Grooved electrodes for high-power-density fuel cells
Proton exchange membrane fuel cells (PEMFCs) are leading candidates to decarbonize the transport sector, but widespread deployment will require improvements in lifetime, fuel economy and cost. Here we present the grooved electrode, an alternative electrode structure that enhances PEMFC performance a...
Gespeichert in:
| Veröffentlicht in: | Nature energy Jg. 8; H. 7; S. 685 - 694 |
|---|---|
| Hauptverfasser: | , , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
London
Nature Publishing Group UK
01.07.2023
Nature Publishing Group |
| Schlagworte: | |
| ISSN: | 2058-7546, 2058-7546 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Proton exchange membrane fuel cells (PEMFCs) are leading candidates to decarbonize the transport sector, but widespread deployment will require improvements in lifetime, fuel economy and cost. Here we present the grooved electrode, an alternative electrode structure that enhances PEMFC performance and durability by coupling high ionomer (ion-conducting binder) content for improved H
+
transport with grooves for rapid O
2
transport. Grooved electrodes provide up to 50% higher performance than state-of-the-art conventional electrodes under standard operating conditions. Fuel cell diagnostics combined with multiphysics modelling demonstrate that grooved electrodes provide facile O
2
transport despite their high ionomer content, enabling improved reaction rate uniformity. Grooved electrodes also provide improved durability, with less performance loss after carbon corrosion compared with baseline electrodes. Machine learning analysis demonstrates the potential to further optimize grooved structures for next-generation PEMFCs with enhanced performance and durability, enabling smaller and cheaper fuel cell stacks with higher fuel efficiency.
The way catalysts are arranged and interfaced to form fuel cell electrodes is just as important as the catalysts themselves. Here Lee et al. report an up to 50% increase in performance and superior durability using grooved, rather than conventional flat, electrodes for hydrogen fuel cells. |
|---|---|
| AbstractList | Proton exchange membrane fuel cells (PEMFCs) are leading candidates to decarbonize the transport sector, but widespread deployment will require improvements in lifetime, fuel economy and cost. Here we present the grooved electrode, an alternative electrode structure that enhances PEMFC performance and durability by coupling high ionomer (ion-conducting binder) content for improved H+ transport with grooves for rapid O2 transport. Grooved electrodes provide up to 50% higher performance than state-of-the-art conventional electrodes under standard operating conditions. Fuel cell diagnostics combined with multiphysics modelling demonstrate that grooved electrodes provide facile O2 transport despite their high ionomer content, enabling improved reaction rate uniformity. Grooved electrodes also provide improved durability, with less performance loss after carbon corrosion compared with baseline electrodes. Machine learning analysis demonstrates the potential to further optimize grooved structures for next-generation PEMFCs with enhanced performance and durability, enabling smaller and cheaper fuel cell stacks with higher fuel efficiency.The way catalysts are arranged and interfaced to form fuel cell electrodes is just as important as the catalysts themselves. Here Lee et al. report an up to 50% increase in performance and superior durability using grooved, rather than conventional flat, electrodes for hydrogen fuel cells. Proton exchange membrane fuel cells (PEMFCs) are leading candidates to decarbonize the transport sector, but widespread deployment will require improvements in lifetime, fuel economy and cost. Here we present the grooved electrode, an alternative electrode structure that enhances PEMFC performance and durability by coupling high ionomer (ion-conducting binder) content for improved H + transport with grooves for rapid O 2 transport. Grooved electrodes provide up to 50% higher performance than state-of-the-art conventional electrodes under standard operating conditions. Fuel cell diagnostics combined with multiphysics modelling demonstrate that grooved electrodes provide facile O 2 transport despite their high ionomer content, enabling improved reaction rate uniformity. Grooved electrodes also provide improved durability, with less performance loss after carbon corrosion compared with baseline electrodes. Machine learning analysis demonstrates the potential to further optimize grooved structures for next-generation PEMFCs with enhanced performance and durability, enabling smaller and cheaper fuel cell stacks with higher fuel efficiency. Proton exchange membrane fuel cells (PEMFCs) are leading candidates to decarbonize the transport sector, but widespread deployment will require improvements in lifetime, fuel economy and cost. Here we present the grooved electrode, an alternative electrode structure that enhances PEMFC performance and durability by coupling high ionomer (ion-conducting binder) content for improved H + transport with grooves for rapid O 2 transport. Grooved electrodes provide up to 50% higher performance than state-of-the-art conventional electrodes under standard operating conditions. Fuel cell diagnostics