Machine learning-based time series models for effective CO2 emission prediction in India
China, India, and the USA are the countries with the highest energy consumption and CO 2 emissions globally. As per the report of datacommons.org , CO 2 emission in India is 1.80 metric tons per capita, which is harmful to living beings, so this paper presents India’s detrimental CO 2 emission effec...
Uložené v:
| Vydané v: | Environmental science and pollution research international Ročník 30; číslo 55; s. 116601 - 116616 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.11.2023
Springer Nature B.V |
| Predmet: | |
| ISSN: | 1614-7499, 0944-1344, 1614-7499 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | China, India, and the USA are the countries with the highest energy consumption and
CO
2
emissions globally. As per the report of
datacommons.org
,
CO
2
emission in India is 1.80 metric tons per capita, which is harmful to living beings, so this paper presents India’s detrimental
CO
2
emission effect with the prediction of
CO
2
emission for the next 10 years based on univariate time-series data from 1980 to 2019. We have used three statistical models; autoregressive-integrated moving average (ARIMA) model, seasonal autoregressive-integrated moving average with exogenous factors (SARIMAX) model, and the Holt-Winters model, two machine learning models, i.e., linear regression and random forest model and a deep learning-based long short-term memory (LSTM) model. This paper brings together a variety of models and allows us to work on data prediction. The performance analysis shows that LSTM, SARIMAX, and Holt-Winters are the three most accurate models among the six models based on nine performance metrics. Results conclude that LSTM is the best model for
CO
2
emission prediction with the 3.101%
MAPE
value, 60.635
RMSE
value, 28.898
MedAE
value, and along with other performance metrics. A comparative study also concludes the same. Therefore, the deep learning-based LSTM model is suggested as one of the most appropriate models for
CO
2
emission prediction. |
|---|---|
| AbstractList | China, India, and the USA are the countries with the highest energy consumption and CO2 emissions globally. As per the report of datacommons.org , CO2 emission in India is 1.80 metric tons per capita, which is harmful to living beings, so this paper presents India's detrimental CO2 emission effect with the prediction of CO2 emission for the next 10 years based on univariate time-series data from 1980 to 2019. We have used three statistical models; autoregressive-integrated moving average (ARIMA) model, seasonal autoregressive-integrated moving average with exogenous factors (SARIMAX) model, and the Holt-Winters model, two machine learning models, i.e., linear regression and random forest model and a deep learning-based long short-term memory (LSTM) model. This paper brings together a variety of models and allows us to work on data prediction. The performance analysis shows that LSTM, SARIMAX, and Holt-Winters are the three most accurate models among the six models based on nine performance metrics. Results conclude that LSTM is the best model for CO2 emission prediction with the 3.101% MAPE value, 60.635 RMSE value, 28.898 MedAE value, and along with other performance metrics. A comparative study also concludes the same. Therefore, the deep learning-based LSTM model is suggested as one of the most appropriate models for CO2 emission prediction.China, India, and the USA are the countries with the highest energy consumption and CO2 emissions globally. As per the report of datacommons.org , CO2 emission in India is 1.80 metric tons per capita, which is harmful to living beings, so this paper presents India's detrimental CO2 emission effect with the prediction of CO2 emission for the next 10 years based on univariate time-series data from 1980 to 2019. We have used three statistical models; autoregressive-integrated moving average (ARIMA) model, seasonal autoregressive-integrated