/aenm.201200759
10.1038/s41586-021-03482-7
10.1021/acs.nanolett.8b00978
10.1002/adma.201601909
10.1016/j.ijhydene.2018.07.035
10.1149/1.3152226
10.1016/j.joule.2018.09.016
10.1038/nmat3668
10.1002/anie.201207256
10.1039/C7TA04967F
10.1149/1.2780961
10.1023/A:1008306431147
10.1002/aenm.202101794
10.1039/C4TA00674G
10.1149/2.0061806jes
10.1149/1.2069277
10.1149/2.1621704jes
10.1038/s41560-021-00775-z
10.1002/aenm.201903871
10.1016/j.ijhydene.2022.04.021
10.1016/j.nantod.2008.09.002
10.1149/2.0021806jes
10.1039/C9EE01899A
10.1149/2.jes113064
10.1038/nature25467
10.1021/jp106814j
10.1021/ja511596c
10.1149/1.1888367
10.1021/acsaem.0c02841
10.1038/s41565-020-00824-w
10.1016/j.jpowsour.2021.230039
10.1149/2.0751412jes
10.1002/aenm.201701257
10.1007/978-0-387-84858-7
10.1021/acsaem.9b01754
10.1007/978-3-319-09737-4
ContentType Journal Article
Copyright The Author(s) 2023. corrected publication 2023
The Author(s) 2023. corrected publication 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023. corrected publication 2023
– notice: The Author(s) 2023. corrected publication 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
3V.
7SP
7SU
7TB
7XB
88I
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
C1K
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
L6V
L7M
M2P
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
Q9U
DOI 10.1038/s41560-023-01263-2
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Electronics & Communications Abstracts
Environmental Engineering Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
ProQuest Central Korea
Environmental Engineering Abstracts
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList ProQuest Central Student
CrossRef

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2058-7546
EndPage 694
ExternalDocumentID 10_1038_s41560_023_01263_2
GrantInformation_xml – fundername: Gouvernement du Canada | Natural Sciences and Engineering Research Council of Canada (Conseil de Recherches en Sciences Naturelles et en Génie du Canada)
  funderid: https://doi.org/10.13039/501100000038
– fundername: US Department of Energy, EERE, HFTO, Million Mile Fuel Cell Truck consortium
– fundername: DOE | LDRD | Los Alamos National Laboratory (Los Alamos Lab)
  grantid: 2020200DR; 20210915PRD2
  funderid: https://doi.org/10.13039/100008902
GroupedDBID 0R~
3V.
88I
AAEEF
AARCD
AAYZH
AAZLF
ABJNI
ABLJU
ABUWG
ACBWK
ACGFS
ADBBV
AEUYN
AFKRA
AFSHS
AFWHJ
AHSBF
AIBTJ
ALFFA
ALMA_UNASSIGNED_HOLDINGS
ARMCB
AXYYD
AZQEC
BENPR
BKKNO
BPHCQ
C6C
CCPQU
DWQXO
EBS
EJD
FSGXE
FZEXT
GNUQQ
HCIFZ
M2P
NNMJJ
O9-
ODYON
PQQKQ
PROAC
RNT
SHXYY
SIXXV
SJN
SNYQT
SOJ
TAOOD
TBHMF
TDRGL
TSG
AAYXX
ABFSG
ABJCF
ACSTC
AEZWR
AFANA
AFFHD
AFHIU
AGSTI
AHWEU
AIXLP
ARAPS
ATHPR
BGLVJ
CITATION
M7S
NFIDA
PHGZM
PHGZT
PQGLB
PTHSS
7SP
7SU
7TB
7XB
8FD
8FE
8FG
8FK
C1K
FR3
L6V
L7M
P62
PKEHL
PQEST
PQUKI
PUEGO
Q9U
ID FETCH-LOGICAL-c429t-71871ab37d6e444280d2a8a18b5931928e65271c9ea7d12c6295186deb2244ef3
IEDL.DBID BENPR
ISICitedReferencesCount 176
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000994723800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2058-7546
IngestDate Sat Sep 06 07:31:15 EDT 2025
Sat Nov 29 04:06:07 EST 2025
Tue Nov 18 22:35:16 EST 2025
Fri Feb 21 02:38:19 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c429t-71871ab37d6e444280d2a8a18b5931928e65271c9ea7d12c6295186deb2244ef3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8428-1502
0000-0001-7304-2840
0000-0001-5724-8486
0000-0001-7647-1624
0000-0002-5679-3930
0000-0002-0679-6690
0000-0002-2593-7866
0000-0003-1130-4731
0000-0002-8111-7782
OpenAccessLink https://link.springer.com/article/10.1038/s41560-023-01263-2
PQID 2841215452
PQPubID 2069617
PageCount 10
ParticipantIDs proquest_journals_2841215452
crossref_primary_10_1038_s41560_023_01263_2
crossref_citationtrail_10_1038_s41560_023_01263_2
springer_journals_10_1038_s41560_023_01263_2
PublicationCentury 2000
PublicationDate 2023-07-01