combined with multiphysics modelling demonstrate that grooved electrodes provide facile O 2 transport despite their high ionomer content, enabling improved reaction rate uniformity. Grooved electrodes also provide improved durability, with less performance loss after carbon corrosion compared with baseline electrodes. Machine learning analysis demonstrates the potential to further optimize grooved structures for next-generation PEMFCs with enhanced performance and durability, enabling smaller and cheaper fuel cell stacks with higher fuel efficiency. The way catalysts are arranged and interfaced to form fuel cell electrodes is just as important as the catalysts themselves. Here Lee et al. report an up to 50% increase in performance and superior durability using grooved, rather than conventional flat, electrodes for hydrogen fuel cells. |
| Author | Kort-Kamp, Wilton J. M. Arman, Tanvir Alam Mukundan, Rangachary Spendelow, Jacob S. Komini Babu, Siddharth Borup, Rod L. Patterson, Brian M. Cullen, David A. Lee, ChungHyuk Yu, Haoran |
| Author_xml | – sequence: 1 givenname: ChungHyuk orcidid: 0000-0002-8428-1502 surname: Lee fullname: Lee, ChungHyuk organization: Materials Physics and Applications Division, Los Alamos National Laboratory, Department of Chemical Engineering, Toronto Metropolitan University – sequence: 2 givenname: Wilton J. M. orcidid: 0000-0002-0679-6690 surname: Kort-Kamp fullname: Kort-Kamp, Wilton J. M. organization: Theoretical Division, Los Alamos National Laboratory – sequence: 3 givenname: Haoran orcidid: 0000-0001-7304-2840 surname: Yu fullname: Yu, Haoran organization: Center for Nanophase Materials Sciences, Oak Ridge National Laboratory – sequence: 4 givenname: David A. orcidid: 0000-0002-2593-7866 surname: Cullen fullname: Cullen, David A. organization: Center for Nanophase Materials Sciences, Oak Ridge National Laboratory – sequence: 5 givenname: Brian M. surname: Patterson fullname: Patterson, Brian M. organization: Materials Science and Technology Division, Los Alamos National Laboratory – sequence: 6 givenname: Tanvir Alam orcidid: 0000-0003-1130-4731 surname: Arman fullname: Arman, Tanvir Alam organization: Materials Physics and Applications Division, Los Alamos National Laboratory – sequence: 7 givenname: Siddharth orcidid: 0000-0001-5724-8486 surname: Komini Babu fullname: Komini Babu, Siddharth organization: Materials Physics and Applications Division, Los Alamos National Laboratory – sequence: 8 givenname: Rangachary orcidid: 0000-0002-5679-3930 surname: Mukundan fullname: Mukundan, Rangachary organization: Materials Physics and Applications Division, Los Alamos National Laboratory, Energy Technologies Area, Lawrence Berkeley National Laboratory – sequence: 9 givenname: Rod L. orcidid: 0000-0001-7647-1624 surname: Borup fullname: Borup, Rod L. organization: Materials Physics and Applications Division, Los Alamos National Laboratory – sequence: 10 givenname: Jacob S. orcidid: 0000-0002-8111-7782 surname: Spendelow fullname: Spendelow, Jacob S. email: spendelow@lanl.gov organization: Materials Physics and Applications Division, Los Alamos National Laboratory |
| BookMark | eNp9kLFOwzAQhi1UJErpCzBFYjb4LrbjjKiCFqkSC8yWm1zaVCEudgrq25MSJBBDp7vh_-4_fZds1PqWGLsGcQsiNXdRgtKCC0y5ANQpxzM2RqEMz5TUoz_7BZvGuBVCYI6oDIyZnAfvP6hMqKGiC76kmFQ-JJt6veE7_0mBl9TGujsk1Z6apKCmiVfsvHJNpOnPnLDXx4eX2YIvn-dPs_slLyTmHc_AZOBWaVZqklKiESU648CsVJ5Cjoa0wgyKnFxWAhYacwVGl7RClJKqdMJuhru74N_3FDu79fvQ9pUWjQQEJRX2KRxSRfAxBqrsLtRvLhwsCHsUZAdBthdkvwXZI2T-QUXdua72bRdc3ZxG0wGNfU-7pvD71QnqCxZSee4 |
| CitedBy_id | crossref_primary_10_1016_j_gce_2024_03_003 crossref_primary_10_1016_j_joule_2023_11_015 crossref_primary_10_1016_j_energy_2025_134378 crossref_primary_10_1016_j_jpowsour_2025_237498 crossref_primary_10_1002_adsu_202400904 crossref_primary_10_1002_smll_202406848 crossref_primary_10_1016_j_icheatmasstransfer_2025_109603 crossref_primary_10_1016_j_pecs_2025_101220 crossref_primary_10_1002_anie_202421013 crossref_primary_10_1002_adma_202504059 crossref_primary_10_1016_j_jpowsour_2024_235624 crossref_primary_10_1016_j_ijheatmasstransfer_2025_127000 crossref_primary_10_1016_j_cej_2024_154424 crossref_primary_10_1088_2516_1083_ad8abd crossref_primary_10_1002_ente_202500137 crossref_primary_10_1016_j_renene_2025_122536 crossref_primary_10_1021_acs_nanolett_5c01757 crossref_primary_10_1002_adfm_202401261 crossref_primary_10_1021_jacs_4c10742 crossref_primary_10_1002_fuce_70001 crossref_primary_10_1002_adma_202412525 crossref_primary_10_1016_j_jpowsour_2024_235182 crossref_primary_10_1002_adfm_202508864 crossref_primary_10_1021_acs_nanolett_5c02954 crossref_primary_10_1016_j_jpowsour_2025_237303 crossref_primary_10_1016_j_ijheatmasstransfer_2024_125870 crossref_primary_10_1002_smll_202405008 crossref_primary_10_1016_j_checat_2025_101303 crossref_primary_10_1126_science_adq2259 crossref_primary_10_1002_aenm_202303011 crossref_primary_10_1016_j_matt_2023_11_009 crossref_primary_10_1016_j_fuel_2025_136684 crossref_primary_10_1016_j_jclepro_2023_140344 crossref_primary_10_1021_acsaem_5c00425 crossref_primary_10_1016_j_enconman_2024_119089 crossref_primary_10_1016_j_renene_2025_123691 crossref_primary_10_1038_s41467_024_46389_3 crossref_primary_10_1016_j_ijhydene_2024_05_215 crossref_primary_10_1016_j_cej_2025_165138 crossref_primary_10_1038_s41467_025_61794_y