moving average with exogenous factors (SARIMAX) model, and the Holt-Winters model, two machine learning models, i.e., linear regression and random forest model and a deep learning-based long short-term memory (LSTM) model. This paper brings together a variety of models and allows us to work on data prediction. The performance analysis shows that LSTM, SARIMAX, and Holt-Winters are the three most accurate models among the six models based on nine performance metrics. Results conclude that LSTM is the best model for CO2 emission prediction with the 3.101% MAPE value, 60.635 RMSE value, 28.898 MedAE value, and along with other performance metrics. A comparative study also concludes the same. Therefore, the deep learning-based LSTM model is suggested as one of the most appropriate models for CO2 emission prediction. China, India, and the USA are the countries with the highest energy consumption and CO 2 emissions globally. As per the report of datacommons.org , CO 2 emission in India is 1.80 metric tons per capita, which is harmful to living beings, so this paper presents India’s detrimental CO 2 emission effect with the prediction of CO 2 emission for the next 10 years based on univariate time-series data from 1980 to 2019. We have used three statistical models; autoregressive-integrated moving average (ARIMA) model, seasonal autoregressive-integrated moving average with exogenous factors (SARIMAX) model, and the Holt-Winters model, two machine learning models, i.e., linear regression and random forest model and a deep learning-based long short-term memory (LSTM) model. This paper brings together a variety of models and allows us to work on data prediction. The performance analysis shows that LSTM, SARIMAX, and Holt-Winters are the three most accurate models among the six models based on nine performance metrics. Results conclude that LSTM is the best model for CO 2 emission prediction with the 3.101% MAPE value, 60.635 RMSE value, 28.898 MedAE value, and along with other performance metrics. A comparative study also concludes the same. Therefore, the deep learning-based LSTM model is suggested as one of the most appropriate models for CO 2 emission prediction. China, India, and the USA are the countries with the highest energy consumption and CO2 emissions globally. As per the report of datacommons.org, CO2 emission in India is 1.80 metric tons per capita, which is harmful to living beings, so this paper presents India’s detrimental CO2 emission effect with the prediction of CO2 emission for the next 10 years based on univariate time-series data from 1980 to 2019. We have used three statistical models; autoregressive-integrated moving average (ARIMA) model, seasonal autoregressive-integrated moving average with exogenous factors (SARIMAX) model, and the Holt-Winters model, two machine learning models, i.e., linear regression and random forest model and a deep learning-based long short-term memory (LSTM) model. This paper brings together a variety of models and allows us to work on data prediction. The performance analysis shows that LSTM, SARIMAX, and Holt-Winters are the three most accurate models among the six models based on nine performance metrics. Results conclude that LSTM is the best model for CO2 emission prediction with the 3.101% MAPE value, 60.635 RMSE value, 28.898 MedAE value, and along with other performance metrics. A comparative study also concludes the same. Therefore, the deep learning-based LSTM model is suggested as one of the most appropriate models for CO2 emission prediction. China, India, and the USA are the countries with the highest energy consumption and CO₂ emissions globally. As per the report of datacommons.org , CO₂ emission in India is 1.80 metric tons per capita, which is harmful to living beings, so this paper presents India’s detrimental CO₂ emission effect with the prediction of CO₂ emission for the next 10 years based on univariate time-series data from 1980 to 2019. We have used three