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Nature energy
PublicationTitleAbbrev Nat Energy
PublicationYear 2023
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Jiao (CR3) 2021; 595
Liu (CR35) 2007; 11
Cullen (CR4) 2021; 6
Topalov (CR7) 2012; 51
Zhang (CR37) 2022; 47
Khedekar (CR6) 2021; 11
Forner-Cuenca (CR5) 2015; 27
Mauger (CR21) 2021; 506
CR31
Yang (CR30) 2020; 10
Weber (CR25) 2014; 161
Cui, Gan, Heggen, Rudi, Strasser (CR15) 2013; 12
Yu, Carter, Zhang (CR39) 2012; 12
Chen, Lim, Lee, Xia (CR18) 2009; 4
Pedregosa (CR49) 2011; 12
Banas, Uddin, Park, Bonville, Pasaogullari (CR8) 2018; 165
CR47
Jinnouchi (CR24) 2021; 12
CR40
Qiao (CR14) 2019; 12
Zhang, Porter, Guillory, Chi, Arges (CR33) 2017; 77
Jones, Schonlau, Welch (CR51) 1998; 13
Chen (CR17) 2018; 18
Koh (CR32) 2014; 2
Macauley (CR46) 2018; 165
Zenyuk, Taspinar, Kalidindi, Kumbur, Litster (CR48) 2014; 161
Wang (CR11) 2018; 18
Li (CR16) 2019; 3
Shukla, Domican, Karan, Bhattacharjee, Secanell (CR29) 2014; 156
Debe (CR34) 2013; 160
Wilson, Gottesfeld (CR26) 1992; 139
CR10
Makharia, Mathias, Baker (CR43) 2005; 152
Shi (CR38) 2017; 5
CR50
Jewell (CR2) 2018; 554
Baker, Caulk, Neyerlin, Murphy (CR44) 2009; 156
Strasser (CR13) 2010; 2
Breitwieser (CR23) 2018; 8
Arisetty (CR45) 2012; 159
Higgins, Meza, Chen (CR20) 2010; 114
CR28
Orfanidi (CR42) 2017; 164
Zhao (CR19) 2015; 137
Salari, Stumper, Bahrami (CR36) 2018; 43
Li, Thompson (CR1) 2021; 599
Chen (CR12) 2014; 343
Kobayashi (CR41) 2021; 4
Jhong, Brushett, Kenis (CR22) 2013; 3
Kodama, Nagai, Kuwaki, Jinnouchi, Morimoto (CR9) 2021; 16
Wang (CR27) 2016; 28
DC Higgins (1263_CR20) 2010; 114
X Zhao (1263_CR19) 2015; 137
A Kobayashi (1263_CR41) 2021; 4
N Macauley (1263_CR46) 2018; 165
MK Debe (1263_CR34) 2013; 160
F Pedregosa (1263_CR49) 2011; 12
1263_CR31
Z Yu (1263_CR39) 2012; 12
CJ Banas (1263_CR8) 2018; 165
W Wang (1263_CR27) 2016; 28
DR Baker (1263_CR44) 2009; 156
DR Jones (1263_CR51) 1998; 13
R Makharia (1263_CR43) 2005; 152
K Khedekar (1263_CR6) 2021; 11
JK Koh (1263_CR32) 2014; 2
L Zhang (1263_CR33) 2017; 77
H Zhang (1263_CR37) 2022; 47
P Strasser (1263_CR13) 2010; 2
K Jiao (1263_CR3) 2021; 595
J Jewell (1263_CR2) 2018; 554
S Salari (1263_CR36) 2018; 43
1263_CR40
A Forner-Cuenca (1263_CR5) 2015; 27
S Arisetty (1263_CR45) 2012; 159
IV Zenyuk (1263_CR48) 2014; 161
1263_CR47
C Chen (1263_CR12) 2014; 343
MS Wilson (1263_CR26) 1992; 139
Z Qiao (1263_CR14) 2019; 12
AZ Weber (1263_CR25) 2014; 161
1263_CR10
R Jinnouchi (1263_CR24) 2021; 12
1263_CR50
SA Mauger (1263_CR21) 2021; 506
S Shukla (1263_CR29) 2014; 156
AA Topalov (1263_CR7) 2012; 51
A Orfanidi (1263_CR42) 2017; 164
K Kodama (1263_CR9) 2021; 16
J Chen (1263_CR18) 2009; 4
Y Liu (1263_CR35) 2007; 11
M Breitwieser (1263_CR23) 2018; 8
J Li (1263_CR16) 2019; 3
XX Wang (1263_CR11) 2018; 18
C Cui (1263_CR15) 2013; 12
G Yang (1263_CR30) 2020; 10
H-R Jhong (1263_CR22) 2013; 3
N Shi (1263_CR38) 2017; 5
1263_CR28
DA Cullen (1263_CR4) 2021; 6
J Li (1263_CR1) 2021; 599
W Chen (1263_CR17) 2018; 18
References_xml – volume: 161
  start-page: F3091
  year: 2014
  end-page: F3103
  ident: CR48
  article-title: Computational and experimental analysis of water transport at component interfaces in polymer electrolyte fuel cells
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0161411jes
– volume: 2
  start-page: 454
  year: 2010
  end-page: 460
  ident: CR13
  article-title: Lattice-strain control of the activity in dealloyed core–shell fuel cell catalysts
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.623
– volume: 12
  start-page: 557
  year: 2012
  end-page: 565
  ident: CR39
  article-title: Measurements of pore size distribution, porosity, effective oxygen diffusivity, and tortuosity of PEM fuel cell electrodes
  publication-title: Fuel Cells
  doi: 10.1002/fuce.201200017
– volume: 77
  start-page: 1325
  year: 2017
  ident: CR33
  article-title: Patterning polymer electrolyte membrane for fuel cell and electrolysis applications