crossref_primary_10_1016_j_enchem_2024_100142 crossref_primary_10_1002_anie_202503934 crossref_primary_10_1039_D4EE00646A crossref_primary_10_1016_j_ijhydene_2024_10_008 crossref_primary_10_1039_D5SE00552C crossref_primary_10_26599_NR_2025_94907684 crossref_primary_10_1002_adfm_202514280 crossref_primary_10_1016_j_ijhydene_2025_04_216 crossref_primary_10_1016_j_etran_2024_100327 crossref_primary_10_1016_j_jpowsour_2024_234238 crossref_primary_10_1016_j_apenergy_2023_122442 crossref_primary_10_1016_j_joule_2024_06_005 crossref_primary_10_1002_adfm_202313844 crossref_primary_10_1002_cssc_202301265 crossref_primary_10_1039_D5CS00604J crossref_primary_10_1002_smll_202504253 crossref_primary_10_1016_j_ces_2025_121592 crossref_primary_10_1002_advs_202303914 crossref_primary_10_1021_jacs_5c04479 crossref_primary_10_1021_acssuschemeng_5c05951 crossref_primary_10_1016_j_jpowsour_2024_235441 crossref_primary_10_1002_ange_202421013 crossref_primary_10_1002_ange_202503934 crossref_primary_10_1016_j_electacta_2024_145632 crossref_primary_10_1039_D4RA08446B crossref_primary_10_3390_en18164270 crossref_primary_10_1007_s12274_024_6800_5 crossref_primary_10_1002_adfm_202412311 crossref_primary_10_1039_D5TA02793D crossref_primary_10_1002_aenm_202303952 crossref_primary_10_1149_1945_7111_addd6a crossref_primary_10_1360_SSC_2025_0014 crossref_primary_10_1002_advs_202505304 crossref_primary_10_1039_D5EE03461B crossref_primary_10_1002_ange_202312001 crossref_primary_10_1007_s00158_024_03901_z crossref_primary_10_1016_j_coche_2024_101053 crossref_primary_10_1109_TTE_2024_3444692 crossref_primary_10_1088_1361_6528_ad7e30 crossref_primary_10_1016_j_ijhydene_2025_150669 crossref_primary_10_1016_j_renene_2024_121006 crossref_primary_10_1016_j_jcis_2025_01_065 crossref_primary_10_1021_jacs_4c13494 crossref_primary_10_1016_j_cclet_2025_111720 crossref_primary_10_1002_adma_202413658 crossref_primary_10_1016_j_ijhydene_2023_11_056 crossref_primary_10_1016_j_ijhydene_2025_02_398 crossref_primary_10_1016_j_apsusc_2024_159332 crossref_primary_10_1016_j_energy_2025_138029 crossref_primary_10_1016_j_cej_2024_155261 crossref_primary_10_1038_s41560_023_01277_w crossref_primary_10_1002_anie_202424179 crossref_primary_10_1016_j_jpowsour_2025_238395 crossref_primary_10_1016_j_cherd_2024_11_004 crossref_primary_10_1016_j_ijheatmasstransfer_2025_126987 crossref_primary_10_1039_D4GC06444E crossref_primary_10_3390_en17092093 crossref_primary_10_1002_cjce_25049 crossref_primary_10_1007_s42114_024_00883_w crossref_primary_10_1016_j_jpowsour_2025_237794 crossref_primary_10_1002_adma_202308989 crossref_primary_10_1002_adsu_202500457 crossref_primary_10_1002_ange_202424179 crossref_primary_10_1016_j_enconman_2024_119329 crossref_primary_10_1016_j_ijhydene_2024_11_003 crossref_primary_10_1016_j_mser_2025_101028 crossref_primary_10_1016_j_cej_2024_155378 crossref_primary_10_1007_s40820_024_01558_3 crossref_primary_10_1016_j_jpowsour_2025_236612 crossref_primary_10_1002_ange_202512315 crossref_primary_10_1016_j_jiec_2025_03_054 crossref_primary_10_1016_j_ijhydene_2023_08_270 crossref_primary_10_1021_acsaem_5c01839 crossref_primary_10_1016_j_jpowsour_2024_235083 crossref_primary_10_1016_j_ijhydene_2024_08_438 crossref_primary_10_3390_mi15060700 crossref_primary_10_1016_j_energy_2025_137039 crossref_primary_10_1016_j_ijhydene_2024_08_313 crossref_primary_10_1007_s40820_025_01719_y crossref_primary_10_1002_smll_202409650 crossref_primary_10_1002_anie_202312001 crossref_primary_10_1016_j_jpowsour_2024_235758 crossref_primary_10_1016_j_nanoms_2024_04_009 crossref_primary_10_1002_adma_202503254 crossref_primary_10_1002_advs_202503749 crossref_primary_10_1002_anie_202512315 crossref_primary_10_1016_j_cej_2024_152256 crossref_primary_10_1039_D5SE00028A crossref_primary_10_1016_j_coelec_2024_101595 crossref_primary_10_1016_j_jpowsour_2025_237315 crossref_primary_10_1021_jacs_5c07815 crossref_primary_10_1016_j_apcatb_2025_125887 crossref_primary_10_1016_j_ceja_2025_100843 crossref_primary_10_1016_j_gee_2023_11_002 crossref_primary_10_1016_j_mcat_2025_115121 crossref_primary_10_1016_j_jcis_2025_02_205 crossref_primary_10_1088_2515_7655_adf6e3 crossref_primary_10_1016_S1872_2067_25_64654_7 |
| Cites_doi | 10.1149/2.0161411jes 10.1038/nchem.623 10.1002/fuce.201200017 10.1149/07711.1325ecst 10.1038/s41586-021-03943-z 10.1016/j.electacta.2015.01.028 10.1002/adma.201503557 10.1126/science.1249061 10.1038/s41467-021-25301-3 10.1149/2.049306jes 10.1021/acs.nanolett.8b02606 10.1002/aenm.201200759 10.1038/s41586-021-03482-7 10.1021/acs.nanolett.8b00978 10.1002/adma.201601909 10.1016/j.ijhydene.2018.07.035 10.1149/1.3152226 10.1016/j.joule.2018.09.016 10.1038/nmat3668 10.1002/anie.201207256 10.1039/C7TA04967F 10.1149/1.2780961 10.1023/A:1008306431147 10.1002/aenm.202101794 10.1039/C4TA00674G 10.1149/2.0061806jes 10.1149/1.2069277 10.1149/2.1621704jes 10.1038/s41560-021-00775-z 10.1002/aenm.201903871 10.1016/j.ijhydene.2022.04.021 10.1016/j.nantod.2008.09.002 10.1149/2.0021806jes 10.1039/C9EE01899A 10.1149/2.jes113064 10.1038/nature25467 10.1021/jp106814j 10.1021/ja511596c 10.1149/1.1888367 10.1021/acsaem.0c02841 10.1038/s41565-020-00824-w 10.1016/j.jpowsour.2021.230039 10.1149/2.0751412jes 10.1002/aenm.201701257 10.1007/978-0-387-84858-7 10.1021/acsaem.9b01754 10.1007/978-3-319-09737-4 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2023. corrected publication 2023 The Author(s) 2023. corrected publication 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2023. corrected publication 2023 – notice: The Author(s) 2023. corrected publication 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION 3V. 7SP 7SU 7TB 7XB 88I 8FD 8FE 8FG 8FK ABJCF ABUWG AEUYN AFKRA ARAPS AZQEC BENPR BGLVJ C1K CCPQU DWQXO FR3 GNUQQ HCIFZ L6V L7M M2P M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS Q9U |