statistical models; autoregressive-integrated moving average (ARIMA) model, seasonal autoregressive-integrated moving average with exogenous factors (SARIMAX) model, and the Holt-Winters model, two machine learning models, i.e., linear regression and random forest model and a deep learning-based long short-term memory (LSTM) model. This paper brings together a variety of models and allows us to work on data prediction. The performance analysis shows that LSTM, SARIMAX, and Holt-Winters are the three most accurate models among the six models based on nine performance metrics. Results conclude that LSTM is the best model for CO₂ emission prediction with the 3.101% MAPE value, 60.635 RMSE value, 28.898 MedAE value, and along with other performance metrics. A comparative study also concludes the same. Therefore, the deep learning-based LSTM model is suggested as one of the most appropriate models for CO₂ emission prediction. |
| Author | Singh, Sunil Kumar Kumari, Surbhi |
| Author_xml | – sequence: 1 givenname: Surbhi surname: Kumari fullname: Kumari, Surbhi organization: Dept. of Computer Science and Information Technology, Mahatma Gandhi Central University – sequence: 2 givenname: Sunil Kumar orcidid: 0000-0001-8954-6648 surname: Singh fullname: Singh, Sunil Kumar email: sksingh@mgcub.ac.in, sunilsingh.jnu@gmail.com organization: Dept. of Computer Science and Information Technology, Mahatma Gandhi Central University |
| BookMark | eNqFkU1LAzEQhoMoWKt_wFPAi5fVfO1ucpTiF1S8KHgLaTKpKdtsTbaC_97UCoqHesoQnieZmfcI7cc-AkKnlFxQQtrLTCmvm4owVjHaMl7JPTSiDRVVK5Ta_1UfoqOcF4Qwolg7Qi8Pxr6GCLgDk2KI82pmMjg8hCXgDClAxsveQZex7xMG78EO4R3w5JFhWIacQx_xKoEL5b6UIeL76II5RgfedBlOvs8xer65fprcVdPH2_vJ1bSygqmhaqyrjaekaVshROv8zEnLnBVeCW6lcpw0nMyIckYBA8UEEGcktYZ6RcDzMTrfvrtK_dsa8qBLUxa6zkTo11lzWpfN1KSu_0VZIwVRrZQb9OwPuujXKZZBNJNK0LpmvCkU21I29Tkn8HqVwtKkD02J3uSit7nokov-ykXLIsk_kg2D2exuSCZ0u1W-VXP5J84h_XS1w_oEL2ijKQ |
| CitedBy_id | crossref_primary_10_1134_S1064562423701223 crossref_primary_10_1007_s41976_024_00143_x crossref_primary_10_1016_j_seta_2025_104343 crossref_primary_10_1007_s10661_025_14121_3 crossref_primary_10_1016_j_ecmx_2025_101030 crossref_primary_10_1080_13504509_2025_2490667 crossref_primary_10_3389_fclim_2024_1457441 crossref_primary_10_3390_systems12120528 crossref_primary_10_1007_s11356_023_26824_6 crossref_primary_10_1080_23311916_2024_2317540 crossref_primary_10_1016_j_jastp_2024_106393 crossref_primary_10_3390_ijerph191912709 crossref_primary_10_3390_su15097648 crossref_primary_10_1186_s13021_025_00314_3 crossref_primary_10_1016_j_procs_2024_04_257 crossref_primary_10_21833_ijaas_2025_04_005 crossref_primary_10_3390_su17114940 crossref_primary_10_1007_s13132_025_02698_6 crossref_primary_10_1016_j_applthermaleng_2025_127263 crossref_primary_10_3390_su17072843 crossref_primary_10_3390_math13091481 crossref_primary_10_1016_j_hybadv_2024_100171 crossref_primary_10_1080_17509653_2024_2426492 crossref_primary_10_1080_15567036_2024_2305689 crossref_primary_10_1007_s10668_025_06305_1 crossref_primary_10_1007_s11356_024_33939_x crossref_primary_10_1007_s11869_023_01329_w crossref_primary_10_2166_wcc_2024_252 crossref_primary_10_3390_su16104219 crossref_primary_10_1088_2515_7620_ad9086 crossref_primary_10_1016_j_procs_2025_04_383 crossref_primary_10_1007_s13762_025_06628_6 crossref_primary_10_1007_s11356_024_35027_6 crossref_primary_10_1016_j_cities_2024_104881 crossref_primary_10_1016_j_ins_2024_120372 crossref_primary_10_1016_j_trd_2024_104276 crossref_primary_10_1080_17583004_2025_2496482 crossref_primary_10_1007_s11356_023_30428_5 crossref_primary_10_3389_fenvs_2025_1557388 crossref_primary_10_1007_s10661_024_13085_0 crossref_primary_10_1155_int_3334263 crossref_primary_10_1007_s11356_023_28022_w crossref_primary_10_1007_s40032_025_01226_4 crossref_primary_10_3390_app13063832 crossref_primary_10_1007_s41748_025_00778_w crossref_primary_10_3390_en17205119 crossref_primary_10_1007_s00477_023_02629_4 crossref_primary_10_1016_j_envsoft_2025_106533 