  publication-title: ECS Trans.
  doi: 10.1149/07711.1325ecst
– volume: 599
  start-page: 425
  year: 2021
  end-page: 430
  ident: CR1
  article-title: Widespread changes in surface temperature persistence under climate change
  publication-title: Nature
  doi: 10.1038/s41586-021-03943-z
– volume: 156
  start-page: 289
  year: 2014
  end-page: 300
  ident: CR29
  article-title: Analysis of low platinum loading thin polymer electrolyte fuel cell electrodes prepared by inkjet printing
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2015.01.028
– volume: 27
  start-page: 6317
  year: 2015
  end-page: 6322
  ident: CR5
  article-title: Engineered water highways in fuel cells: radiation grafting of gas diffusion layers
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201503557
– volume: 343
  start-page: 1339
  year: 2014
  end-page: 1343
  ident: CR12
  article-title: Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces
  publication-title: Science
  doi: 10.1126/science.1249061
– volume: 12
  start-page: 4956
  year: 2021
  ident: CR24
  article-title: The role of oxygen-permeable ionomer for polymer electrolyte fuel cells
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-25301-3
– volume: 160
  start-page: F522
  year: 2013
  end-page: F534
  ident: CR34
  article-title: Tutorial on the fundamental characteristics and practical properties of nanostructured thin film (NSTF) catalysts
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.049306jes
– volume: 18
  start-page: 5905
  year: 2018
  end-page: 5912
  ident: CR17
  article-title: Neighboring Pt atom sites in an ultrathin FePt nanosheet for the efficient and highly CO-tolerant oxygen reduction reaction
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.8b02606
– volume: 3
  start-page: 589
  year: 2013
  end-page: 599
  ident: CR22
  article-title: The effects of catalyst layer deposition methodology on electrode performance
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201200759
– volume: 595
  start-page: 361
  year: 2021
  end-page: 369
  ident: CR3
  article-title: Designing the next generation of proton-exchange membrane fuel cells
  publication-title: Nature
  doi: 10.1038/s41586-021-03482-7
– volume: 18
  start-page: 4163
  year: 2018
  end-page: 4171
  ident: CR11
  article-title: Ordered Pt Co intermetallic nanoparticles derived from metal–organic frameworks for oxygen reduction
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.8b00978
– volume: 28
  start-page: 10117
  year: 2016
  end-page: 10141
  ident: CR27
  article-title: Tuning nanowires and nanotubes for efficient fuel-cell electrocatalysis
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201601909
– volume: 43
  start-page: 16704
  year: 2018
  end-page: 16718
  ident: CR36
  article-title: Direct measurement and modeling relative gas diffusivity of PEMFC catalyst layers: the effect of ionomer to carbon ratio, operating temperature, porosity, and pore size distribution
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2018.07.035
– ident: CR50
– volume: 156
  start-page: B991
  year: 2009
  ident: CR44
  article-title: Measurement of oxygen transport resistance in PEM fuel cells by limiting current methods
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.3152226
– volume: 3
  start-page: 124
  year: 2019
  end-page: 135
  ident: CR16
  article-title: Hard-magnet L1 –CoPt nanoparticles advance fuel cell catalysis
  publication-title: Joule
  doi: 10.1016/j.joule.2018.09.016
– volume: 12
  start-page: 765
  year: 2013
  end-page: 771
  ident: CR15
  article-title: Compositional segregation in shaped Pt alloy nanoparticles and their structural behaviour during electrocatalysis
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3668
– volume: 51
  start-page: 12613
  year: 2012
  end-page: 12615
  ident: CR7
  article-title: Dissolution of platinum: limits for the deployment of electrochemical energy conversion?