| DOI | 10.1038/s41560-023-01263-2 |
| DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Electronics & Communications Abstracts Environmental Engineering Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central Technology Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Engineering Collection Advanced Technologies Database with Aerospace Science Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition Engineering Collection ProQuest Central Basic |
| DatabaseTitle | CrossRef ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Environmental Sciences and Pollution Management ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection ProQuest Central Korea Environmental Engineering Abstracts ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
| DatabaseTitleList | ProQuest Central Student CrossRef |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2058-7546 |
| EndPage | 694 |
| ExternalDocumentID | 10_1038_s41560_023_01263_2 |
| GrantInformation_xml | – fundername: Gouvernement du Canada | Natural Sciences and Engineering Research Council of Canada (Conseil de Recherches en Sciences Naturelles et en Génie du Canada) funderid: https://doi.org/10.13039/501100000038 – fundername: US Department of Energy, EERE, HFTO, Million Mile Fuel Cell Truck consortium – fundername: DOE | LDRD | Los Alamos National Laboratory (Los Alamos Lab) grantid: 2020200DR; 20210915PRD2 funderid: https://doi.org/10.13039/100008902 |
| GroupedDBID | 0R~ 3V. 88I AAEEF AARCD AAYZH AAZLF ABJNI ABLJU ABUWG ACBWK ACGFS ADBBV AEUYN AFKRA AFSHS AFWHJ AHSBF AIBTJ ALFFA ALMA_UNASSIGNED_HOLDINGS ARMCB AXYYD AZQEC BENPR BKKNO BPHCQ C6C CCPQU DWQXO EBS EJD FSGXE FZEXT GNUQQ HCIFZ M2P NNMJJ O9- ODYON PQQKQ PROAC RNT SHXYY SIXXV SJN SNYQT SOJ TAOOD TBHMF TDRGL TSG AAYXX ABFSG ABJCF ACSTC AEZWR AFANA AFFHD AFHIU AGSTI AHWEU AIXLP ARAPS ATHPR BGLVJ CITATION M7S NFIDA PHGZM PHGZT PQGLB PTHSS 7SP 7SU 7TB 7XB 8FD 8FE 8FG 8FK C1K FR3 L6V L7M P62 PKEHL PQEST PQUKI PUEGO Q9U |
| ID | FETCH-LOGICAL-c429t-71871ab37d6e444280d2a8a18b5931928e65271c9ea7d12c6295186deb2244ef3 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 176 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000994723800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2058-7546 |
| IngestDate | Sat Sep 06 07:31:15 EDT 2025 Sat Nov 29 04:06:07 EST 2025 Tue Nov 18 22:35:16 EST 2025 Fri Feb 21 02:38:19 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c429t-71871ab37d6e444280d2a8a18b5931928e65271c9ea7d12c6295186deb2244ef3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-8428-1502 0000-0001-7304-2840 0000-0001-5724-8486 0000-0001-7647-1624 0000-0002-5679-3930 0000-0002-0679-6690 0000-0002-2593-7866 0000-0003-1130-4731 0000-0002-8111-7782 |
| OpenAccessLink | https://link.springer.com/article/10.1038/s41560-023-01263-2 |
| PQID | 2841215452 |
| PQPubID | 2069617 |
| PageCount | 10 |
| ParticipantIDs | proquest_journals_2841215452 crossref_primary_10_1038_s41560_023_01263_2 crossref_citationtrail_10_1038_s41560_023_01263_2 springer_journals_10_1038_s41560_023_01263_2 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-07-01 |
| PublicationDateYYYYMMDD | 2023-07-01 |
| PublicationDate_xml | – month: 07 year: 2023 text: 2023-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London |
| PublicationTitle | Nature energy |
| PublicationTitleAbbrev | Nat Energy |
| PublicationYear | 2023 |
| Publisher | Nature Publishing Group UK Nature Publishing Group |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
| References | Jiao (CR3) 2021; 595 Liu (CR35) 2007; 11 Cullen (CR4) 2021; 6 Topalov (CR7) 2012; 51 Zhang (CR37) 2022; 47 Khedekar (CR6) 2021; 11 Forner-Cuenca (CR5) 2015; 27 Mauger (CR21) 2021; 506 CR31 Yang (CR30) 2020; 10 Weber (CR25) 2014; 161 Cui, Gan, Heggen, Rudi, Strasser (CR15) 2013; 12 Yu, Carter, Zhang (CR39) 2012; 12 Chen, Lim, Lee, Xia (CR18) 2009; 4 Pedregosa (CR49) 2011; 12 Banas, Uddin, Park, Bonville, Pasaogullari (CR8) 2018; 165 CR47 Jinnouchi (CR24) 2021; 12 CR40 Qiao (CR14) 2019; 12 Zhang, Porter, Guillory, Chi, Arges (CR33) 2017; 77 Jones, Schonlau, Welch (CR51) 1998; 13 Chen (CR17) 2018; 18 Koh (CR32) 2014; 2 Macauley (CR46) 2018; 165 Zenyuk, Taspinar, Kalidindi, Kumbur, Litster (CR48) 2014; 161 Wang (CR11) 2018; 18 Li (CR16) 2019; 3 Shukla, Domican, Karan, Bhattacharjee, Secanell (CR29) 2014; 156 Debe (CR34) 2013; 160 Wilson, Gottesfeld (CR26) 1992; 139 CR10 Makharia, Mathias, Baker (CR43) 2005; 152 Shi (CR38) 2017; 5 CR50 Jewell (CR2) 2018; 554 Baker, Caulk, Neyerlin, Murphy (CR44) 2009; 156 Strasser (CR13) 2010; 2 Breitwieser (CR23) 2018; 8 Arisetty (CR45) 2012; 159 Higgins, Meza, Chen (CR20) 2010; 114 CR28 Orfanidi (CR42) 2017; 164 Zhao (CR19) 2015; 137 Salari, Stumper, Bahrami (CR36) 2018; 43 Li, Thompson (CR1) 2021; 599 Chen (CR12) 2014; 343 Kobayashi (CR41) 2021; 4 Jhong, Brushett, Kenis (CR22) 2013; 3 Kodama, Nagai, Kuwaki, Jinnouchi, Morimoto (CR9) 2021; 16 