crossref_primary_10_3390_math12182956 crossref_primary_10_3390_geosciences13060183 crossref_primary_10_3390_bdcc9030071 crossref_primary_10_1007_s11356_024_35764_8 crossref_primary_10_3390_math13111895 crossref_primary_10_1016_j_scs_2024_105326 crossref_primary_10_1016_j_trpro_2024_12_017 crossref_primary_10_3390_app14209373 crossref_primary_10_3846_jeelm_2024_22361 crossref_primary_10_1080_19942060_2024_2391988 crossref_primary_10_21605_cukurovaumfd_1648164 crossref_primary_10_1093_ijlct_ctae284 crossref_primary_10_1038_s41598_025_04236_5 crossref_primary_10_1186_s40068_025_00403_9 crossref_primary_10_3390_electronics12010107 crossref_primary_10_1088_1742_6596_3036_1_012006 crossref_primary_10_3390_math13121955 crossref_primary_10_3389_fenvs_2025_1623630 crossref_primary_10_3390_pr12122699 crossref_primary_10_1007_s11356_024_33460_1 crossref_primary_10_1088_1742_6596_2942_1_012004 crossref_primary_10_3390_su17083436 crossref_primary_10_21511_ppm_21_2__2023_37 crossref_primary_10_3390_atmos15030323 crossref_primary_10_1109_ACCESS_2023_3324725 crossref_primary_10_1007_s12145_024_01627_6 |
| Cites_doi | 10.7827/TurkishStudies.49699 10.1080/07474938.2010.481556 10.1186/s12879-020-4930-2 10.1016/j.jclepro.2019.03.334 10.1109/HEALTHCOM49281.2021.9399048 10.1016/j.jclepro.2020.123293 10.1109/Confluence51648.2021.9377137 10.1016/j.jclepro.2020.125324 10.1016/j.renene.2020.11.050 10.1111/joes.12429 10.1177/09720634211050425 10.1016/j.energy.2020.119076 10.1016/j.spc.2021.10.001 10.1007/978-981-33-6912-2_5 10.1016/j.ins.2009.12.010 10.1016/j.jup.2021.101256 10.1016/j.rser.2020.110114 10.1016/j.apenergy.2020.116328 10.1016/j.procs.2020.03.240 10.1016/S0140-6736(16)31019-4 10.1109/IC3.2019.8844902 10.1007/978-3-030-63823-8_84 10.1007/s11356-020-08675-7 10.1016/j.ijforecast.2020.06.008 10.11113/jt.v75.2603 10.1016/S0306-2619(03)00096-5 10.1080/17583004.2020.1840869 10.1016/j.jclepro.2020.122269 10.1002/tea.3660180102 10.1007/s11356-020-10689-0 10.1016/j.energy.2016.12.022 10.1002/qre.2171 10.1016/j.autcon.2020.103280 10.1016/j.geoderma.2020.114222 10.1080/01605682.2019.1700183 10.1016/j.jclepro.2020.120723 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022 Copyright Springer Nature B.V. Nov 2023 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022 – notice: Copyright Springer Nature B.V. Nov 2023 – notice: 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature. |
| DBID | AAYXX CITATION 3V. 7QL 7SN 7T7 7TV 7U7 7WY 7WZ 7X7 7XB 87Z 88E 88I 8AO 8C1 8FD 8FI 8FJ 8FK 8FL ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BEZIV BHPHI C1K CCPQU DWQXO FR3 FRNLG FYUFA F~G GHDGH GNUQQ HCIFZ K60 K6~ K9. L.- M0C M0S M1P M2P M7N P64 PATMY PHGZM PHGZT PJZUB PKEHL PPXIY PQBIZ PQBZA PQEST PQQKQ PQUKI PRINS PYCSY Q9U 7X8 7S9 L.6 |
| DOI | 10.1007/s11356-022-21723-8 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Ecology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Pollution Abstracts Toxicology Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) Health & Medical Collection ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Business Premium Collection (Alumni) Proquest Health Research Premium Collection ABI/INFORM Global (Corporate) Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection ProQuest Health & Medical Complete (Alumni) ABI/INFORM Professional Advanced ABI/INFORM Global Health & Medical Collection (Alumni Edition) Medical Database Science Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Environmental Science Database ProQuest One Academic ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Environmental Science Collection ProQuest Central Basic MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) ProQuest Central Student ProQuest Central Essentials SciTech Premium Collection ProQuest Central China ABI/INFORM Complete Environmental Sciences and Pollution Management ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Business Premium Collection ABI/INFORM Global ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Business