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201207256
– volume: 5
  start-page: 19664
  year: 2017
  end-page: 19671
  ident: CR38
  article-title: Performance and DRT analysis of P-SOFCs fabricated using new phase inversion combined tape casting technology
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA04967F
– volume: 11
  start-page: 473
  year: 2007
  ident: CR35
  article-title: Determination of electrode sheet resistance in cathode catalyst layer by AC impedance
  publication-title: ECS Trans.
  doi: 10.1149/1.2780961
– ident: CR47
– volume: 13
  start-page: 455
  year: 1998
  end-page: 492
  ident: CR51
  article-title: Efficient global optimization of expensive black-box functions
  publication-title: J. Glob. Optim.
  doi: 10.1023/A:1008306431147
– volume: 11
  start-page: 2101794
  year: 2021
  ident: CR6
  article-title: Probing heterogeneous degradation of catalyst in PEM fuel cells under realistic automotive conditions with multi‐modal techniques
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202101794
– volume: 2
  start-page: 8652
  year: 2014
  end-page: 8659
  ident: CR32
  article-title: A facile preparation method of surface patterned polymer electrolyte membranes for fuel cell applications
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA00674G
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  ident: CR49
  article-title: Scikit-learn: machine learning in Python
  publication-title: J. Mach. Learn. Res.
– ident: CR10
– volume: 165
  start-page: F3148
  year: 2018
  end-page: F3160
  ident: CR46
  article-title: Carbon corrosion in PEM fuel cells and the development of accelerated stress tests
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0061806jes
– volume: 139
  start-page: L28
  year: 1992
  end-page: L30
  ident: CR26
  article-title: High performance catalyzed membranes of ultra‐low Pt loadings for polymer electrolyte fuel cells
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2069277
– volume: 164
  start-page: F418
  year: 2017
  end-page: F426
  ident: CR42
  article-title: The key to high-performance low-Pt-loaded electrodes
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.1621704jes
– volume: 6
  start-page: 462
  year: 2021
  end-page: 474
  ident: CR4
  article-title: New roads and challenges for fuel cells in heavy-duty transportation
  publication-title: Nat. Energy
  doi: 10.1038/s41560-021-00775-z
– ident: CR40
– volume: 10
  start-page: 1903871
  year: 2020
  ident: CR30
  article-title: Building electron/proton nanohighways for full utilization of water splitting catalysts
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201903871
– volume: 47
  start-page: 18810
  year: 2022
  end-page: 18819
  ident: CR37
  article-title: A cathode-supported solid oxide fuel cell prepared by the phase-inversion tape casting and impregnating method
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2022.04.021
– volume: 4
  start-page: 81
  year: 2009
  end-page: 95
  ident: CR18
  article-title: Shape-controlled synthesis of platinum nanocrystals for catalytic and electrocatalytic applications
  publication-title: Nano Today
  doi: 10.1016/j.nantod.2008.09.002
– ident: CR31
– volume: 165
  start-page: F3015
  year: 2018
  ident: CR8
  article-title: Thinning of cathode catalyst layer in polymer electrolyte fuel cells due to foreign cation contamination
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0021806jes
– volume: 12
  start-page: 2830
  year: 2019
  end-page: 2841
  ident: CR14
  article-title: 3D porous graphitic nanocarbon for enhancing the performance and durability of Pt catalysts: a balance between graphitization and hierarchical porosity
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C9EE01899A
– volume: 159
  start-page: B455
  year: 2012
  end-page: B462
  ident: CR45
  article-title: Catalyst durability in PEM fuel cells with low platinum loading