Wang (CR27) 2016; 28 DC Higgins (1263_CR20) 2010; 114 X Zhao (1263_CR19) 2015; 137 A Kobayashi (1263_CR41) 2021; 4 N Macauley (1263_CR46) 2018; 165 MK Debe (1263_CR34) 2013; 160 F Pedregosa (1263_CR49) 2011; 12 1263_CR31 Z Yu (1263_CR39) 2012; 12 CJ Banas (1263_CR8) 2018; 165 W Wang (1263_CR27) 2016; 28 DR Baker (1263_CR44) 2009; 156 DR Jones (1263_CR51) 1998; 13 R Makharia (1263_CR43) 2005; 152 K Khedekar (1263_CR6) 2021; 11 JK Koh (1263_CR32) 2014; 2 L Zhang (1263_CR33) 2017; 77 H Zhang (1263_CR37) 2022; 47 P Strasser (1263_CR13) 2010; 2 K Jiao (1263_CR3) 2021; 595 J Jewell (1263_CR2) 2018; 554 S Salari (1263_CR36) 2018; 43 1263_CR40 A Forner-Cuenca (1263_CR5) 2015; 27 S Arisetty (1263_CR45) 2012; 159 IV Zenyuk (1263_CR48) 2014; 161 1263_CR47 C Chen (1263_CR12) 2014; 343 MS Wilson (1263_CR26) 1992; 139 Z Qiao (1263_CR14) 2019; 12 AZ Weber (1263_CR25) 2014; 161 1263_CR10 R Jinnouchi (1263_CR24) 2021; 12 1263_CR50 SA Mauger (1263_CR21) 2021; 506 S Shukla (1263_CR29) 2014; 156 AA Topalov (1263_CR7) 2012; 51 A Orfanidi (1263_CR42) 2017; 164 K Kodama (1263_CR9) 2021; 16 J Chen (1263_CR18) 2009; 4 Y Liu (1263_CR35) 2007; 11 M Breitwieser (1263_CR23) 2018; 8 J Li (1263_CR16) 2019; 3 XX Wang (1263_CR11) 2018; 18 C Cui (1263_CR15) 2013; 12 G Yang (1263_CR30) 2020; 10 H-R Jhong (1263_CR22) 2013; 3 N Shi (1263_CR38) 2017; 5 1263_CR28 DA Cullen (1263_CR4) 2021; 6 J Li (1263_CR1) 2021; 599 W Chen (1263_CR17) 2018; 18 |
| References_xml | – volume: 161 start-page: F3091 year: 2014 end-page: F3103 ident: CR48 article-title: Computational and experimental analysis of water transport at component interfaces in polymer electrolyte fuel cells publication-title: J. Electrochem. Soc. doi: 10.1149/2.0161411jes – volume: 2 start-page: 454 year: 2010 end-page: 460 ident: CR13 article-title: Lattice-strain control of the activity in dealloyed core–shell fuel cell catalysts publication-title: Nat. Chem. doi: 10.1038/nchem.623 – volume: 12 start-page: 557 year: 2012 end-page: 565 ident: CR39 article-title: Measurements of pore size distribution, porosity, effective oxygen diffusivity, and tortuosity of PEM fuel cell electrodes publication-title: Fuel Cells doi: 10.1002/fuce.201200017 – volume: 77 start-page: 1325 year: 2017 ident: CR33 article-title: Patterning polymer electrolyte membrane for fuel cell and electrolysis applications publication-title: ECS Trans. doi: 10.1149/07711.1325ecst – volume: 599 start-page: 425 year: 2021 end-page: 430 ident: CR1 article-title: Widespread changes in surface temperature persistence under climate change publication-title: Nature doi: 10.1038/s41586-021-03943-z – volume: 156 start-page: 289 year: 2014 end-page: 300 ident: CR29 article-title: Analysis of low platinum loading thin polymer electrolyte fuel cell electrodes prepared by inkjet printing publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2015.01.028 – volume: 27 start-page: 6317 year: 2015 end-page: 6322 ident: CR5 article-title: Engineered water highways in fuel cells: radiation grafting of gas diffusion layers publication-title: Adv. Mater. doi: 10.1002/adma.201503557 – volume: 343 start-page: 1339 year: 2014 end-page: 1343 ident: CR12 article-title: Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces publication-title: Science doi: 10.1126/science.1249061 – volume: 12 start-page: 4956 year: 2021 ident: CR24 article-title: The role of oxygen-permeable ionomer for polymer electrolyte fuel cells publication-title: Nat. Commun. doi: 10.1038/s41467-021-25301-3 – volume: 160 start-page: F522 year: 2013 end-page: F534 ident: CR34 article-title: Tutorial on the fundamental characteristics and practical properties of nanostructured thin film (NSTF) catalysts publication-title: J. Electrochem. Soc. doi: 10.1149/2.049306jes – volume: 18 start-page: 5905 year: 2018 end-page: 5912 ident: CR17 article-title: Neighboring Pt atom sites in an ultrathin FePt nanosheet for the efficient and highly CO-tolerant oxygen reduction reaction publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b02606 – volume: 3 start-page: 589 year: 2013 end-page: 599 ident: CR22 article-title: The effects of catalyst layer deposition methodology on electrode performance publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201200759 – volume: 595 start-page: 361 year: 2021 end-page: 369 ident: CR3 article-title: Designing the next generation of proton-exchange membrane fuel cells publication-title: Nature doi: 10.1038/s41586-021-03482-7 – volume: 18 start-page: 4163 year: 2018 end-page: 4171 ident: CR11 article-title: Ordered Pt Co intermetallic nanoparticles derived from metal–organic frameworks for oxygen reduction publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b00978 – volume: 28 start-page: 10117 year: 2016 end-page: 10141 ident: CR27 article-title: Tuning nanowires and nanotubes for efficient fuel-cell electrocatalysis publication-title: Adv. Mater. doi: 10.1002/adma.201601909 – volume: 43 start-page: 16704 year: 2018 end-page: 16718 ident: CR36 article-title: Direct measurement and modeling relative gas diffusivity of PEMFC catalyst layers: the effect of ionomer to carbon ratio, operating temperature, porosity, and pore size distribution publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2018.07.035 – ident: CR50 – volume: 156 start-page: B991 year: 2009 ident: CR44 article-title: Measurement