Collection Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Pollution Abstracts ProQuest Pharma Collection ProQuest Central ABI/INFORM Professional Advanced ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection ABI/INFORM Complete (Alumni Edition) ProQuest Public Health ABI/INFORM Global (Alumni Edition) ProQuest Central Basic Toxicology Abstracts ProQuest Science Journals ProQuest Medical Library ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | MEDLINE - Academic ProQuest Business Collection (Alumni Edition) AGRICOLA |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Environmental Sciences |
| EISSN | 1614-7499 |
| EndPage | 116616 |
| ExternalDocumentID | 10_1007_s11356_022_21723_8 |
| GeographicLocations | India China |
| GeographicLocations_xml | – name: India – name: China |
| GroupedDBID | --- -Y2 .VR 06D 0R~ 0VY 199 1N0 2.D 203 29G 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 4P2 53G 5GY 5VS 67M 67Z 6NX 78A 7WY 7X7 7XC 88E 88I 8AO 8C1 8FE 8FH 8FI 8FJ 8FL 8TC 8UJ 95- 95. 95~ 96X AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACGOD ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACREN ACSNA ACSVP ACZOJ ADBBV ADHHG ADHIR ADHKG ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFDZB AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHPBZ AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATCPS AVWKF AXYYD AYFIA AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGNMA BHPHI BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBD EBLON EBS EDH EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC FYUFA GGCAI GGRSB GJIRD GNUQQ GNWQR GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Y I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6~ KDC KOV L8X LAS LLZTM M0C M1P M2P M4Y MA- ML. N2Q N9A NB0 NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P PATMY PF0 PHGZT PQBIZ PQBZA PQQKQ PROAC PSQYO PT4 PT5 PYCSY Q2X QOK QOS R89 R9I RHV RNI RNS ROL RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCK SCLPG SDH SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK6 WK8 Y6R YLTOR Z45 ZMTXR ~02 ~KM AAYXX ABFSG ABRTQ ACSTC AEZWR AFFHD AFHIU AFOHR AHWEU AIXLP ATHPR BANNL CITATION PHGZM PJZUB PPXIY 3V. 7QL 7SN 7T7 7TV 7U7 7XB 8FD 8FK C1K FR3 K9. L.- M7N P64 PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO 7S9 L.6 |
| ID | FETCH-LOGICAL-c429t-6cd5af106774447dfbd8c2dc4f943c89d30630b09da9e2e924e0da81ca1f90ef3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 85 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000819908500010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1614-7499 0944-1344 |
| IngestDate | Sun Aug 24 03:52:56 EDT 2025 Fri Sep 05 12:01:21 EDT 2025 Tue Dec 02 16:27:46 EST 2025 Sat Nov 29 08:04:21 EST 2025 Tue Nov 18 21:07:24 EST 2025 Thu Apr 10 08:02:36 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 55 |
| Keywords | Holt-Winters LSTM Linear regression Time series forecasting Random forest regressor Air pollution emissions |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c429t-6cd5af106774447dfbd8c2dc4f943c89d30630b09da9e2e924e0da81ca1f90ef3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-8954-6648 |
| OpenAccessLink | https://link.springer.com/content/pdf/10.1007/s11356-022-21723-8.pdf |
| PQID | 2894155236 |
| PQPubID | 54208 |
| PageCount | 16 |
| ParticipantIDs | proquest_miscellaneous_3153565055 proquest_miscellaneous_2684097885 proquest_journals_2894155236 crossref_primary_10_1007_s11356_022_21723_8 crossref_citationtrail_10_1007_s11356_022_21723_8 springer_journals_10_1007_s11356_022_21723_8 |
| PublicationCentury | 2000 |
| PublicationDate | 20231100 |
| PublicationDateYYYYMMDD | 2023-11-01 |
| PublicationDate_xml | – month: 11 year: 2023 text: 20231100 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationTitle | Environmental science and pollution research international |
| PublicationTitleAbbrev | Environ Sci Pollut Res |