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.jes113064
– volume: 554
  start-page: 229
  year: 2018
  end-page: 233
  ident: CR2
  article-title: Limited emission reductions from fuel-subsidy removal except in energy-exporting regions
  publication-title: Nature
  doi: 10.1038/nature25467
– volume: 114
  start-page: 21982
  year: 2010
  end-page: 21988
  ident: CR20
  article-title: Nitrogen-doped carbon nanotubes as platinum catalyst supports for oxygen reduction reaction in proton exchange membrane fuel cells
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp106814j
– volume: 137
  start-page: 2804
  year: 2015
  end-page: 2807
  ident: CR19
  article-title: Octahedral Pd@Pt Ni core–shell nanocrystals with ultrathin PtNi alloy shells as active catalysts for oxygen reduction reaction
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja511596c
– volume: 152
  start-page: A970
  year: 2005
  ident: CR43
  article-title: Measurement of catalyst layer electrolyte resistance in PEFCs using electrochemical impedance spectroscopy
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1888367
– ident: CR28
– volume: 4
  start-page: 2307
  year: 2021
  end-page: 2317
  ident: CR41
  article-title: Effect of Pt and ionomer distribution on polymer electrolyte fuel cell performance and durability
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.0c02841
– volume: 16
  start-page: 140
  year: 2021
  end-page: 147
  ident: CR9
  article-title: Challenges in applying highly active Pt-based nanostructured catalysts for oxygen reduction reactions to fuel cell vehicles
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-020-00824-w
– volume: 506
  start-page: 230039
  year: 2021
  ident: CR21
  article-title: Development of high-performance roll-to-roll-coated gas-diffusion-electrode-based fuel cells
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2021.230039
– volume: 161
  start-page: F1254
  year: 2014
  ident: CR25
  article-title: A critical review of modeling transport phenomena in polymer-electrolyte fuel cells
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0751412jes
– volume: 8
  start-page: 1701257
  year: 2018
  ident: CR23
  article-title: Tailoring the membrane-electrode interface in PEM fuel cells: a review and perspective on novel engineering approaches
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201701257
– volume: 18
  start-page: 4163
  year: 2018
  ident: 1263_CR11
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.8b00978
– volume: 10
  start-page: 1903871
  year: 2020
  ident: 1263_CR30
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201903871
– ident: 1263_CR50
  doi: 10.1007/978-0-387-84858-7
– volume: 159
  start-page: B455
  year: 2012
  ident: 1263_CR45
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.jes113064
– volume: 18
  start-page: 5905
  year: 2018
  ident: 1263_CR17
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.8b02606
– volume: 12
  start-page: 2830
  year: 2019
  ident: 1263_CR14
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C9EE01899A
– volume: 4
  start-page: 81
  year: 2009
  ident: 1263_CR18
  publication-title: Nano Today
  doi: 10.1016/j.nantod.2008.09.002
– volume: 12
  start-page: 765
  year: 2013
  ident: 1263_CR15
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3668
– volume: 164
  start-page: F418
  year: 2017
  ident: 1263_CR42
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.1621704jes
– volume: 5
  start-page: 19664
  year: 2017
  ident: 1263_CR38
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA04967F
– volume: 47
  start-page: 18810
  year: 2022
  ident: 1263_CR37
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2022.04.021
– volume: 3
  start-page: 124
  year: 2019
  ident: 1263_CR16
  publication-title: Joule
  doi: 10.1016/j.joule.2018.09.016
– volume: 77
  start-page: 1325
  year: 2017
  ident: 1263_CR33
  publication-title: ECS Trans.