of oxygen transport resistance in PEM fuel cells by limiting current methods publication-title: J. Electrochem. Soc. doi: 10.1149/1.3152226 – volume: 3 start-page: 124 year: 2019 end-page: 135 ident: CR16 article-title: Hard-magnet L1 –CoPt nanoparticles advance fuel cell catalysis publication-title: Joule doi: 10.1016/j.joule.2018.09.016 – volume: 12 start-page: 765 year: 2013 end-page: 771 ident: CR15 article-title: Compositional segregation in shaped Pt alloy nanoparticles and their structural behaviour during electrocatalysis publication-title: Nat. Mater. doi: 10.1038/nmat3668 – volume: 51 start-page: 12613 year: 2012 end-page: 12615 ident: CR7 article-title: Dissolution of platinum: limits for the deployment of electrochemical energy conversion? publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201207256 – volume: 5 start-page: 19664 year: 2017 end-page: 19671 ident: CR38 article-title: Performance and DRT analysis of P-SOFCs fabricated using new phase inversion combined tape casting technology publication-title: J. Mater. Chem. A doi: 10.1039/C7TA04967F – volume: 11 start-page: 473 year: 2007 ident: CR35 article-title: Determination of electrode sheet resistance in cathode catalyst layer by AC impedance publication-title: ECS Trans. doi: 10.1149/1.2780961 – ident: CR47 – volume: 13 start-page: 455 year: 1998 end-page: 492 ident: CR51 article-title: Efficient global optimization of expensive black-box functions publication-title: J. Glob. Optim. doi: 10.1023/A:1008306431147 – volume: 11 start-page: 2101794 year: 2021 ident: CR6 article-title: Probing heterogeneous degradation of catalyst in PEM fuel cells under realistic automotive conditions with multi‐modal techniques publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202101794 – volume: 2 start-page: 8652 year: 2014 end-page: 8659 ident: CR32 article-title: A facile preparation method of surface patterned polymer electrolyte membranes for fuel cell applications publication-title: J. Mater. Chem. A doi: 10.1039/C4TA00674G – volume: 12 start-page: 2825 year: 2011 end-page: 2830 ident: CR49 article-title: Scikit-learn: machine learning in Python publication-title: J. Mach. Learn. Res. – ident: CR10 – volume: 165 start-page: F3148 year: 2018 end-page: F3160 ident: CR46 article-title: Carbon corrosion in PEM fuel cells and the development of accelerated stress tests publication-title: J. Electrochem. Soc. doi: 10.1149/2.0061806jes – volume: 139 start-page: L28 year: 1992 end-page: L30 ident: CR26 article-title: High performance catalyzed membranes of ultra‐low Pt loadings for polymer electrolyte fuel cells publication-title: J. Electrochem. Soc. doi: 10.1149/1.2069277 – volume: 164 start-page: F418 year: 2017 end-page: F426 ident: CR42 article-title: The key to high-performance low-Pt-loaded electrodes publication-title: J. Electrochem. Soc. doi: 10.1149/2.1621704jes – volume: 6 start-page: 462 year: 2021 end-page: 474 ident: CR4 article-title: New roads and challenges for fuel cells in heavy-duty transportation publication-title: Nat. Energy doi: 10.1038/s41560-021-00775-z – ident: CR40 – volume: 10 start-page: 1903871 year: 2020 ident: CR30 article-title: Building electron/proton nanohighways for full utilization of water splitting catalysts publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201903871 – volume: 47 start-page: 18810 year: 2022 end-page: 18819 ident: CR37 article-title: A cathode-supported solid oxide fuel cell prepared by the phase-inversion tape casting and impregnating method publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2022.04.021 – volume: 4 start-page: 81 year: 2009 end-page: 95 ident: CR18 article-title: Shape-controlled synthesis of platinum nanocrystals for catalytic and electrocatalytic applications publication-title: Nano Today doi: 10.1016/j.nantod.2008.09.002 – ident: CR31 – volume: 165 start-page: F3015 year: 2018 ident: CR8 article-title: Thinning of cathode catalyst layer in polymer electrolyte fuel cells due to foreign cation contamination publication-title: J. Electrochem. Soc. doi: 10.1149/2.0021806jes – volume: 12 start-page: 2830 year: 2019 end-page: 2841 ident: CR14 article-title: 3D porous graphitic nanocarbon for enhancing the performance and durability of Pt catalysts: a balance between graphitization and hierarchical porosity publication-title: Energy Environ. Sci. doi: 10.1039/C9EE01899A – volume: 159 start-page: B455 year: 2012 end-page: B462 ident: CR45 article-title: Catalyst durability in PEM fuel cells with low platinum loading publication-title: J. Electrochem. Soc. doi: 10.1149/2.jes113064 – volume: 554 start-page: 229 year: 2018 end-page: 233 ident: CR2 article-title: Limited emission reductions from fuel-subsidy removal except in energy-exporting regions publication-title: Nature doi: 10.1038/nature25467 – volume: 114 start-page: 21982 year: 2010 end-page: 21988 ident: CR20 article-title: Nitrogen-doped carbon nanotubes as platinum catalyst supports for oxygen reduction reaction in proton exchange membrane fuel cells publication-title: J. Phys. Chem. C doi: 10.1021/jp106814j – volume: 137 start-page: 2804 year: 2015 end-page: 2807 ident: CR19 article-title: Octahedral Pd@Pt Ni core–shell nanocrystals with ultrathin PtNi alloy shells as active catalysts for oxygen reduction reaction publication-title: J. Am. Chem. Soc. doi: 