| PublicationYear | 2023 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | T Nyoni (21723_CR36) 2019; 4 C Magazzino (21723_CR30) 2021; 72 Ü Ağbulut (21723_CR3) 2020; 268 E Solgi (21723_CR41) 2016; 7 M Mele (21723_CR33) 2021; 28 L Yin (21723_CR45) 2021; 283 MS Bakay (21723_CR10) 2021; 285 R Kumar (21723_CR23) 2020; 167 21723_CR16 21723_CR15 21723_CR37 P Ahmadi (21723_CR6) 2019; 225 KP Ajewole (21723_CR8) 2020; 16 S García (21723_CR18) 2010; 180 Z Zuo (21723_CR46) 2020; 11 H Hewamalage (21723_CR21) 2021; 37 21723_CR31 21723_CR12 AN MK (21723_CR34) 2020; 27 21723_CR11 Ü Ağbulut (21723_CR2) 2022; 29 Ü Ağbulut (21723_CR5) 2021; 215 A Lepore (21723_CR26) 2017; 33 X Fang (21723_CR17) 2020; 20 P Gopu (21723_CR20) 2021 21723_CR28 Q Wang (21723_CR43) 2020; 258 S Kumar (21723_CR24) 2021; 23 L Abdullah (21723_CR1) 2015; 75 21723_CR25 G Wellington (21723_CR44) 2019; 4 21723_CR29 NK Ahmed (21723_CR7) 2010; 29 R Good (21723_CR19) 1981; 18 M Mele (21723_CR32) 2020; 277 21723_CR42 C Chatfield (21723_CR13) 1978; 27 C-H Huang (21723_CR22) 2020; 118 21723_CR40 G Sbrana (21723_CR39) 2021; 72 J Crespo Cuaresma (21723_CR14) 2004; 77 Z Liu (21723_CR27) 2020; 366 R Pino-Mejías (21723_CR38) 2017; 118 Ü Ağbulut (21723_CR4) 2021; 135 21723_CR9 C Nontapa (21723_CR35) 2020 |
| References_xml | – ident: 21723_CR37 doi: 10.7827/TurkishStudies.49699 – volume: 29 start-page: 594 issue: 5 year: 2010 ident: 21723_CR7 publication-title: Econ Rev doi: 10.1080/07474938.2010.481556 – ident: 21723_CR11 – volume: 20 start-page: 1 issue: 1 year: 2020 ident: 21723_CR17 publication-title: BMC Infectious Diseases doi: 10.1186/s12879-020-4930-2 – volume: 225 start-page: 1209 year: 2019 ident: 21723_CR6 publication-title: J Clean Prod doi: 10.1016/j.jclepro.2019.03.334 – ident: 21723_CR15 doi: 10.1109/HEALTHCOM49281.2021.9399048 – volume: 277 start-page: 123293 year: 2020 ident: 21723_CR32 publication-title: J Clean Prod doi: 10.1016/j.jclepro.2020.123293 – ident: 21723_CR40 doi: 10.1109/Confluence51648.2021.9377137 – volume: 285 start-page: 125324 year: 2021 ident: 21723_CR10 publication-title: J Clean Prod doi: 10.1016/j.jclepro.2020.125324 – ident: 21723_CR29 doi: 10.1016/j.renene.2020.11.050 – ident: 21723_CR31 doi: 10.1111/joes.12429 – volume: 23 start-page: 730 issue: 4 year: 2021 ident: 21723_CR24 publication-title: J Health Manag doi: 10.1177/09720634211050425 – volume: 215 start-page: 119076 year: 2021 ident: 21723_CR5 publication-title: Energy doi: 10.1016/j.energy.2020.119076 – volume: 29 start-page: 141 year: 2022 ident: 21723_CR2 publication-title: Sustain Prod Consump doi: 10.1016/j.spc.2021.10.001 – start-page: 47 volume-title: In Soft Computing and Signal Processing year: 2021 ident: 21723_CR20 doi: 10.1007/978-981-33-6912-2_5 – volume: 180 start-page: 2044 issue: 10 year: 2010 ident: 21723_CR18 publication-title: Inf Sci doi: 10.1016/j.ins.2009.12.010 – volume: 4 start-page: 1 issue: 2 year: 2019 ident: 21723_CR36 publication-title: DRJ-J Econ Finance – volume: 72 start-page: 101256 year: 2021 ident: 21723_CR30 publication-title: Util Policy doi: 10.1016/j.jup.2021.101256 – volume: 135 start-page: 110114 year: 2021 ident: 21723_CR4 publication-title: Renew Sust Energ Rev doi: 10.1016/j.rser.2020.110114 – volume: 283 start-page: 116328 year: 2021 ident: 21723_CR45 publication-title: Appl Energy doi: 10.1016/j.apenergy.2020.116328 – volume: 167 start-page: 373 issue: 2019 year: 2020 ident: 21723_CR23 publication-title: Procedia Comp Sci doi: 10.1016/j.procs.2020.03.240 – ident: 21723_CR28 – ident: 21723_CR25 doi: 10.1016/S0140-6736(16)31019-4 – ident: 21723_CR9 doi: 10.1109/IC3.2019.8844902 – start-page: 743 volume-title: International Conference on Neural Information Processing year: 2020 ident: 21723_CR35 doi: 10.1007/978-3-030-63823-8_84 – volume: 7 start-page: 813 issue: 4 year: 2016 ident: 21723_CR41 publication-title: J North Khorasan Univ Med Sci – volume: 27 start-page: 23631 issue: 19 year: 2020 ident: 21723_CR34 publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-020-08675-7 – volume: 37 start-page: 388 issue: 1 year: 2021 ident: 21723_CR21 publication-title: Int