  doi: 10.1149/07711.1325ecst
– ident: 1263_CR10
– volume: 27
  start-page: 6317
  year: 2015
  ident: 1263_CR5
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201503557
– volume: 11
  start-page: 2101794
  year: 2021
  ident: 1263_CR6
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202101794
– volume: 156
  start-page: B991
  year: 2009
  ident: 1263_CR44
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.3152226
– volume: 165
  start-page: F3148
  year: 2018
  ident: 1263_CR46
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0061806jes
– volume: 165
  start-page: F3015
  year: 2018
  ident: 1263_CR8
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0021806jes
– volume: 3
  start-page: 589
  year: 2013
  ident: 1263_CR22
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201200759
– volume: 161
  start-page: F1254
  year: 2014
  ident: 1263_CR25
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0751412jes
– ident: 1263_CR31
  doi: 10.1021/acsaem.9b01754
– volume: 599
  start-page: 425
  year: 2021
  ident: 1263_CR1
  publication-title: Nature
  doi: 10.1038/s41586-021-03943-z
– volume: 2
  start-page: 8652
  year: 2014
  ident: 1263_CR32
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA00674G
– volume: 156
  start-page: 289
  year: 2014
  ident: 1263_CR29
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2015.01.028
– volume: 11
  start-page: 473
  year: 2007
  ident: 1263_CR35
  publication-title: ECS Trans.
  doi: 10.1149/1.2780961
– volume: 12
  start-page: 2825
  year: 2011
  ident: 1263_CR49
  publication-title: J. Mach. Learn. Res.
– volume: 4
  start-page: 2307
  year: 2021
  ident: 1263_CR41
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.0c02841
– volume: 13
  start-page: 455
  year: 1998
  ident: 1263_CR51
  publication-title: J. Glob. Optim.
  doi: 10.1023/A:1008306431147
– ident: 1263_CR28
  doi: 10.1002/aenm.201701257
– volume: 160
  start-page: F522
  year: 2013
  ident: 1263_CR34
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.049306jes
– volume: 554
  start-page: 229
  year: 2018
  ident: 1263_CR2
  publication-title: Nature
  doi: 10.1038/nature25467
– volume: 12
  start-page: 557
  year: 2012
  ident: 1263_CR39
  publication-title: Fuel Cells
  doi: 10.1002/fuce.201200017
– volume: 28
  start-page: 10117
  year: 2016
  ident: 1263_CR27
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201601909
– volume: 343
  start-page: 1339
  year: 2014
  ident: 1263_CR12
  publication-title: Science
  doi: 10.1126/science.1249061
– volume: 8
  start-page: 1701257
  year: 2018
  ident: 1263_CR23
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201701257
– volume: 595
  start-page: 361
  year: 2021
  ident: 1263_CR3
  publication-title: Nature
  doi: 10.1038/s41586-021-03482-7
– volume: 12
  start-page: 4956
  year: 2021
  ident: 1263_CR24
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-25301-3
– volume: 139
  start-page: L28
  year: 1992
  ident: 1263_CR26
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2069277
– volume: 161
  start-page: F3091
  year: 2014
  ident: 1263_CR48
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0161411jes
– ident: 1263_CR40
  doi: 10.1007/978-3-319-09737-4
– volume: 2
  start-page: 454
  year: 2010
  ident: 1263_CR13
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.623
– volume: 506
  start-page: 230039
  year: 2021
  ident: 1263_CR21
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2021.230039
– volume: 43
  start-page: 16704
  year: 2018
  ident: 1263_CR36
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2018.07.035
– volume: 51
  start-page: 12613
  year: 2012
  ident: 1263_CR7
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201207256
– volume: 6
  start-page: 462
  year: 2021
  ident: 1263_CR4
  publication-title: Nat. Energy
  doi: 10.1038/s41560-021-00775-z
– volume: 114
  start-page: 21982
  year: 2010
  ident: 1263_CR20