10.1021/ja511596c – volume: 152 start-page: A970 year: 2005 ident: CR43 article-title: Measurement of catalyst layer electrolyte resistance in PEFCs using electrochemical impedance spectroscopy publication-title: J. Electrochem. Soc. doi: 10.1149/1.1888367 – ident: CR28 – volume: 4 start-page: 2307 year: 2021 end-page: 2317 ident: CR41 article-title: Effect of Pt and ionomer distribution on polymer electrolyte fuel cell performance and durability publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.0c02841 – volume: 16 start-page: 140 year: 2021 end-page: 147 ident: CR9 article-title: Challenges in applying highly active Pt-based nanostructured catalysts for oxygen reduction reactions to fuel cell vehicles publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-020-00824-w – volume: 506 start-page: 230039 year: 2021 ident: CR21 article-title: Development of high-performance roll-to-roll-coated gas-diffusion-electrode-based fuel cells publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2021.230039 – volume: 161 start-page: F1254 year: 2014 ident: CR25 article-title: A critical review of modeling transport phenomena in polymer-electrolyte fuel cells publication-title: J. Electrochem. Soc. doi: 10.1149/2.0751412jes – volume: 8 start-page: 1701257 year: 2018 ident: CR23 article-title: Tailoring the membrane-electrode interface in PEM fuel cells: a review and perspective on novel engineering approaches publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201701257 – volume: 18 start-page: 4163 year: 2018 ident: 1263_CR11 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b00978 – volume: 10 start-page: 1903871 year: 2020 ident: 1263_CR30 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201903871 – ident: 1263_CR50 doi: 10.1007/978-0-387-84858-7 – volume: 159 start-page: B455 year: 2012 ident: 1263_CR45 publication-title: J. Electrochem. Soc. doi: 10.1149/2.jes113064 – volume: 18 start-page: 5905 year: 2018 ident: 1263_CR17 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b02606 – volume: 12 start-page: 2830 year: 2019 ident: 1263_CR14 publication-title: Energy Environ. Sci. doi: 10.1039/C9EE01899A – volume: 4 start-page: 81 year: 2009 ident: 1263_CR18 publication-title: Nano Today doi: 10.1016/j.nantod.2008.09.002 – volume: 12 start-page: 765 year: 2013 ident: 1263_CR15 publication-title: Nat. Mater. doi: 10.1038/nmat3668 – volume: 164 start-page: F418 year: 2017 ident: 1263_CR42 publication-title: J. Electrochem. Soc. doi: 10.1149/2.1621704jes – volume: 5 start-page: 19664 year: 2017 ident: 1263_CR38 publication-title: J. Mater. Chem. A doi: 10.1039/C7TA04967F – volume: 47 start-page: 18810 year: 2022 ident: 1263_CR37 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2022.04.021 – volume: 3 start-page: 124 year: 2019 ident: 1263_CR16 publication-title: Joule doi: 10.1016/j.joule.2018.09.016 – volume: 77 start-page: 1325 year: 2017 ident: 1263_CR33 publication-title: ECS Trans. doi: 10.1149/07711.1325ecst – ident: 1263_CR10 – volume: 27 start-page: 6317 year: 2015 ident: 1263_CR5 publication-title: Adv. Mater. doi: 10.1002/adma.201503557 – volume: 11 start-page: 2101794 year: 2021 ident: 1263_CR6 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202101794 – volume: 156 start-page: B991 year: 2009 ident: 1263_CR44 publication-title: J. Electrochem. Soc. doi: 10.1149/1.3152226 – volume: 165 start-page: F3148 year: 2018 ident: 1263_CR46 publication-title: J. Electrochem. Soc. doi: 10.1149/2.0061806jes – volume: 165 start-page: F3015 year: 2018 ident: 1263_CR8 publication-title: J. Electrochem. Soc. doi: 10.1149/2.0021806jes – volume: 3 start-page: 589 year: 2013 ident: 1263_CR22 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201200759 – volume: 161 start-page: F1254 year: 2014 ident: 1263_CR25 publication-title: J. Electrochem. Soc. doi: 10.1149/2.0751412jes – ident: 1263_CR31 doi: 10.1021/acsaem.9b01754 – volume: 599 start-page: 425 year: 2021 ident: 1263_CR1 publication-title: Nature doi: 10.1038/s41586-021-03943-z – volume: 2 start-page: 8652 year: 2014 ident: 1263_CR32 publication-title: J. Mater. Chem. A doi: 10.1039/C4TA00674G – volume: 156 start-page: 289 year: 2014 ident: 1263_CR29 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2015.01.028 – volume: 11 start-page: 473 year: 2007 ident: 1263_CR35 publication-title: ECS Trans. doi: 10.1149/1.2780961 – volume: 12 start-page: 2825 year: 2011 ident: 1263_CR49 publication-title: J. Mach. Learn. Res. – volume: 4 start-page: 2307 year: 2021 ident: 1263_CR41 publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.0c02841 – volume: 13 start-page: 455 year: 1998 ident: 1263_CR51 publication-title: J. Glob. Optim. doi: 10.1023/A:1008306431147 – ident: 1263_CR28 doi: 10.1002/aenm.201701257 – volume: 160 start-page: F522 year: 2013 ident: 1263_CR34 publication-title: J. Electrochem. Soc. doi: 10.1149/2.049306jes – volume: 554 start-page: 229 year: 2018 ident: 1263_CR2 publication-title: Nature doi: 10.1038/nature25467 – volume: 12 start-page: 557 year: 2012 ident: 1263_CR39 publication-title: Fuel Cells doi: 10.1002/fuce.201200017 – volume: 28 start-page: 10117 year: 2016 ident: 1263_CR27 publication-title: Adv. Mater. doi: 10.1002/adma.201601909 – volume: 343 start-page: 1339 year: 2014 ident: 1263_CR12 publication-title: Science doi: 10.1126/science.1249061 – volume: 8 start-page: 