J Forecast doi: 10.1016/j.ijforecast.2020.06.008 – volume: 75 start-page: 67 issue: 1 year: 2015 ident: 21723_CR1 publication-title: Jurnal Teknologi doi: 10.11113/jt.v75.2603 – volume: 77 start-page: 87 issue: 1 year: 2004 ident: 21723_CR14 publication-title: Appl Energy doi: 10.1016/S0306-2619(03)00096-5 – volume: 11 start-page: 577 issue: 6 year: 2020 ident: 21723_CR46 publication-title: Carbon Manag doi: 10.1080/17583004.2020.1840869 – volume: 268 start-page: 122269 year: 2020 ident: 21723_CR3 publication-title: J Clean Prod doi: 10.1016/j.jclepro.2020.122269 – volume: 18 start-page: 1 issue: 1 year: 1981 ident: 21723_CR19 publication-title: J Res Sci Teach doi: 10.1002/tea.3660180102 – volume: 4 start-page: 1 issue: 2 year: 2019 ident: 21723_CR44 publication-title: Forecast Forecast Eval Dyn Res J – volume: 16 start-page: 11 year: 2020 ident: 21723_CR8 publication-title: J Undergrad Math – ident: 21723_CR12 – volume: 28 start-page: 2669 issue: 3 year: 2021 ident: 21723_CR33 publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-020-10689-0 – ident: 21723_CR16 – volume: 118 start-page: 24 year: 2017 ident: 21723_CR38 publication-title: Energy doi: 10.1016/j.energy.2016.12.022 – volume: 33 start-page: 1281 issue: 6 year: 2017 ident: 21723_CR26 publication-title: Qual Reliab Eng Int doi: 10.1002/qre.2171 – volume: 118 start-page: 103280 year: 2020 ident: 21723_CR22 publication-title: Autom Constr doi: 10.1016/j.autcon.2020.103280 – volume: 366 start-page: 114222 year: 2020 ident: 21723_CR27 publication-title: Geoderma doi: 10.1016/j.geoderma.2020.114222 – volume: 27 start-page: 264 issue: 3 year: 1978 ident: 21723_CR13 publication-title: J R Stat Soc: Ser C: Appl Stat – volume: 72 start-page: 701 issue: 3 year: 2021 ident: 21723_CR39 publication-title: J Oper Res Soc doi: 10.1080/01605682.2019.1700183 – ident: 21723_CR42 – volume: 258 start-page: 120723 year: 2020 ident: 21723_CR43 publication-title: J Clean Prod doi: 10.1016/j.jclepro.2020.120723 |
| SSID | ssj0020927 |
| Score | 2.6458108 |
| Snippet | China, India, and the USA are the countries with the highest energy consumption and
CO
2
emissions globally. As per the report of
datacommons.org
,
CO
2... China, India, and the USA are the countries with the highest energy consumption and CO2 emissions globally. As per the report of datacommons.org, CO2 emission... China, India, and the USA are the countries with the highest energy consumption and CO2 emissions globally. As per the report of datacommons.org , CO2 emission... China, India, and the USA are the countries with the highest energy consumption and CO₂ emissions globally. As per the report of datacommons.org , CO₂ emission... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 116601 |
| SubjectTerms | algorithms Aquatic Pollution Atmospheric Protection/Air Quality Control/Air Pollution Autoregressive models Business metrics Carbon dioxide Carbon dioxide emissions China Comparative studies comparative study Deep learning Earth and Environmental Science Ecotoxicology Emission energy Energy consumption Environment Environmental Chemistry Environmental Health GIS Applied to Soil-Agricultural Health for Environmental Sustainability India Learning algorithms Long short-term memory Machine learning Mathematical models neural networks Performance measurement prediction Predictions Regression analysis Regression models Statistical analysis Statistical models Time series time series analysis Waste Water Technology Water Management Water Pollution Control |
| SummonAdditionalLinks | – databaseName: Science Database dbid: M2P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZ4DSy8K8pLRmIDi_iRxp4QQiAYeAwgdYsS20GVUFqawu_nLnEbgdQurPFZsXxn353v8RFylksnothxlqgoYwrOIst0kjCrvMs5ly73DdhE8vSk-33zEh7cqpBWOb0T64vaDS2-kV-CY4C6T8je1eiTIWoURlcDhMYyWQXLhmNK16N4mTlckWkgW41SjEulQtFMUzrHZYzpt4IhRJNk-rdiaq3NPwHSWu_cbf53xVtkI1ic9LoRkW2y5Msd0rltC9xgMJzwapf0H-vsSk8DnMQ7Qz3nKGLQUxRXX9EaPaeiYO7SJh0Ebkx68ywoYsfh6xsdjTH-gzyng5I-lCCEe-Tt7vb15p4F9AXgkzAT1rMuzoq6w5xSKnFF7rQVzqrCKGm1cRLbdeWRcZnxwoMf5yOXaW4zXpjIF7JDVsph6fcJNTzrOZGIAuiVTHSuCu2BAr70IquLLuHTrU9taE2OCBkfadtUGdmVArvSml2p7pLz2ZxR05hjIfXRlEdpOKRV2jKoS05nw7BTGDPJSj_8AhpshgOeto7n00jQGmAXRzHQXEylpf3N_FUdLF7VIVlHcPum8vGIrEzGX_6YrNnvyaAan9Si_gMJFAOG priority: 102 providerName: ProQuest |