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp106814j
– volume: 137
  start-page: 2804
  year: 2015
  ident: 1263_CR19
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja511596c
– ident: 1263_CR47
– volume: 16
  start-page: 140
  year: 2021
  ident: 1263_CR9
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-020-00824-w
– volume: 152
  start-page: A970
  year: 2005
  ident: 1263_CR43
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1888367
SSID ssj0002922581
Score 2.5992448
Snippet Proton exchange membrane fuel cells (PEMFCs) are leading candidates to decarbonize the transport sector, but widespread deployment will require improvements in...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 685
SubjectTerms 639/301/299/161/886
639/4077/893
639/4077/909/4086/4087
Catalysts
Durability
Economics and Management
Electrodes
Energy
Energy efficiency
Energy Policy
Energy Storage
Energy Systems
Fuel cells
Fuel consumption
Fuel economy
Fuel technology
Grooves
Hydrogen
Hydrogen fuels
Ionomers
Machine learning
Performance enhancement
Proton exchange membrane fuel cells
Renewable and Green Energy
Transportation industry
Title Grooved electrodes for high-power-density fuel cells
URI https://link.springer.com/article/10.1038/s41560-023-01263-2
https://www.proquest.com/docview/2841215452
Volume 8
WOSCitedRecordID wos000994723800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2058-7546
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0002922581
  issn: 2058-7546
  databaseCode: M7S
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest advanced technologies & aerospace journals
  customDbUrl:
  eissn: 2058-7546
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0002922581
  issn: 2058-7546
  databaseCode: P5Z
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2058-7546
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0002922581
  issn: 2058-7546
  databaseCode: BENPR
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2058-7546
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0002922581
  issn: 2058-7546
  databaseCode: M2P
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09T8MwED3RlgEGvhGFUmVgA6uN4yTOhAC1sFBFfEgVS5TYjoRUtaVJK_HvOSdOC0h0YfGSxIouZ7-78-U9gAstRaNiTX3Z9QRhMhYkEUFMuJ3GTClXyqQUm_AHAz4cBqEpuGWmrbLaE4uNWk6ErpF3cBvVRAjMpdfTD6JVo_TpqpHQqEFDM5WxOjRue4PwaVlloQH6K7fN3zJdh3cynbF0CUIVZtHUcwj9iUirMPPXyWgBOP3d_77qHuyYUNO6KX1jHzbU-AC2vxEQHgK7x8B5oaRl1HCkyiyMYi1NYkymWkCNSN3hnn9a6VyNLF3mz47gtd97uXsgRkeBCESbnCD8-HacOL70FGOYb3QljXls88QNcAVSrjyX-rYIVOxLmwqPYtjFPYlJN4K_Sp1jqI8nY3UClsNSnlCFGIZ5iB1IngSe1GGYwvmZTJtgV7aMhCEZ11oXo6g47HZ4VNo_QvtHhf0j2oTL5TPTkmJj7d2tyuiRWW5ZtLJ4E66qz7a6_Pdsp-tnO4MtWniKbs9tQT2fzdU5bIpF_p7N2sbZ2lB7pKEe_WccQ_ftCyT-3F0
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LS8NAEB60CurBt1ifOehJlyabbbI5iIhaW6rFQ4Xe1mR3A0Jpa1MV_5S_0dk8WhX01oPnJEPI9-08MrvzARwZKRodmtGXticJU6EkkQxCwp04ZFpXlYoysQm_1eKdTnA_Ax_FWRizrbLwiamjVn1p_pFX0I2aQQisSs8Hz8SoRpnuaiGhkdGiqd_fsGRLzhpXiO8xpbXr9mWd5KoCRKLvHRF0xr4TRq6vPM0YZt-2oiEPHR5VA-Qj5dqrUt-RgQ595VDpUUxCuKewBMVQqGMX7c7CHMNKyKyrO3o__qdDA1wd3MnP5tgurySmPrIJBkas2annEvo9_k2S2h992DS81Vb-24dZheU8kbYuMuavwYzurcPSl_GKG8BusCx41crKtX6UTizM0S0zopkMjDwcUWb__ujdil901zJNjGQTHqby2ltQ6vV7ehssl8U8ohojNFZZTqB4FHjKJJka7TMVl8EpsBMyH6FulDy6Im3lu1xkeAvEW6R4C1qGk_Ezg2yAyJ937xUgi9yZJGKCcBlOC5pMLv9ubedva4ewUG_f3YrbRqu5C4s0ZanZiLwHpdHwRe_DvHwdPSXDg5TmFjxOmz6fBnsyHg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Grooved+electrodes+for+high-power-density+fuel+cells&rft.jtitle=Nature+energy&rft.au=Lee%2C+ChungHyuk&rft.au=Kort-Kamp%2C+Wilton+J.+M&rft.au=Yu%2C+Haoran&rft.au=Cullen%2C+David+A&rft.date=2023-07-01&rft.pub=Nature+Publishing+Group&rft.eissn=2058-7546&rft.volume=8&rft.issue=7&rft.spage=685&rft.epage=694&rft_id=info:doi/10.1038%2Fs41560-023-01263-2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2058-7546&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2058-7546&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2058-7546&client=summon