1701257 year: 2018 ident: 1263_CR23 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201701257 – volume: 595 start-page: 361 year: 2021 ident: 1263_CR3 publication-title: Nature doi: 10.1038/s41586-021-03482-7 – volume: 12 start-page: 4956 year: 2021 ident: 1263_CR24 publication-title: Nat. Commun. doi: 10.1038/s41467-021-25301-3 – volume: 139 start-page: L28 year: 1992 ident: 1263_CR26 publication-title: J. Electrochem. Soc. doi: 10.1149/1.2069277 – volume: 161 start-page: F3091 year: 2014 ident: 1263_CR48 publication-title: J. Electrochem. Soc. doi: 10.1149/2.0161411jes – ident: 1263_CR40 doi: 10.1007/978-3-319-09737-4 – volume: 2 start-page: 454 year: 2010 ident: 1263_CR13 publication-title: Nat. Chem. doi: 10.1038/nchem.623 – volume: 506 start-page: 230039 year: 2021 ident: 1263_CR21 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2021.230039 – volume: 43 start-page: 16704 year: 2018 ident: 1263_CR36 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2018.07.035 – volume: 51 start-page: 12613 year: 2012 ident: 1263_CR7 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201207256 – volume: 6 start-page: 462 year: 2021 ident: 1263_CR4 publication-title: Nat. Energy doi: 10.1038/s41560-021-00775-z – volume: 114 start-page: 21982 year: 2010 ident: 1263_CR20 publication-title: J. Phys. Chem. C doi: 10.1021/jp106814j – volume: 137 start-page: 2804 year: 2015 ident: 1263_CR19 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja511596c – ident: 1263_CR47 – volume: 16 start-page: 140 year: 2021 ident: 1263_CR9 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-020-00824-w – volume: 152 start-page: A970 year: 2005 ident: 1263_CR43 publication-title: J. Electrochem. Soc. doi: 10.1149/1.1888367 |
| SSID | ssj0002922581 |
| Score | 2.5992448 |
| Snippet | Proton exchange membrane fuel cells (PEMFCs) are leading candidates to decarbonize the transport sector, but widespread deployment will require improvements in... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 685 |
| SubjectTerms | 639/301/299/161/886 639/4077/893 639/4077/909/4086/4087 Catalysts Durability Economics and Management Electrodes Energy Energy efficiency Energy Policy Energy Storage Energy Systems Fuel cells Fuel consumption Fuel economy Fuel technology Grooves Hydrogen Hydrogen fuels Ionomers Machine learning Performance enhancement Proton exchange membrane fuel cells Renewable and Green Energy Transportation industry |
| Title | Grooved electrodes for high-power-density fuel cells |
| URI | https://link.springer.com/article/10.1038/s41560-023-01263-2 https://www.proquest.com/docview/2841215452 |
| Volume | 8 |
| WOSCitedRecordID | wos000994723800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2058-7546 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0002922581 issn: 2058-7546 databaseCode: M7S dateStart: 20160101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest advanced technologies & aerospace journals customDbUrl: eissn: 2058-7546 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0002922581 issn: 2058-7546 databaseCode: P5Z dateStart: 20160101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2058-7546 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0002922581 issn: 2058-7546 databaseCode: BENPR dateStart: 20160101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 2058-7546 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0002922581 issn: 2058-7546 databaseCode: M2P dateStart: 20160101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09T8MwED3RlgEGvhGFUmVgA6uN4yTOhAC1sFBFfEgVS5TYjoRUtaVJK_HvOSdOC0h0YfGSxIouZ7-78-U9gAstRaNiTX3Z9QRhMhYkEUFMuJ3GTClXyqQUm_AHAz4cBqEpuGWmrbLaE4uNWk6ErpF3cBvVRAjMpdfTD6JVo_TpqpHQqEFDM5WxOjRue4PwaVlloQH6K7fN3zJdh3cynbF0CUIVZtHUcwj9iUirMPPXyWgBOP3d_77qHuyYUNO6KX1jHzbU-AC2vxEQHgK7x8B5oaRl1HCkyiyMYi1NYkymWkCNSN3hnn9a6VyNLF3mz47gtd97uXsgRkeBCESbnCD8-HacOL70FGOYb3QljXls88QNcAVSrjyX-rYIVOxLmwqPYtjFPYlJN4K_Sp1jqI8nY3UClsNSnlCFGIZ5iB1IngSe1GGYwvmZTJtgV7aMhCEZ11oXo6g47HZ4VNo_QvtHhf0j2oTL5TPTkmJj7d2tyuiRWW5ZtLJ4E66qz7a6_Pdsp-tnO4MtWniKbs9tQT2fzdU5bIpF_p7N2sbZ2lB7pKEe_WccQ_ftCyT-3F0 |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LS8NAEB60CurBt1ifOehJlyabbbI5iIhaW6rFQ4Xe1mR3A0Jpa1MV_5S_0dk8WhX01oPnJEPI9-08MrvzARwZKRodmtGXticJU6EkkQxCwp04ZFpXlYoysQm_1eKdTnA_Ax_FWRizrbLwiamjVn1p_pFX0I2aQQisSs8Hz8SoRpnuaiGhkdGiqd_fsGRLzhpXiO8xpbXr9mWd5KoCRKLvHRF0xr4TRq6vPM0YZt-2oiEPHR5VA-Qj5dqrUt-RgQ595VDpUUxCuKewBMVQqGMX7c7CHMNKyKyrO3o__qdDA1wd3MnP5tgurySmPrIJBkas2annEvo9_k2S2h992DS81Vb-24dZheU8kbYuMuavwYzurcPSl_GKG8BusCx41crKtX6UTizM0S0zopkMjDwcUWb__ujdil901zJNjGQTHqby2ltQ6vV7ehssl8U8ohojNFZZTqB4FHjKJJka7TMVl8EpsBMyH6FulDy6Im3lu1xkeAvEW6R4C1qGk_Ezg2yAyJ937xUgi9yZJGKCcBlOC5pMLv9ubedva4ewUG_f3YrbRqu5C4s0ZanZiLwHpdHwRe_DvHwdPSXDg5TmFjxOmz6fBnsyHg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Grooved+electrodes+for+high-power-density+fuel+cells&rft.jtitle=Nature+energy&rft.au=Lee%2C+ChungHyuk&rft.au=Kort-Kamp%2C+Wilton+J.+M&rft.au=Yu%2C+Haoran&rft.au=Cullen%2C+David+A&rft.date=2023-07-01&rft.pub=Nature+Publishing+Group&rft.eissn=2058-7546&rft.volume=8&rft.issue=7&rft.spage=685&rft.epage=694&rft_id=info:doi/10.1038%2Fs41560-023-01263-2 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2058-7546&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2058-7546&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2058-7546&client=summon |