| Title | Machine learning-based time series models for effective CO2 emission prediction in India |
| URI | https://link.springer.com/article/10.1007/s11356-022-21723-8 https://www.proquest.com/docview/2894155236 https://www.proquest.com/docview/2684097885 https://www.proquest.com/docview/3153565055 |
| Volume | 30 |
| WOSCitedRecordID | wos000819908500010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: ABI/INFORM Collection customDbUrl: eissn: 1614-7499 dateEnd: 20241211 omitProxy: false ssIdentifier: ssj0020927 issn: 1614-7499 databaseCode: 7WY dateStart: 20190101 isFulltext: true titleUrlDefault: https://www.proquest.com/abicomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ABI/INFORM Global customDbUrl: eissn: 1614-7499 dateEnd: 20241211 omitProxy: false ssIdentifier: ssj0020927 issn: 1614-7499 databaseCode: M0C dateStart: 20190101 isFulltext: true titleUrlDefault: https://search.proquest.com/abiglobal providerName: ProQuest – providerCode: PRVPQU databaseName: Environmental Science Database customDbUrl: eissn: 1614-7499 dateEnd: 20241211 omitProxy: false ssIdentifier: ssj0020927 issn: 1614-7499 databaseCode: PATMY dateStart: 20190101 isFulltext: true titleUrlDefault: http://search.proquest.com/environmentalscience providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1614-7499 dateEnd: 20241211 omitProxy: false ssIdentifier: ssj0020927 issn: 1614-7499 databaseCode: 7X7 dateStart: 20190101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1614-7499 dateEnd: 20241211 omitProxy: false ssIdentifier: ssj0020927 issn: 1614-7499 databaseCode: BENPR dateStart: 20190101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database customDbUrl: eissn: 1614-7499 dateEnd: 20241211 omitProxy: false ssIdentifier: ssj0020927 issn: 1614-7499 databaseCode: 8C1 dateStart: 20190101 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 1614-7499 dateEnd: 20241211 omitProxy: false ssIdentifier: ssj0020927 issn: 1614-7499 databaseCode: M2P dateStart: 20190101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1614-7499 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0020927 issn: 1614-7499 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7RlgMX3hVbyspI3MCSX1nbR1htBYcuq_JaTlFiO1UllFabLb-_M3lsBKJIcLGUeKxYMx7PTOyZD-BVqaMSWZTcGlFwg7rIC2ctDybFUkody9SBTdjl0q3XftUnhTXDbffhSLLdqcdkN6kzujCrOIEqae724ADNnSPAhrNPX3dhlvDK9ukxfx73qwka_crfjkJbC3Py4P_m9hDu9x4le9stgUdwJ9WP4XAxJrBhZ6_BzRNYn7a3JxPr4SLOOdmxyAhjntFyTA1r0XEahu4s66574I7I5h8VI2w4-rvGrjZ0vkMyZRc1-1DjInsKX04Wn-fveY-ugHJQfstnIWZF1VaQM8bYWJXRBRWDqbzRwfmoqRxXKXwsfFIJ47QkYuFkKGTlRar0IezXl3V6BszLYhaVVRXSG21daSqXkALfzERw1QTkwPA89KXHCQHjRz4WTSYG5sjAvGVg7ibwejfmqiu88Vfq40GOea-ETY6xJLlLSs8m8HLXjZyiM5GiTpfXSEPFbjCSdtntNBqtAvq9IkOaN4P8x8_cPqujfyN_DvcIzL7LdDyG_e3mOr2Au-Hn9qLZTGHPfvtO7dq2rcPWzeUUDt4tlqszfDoVc2rVatoqxA27Kf6h |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VgkQvlFfVhQJGghNYjR_Z2IcKodKqq7ZLD0XaW0hsp1qpZJfNFsSf4jcyk8dGILW3Hrgmk5fzjWfGnpkP4E2uvIxiL3iio4xr1EWemSThTgefC6F8HhqyiWQ8NpOJPVuD310tDKVVdnNiPVH7maM18l0MDMj2STX8MP_OiTWKdlc7Co0GFsfh108M2aq90Sf8v2-lPDw43z_iLasAPl_aJR86H2dF3TlNa534IvfGSe90YbVyxnpFbajyyPrMBhkwPgmRz4xwmShsFAqF970DdzV1FqNUQXm2CvAi21DEWq25UFq3RTpNqZ5QMaX7Sk6UUIqbvw1h793-syFb27nDzf9thB7Cg9ajZh8bFXgEa6F8DFsHfQEfnmxnsOoJTE7r7NHAWrqMC0523LPl9FtgpI6hYjU7UMXQnWdNugtaBLb_WTLixqPVRTZf0P4WYZpNSzYqUcmewpdb-cotWC9nZdgGZkU29DKRBcprlZhcFyagBB4ZRs4UAxDdr05d23qdGEAu075pNMEjRXikNTxSM4B3q2vmTeORG6V3Okyk7SRUpT0gBvB6dRpHivaEsjLMrlCGmv3YxJj4ehmFVhH9_ihGmfcdOvvHXP9Wz25-q1dw_-j89CQ9GY2Pn8OGRPexqfLcgfXl4iq8gHvux3JaLV7Wasbg622j9g_75mHl |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VghAXyqtioYCR4ARWHdvZ2IeqQtuuWBWWHkDaW0hsp1oJsstmC-Kv8es6k8dGILW3Hrgmk8Sxv_F47Jn5AF7lyksR-4gnWmRcoy7yzCQJdzr4PIqUz0NDNpFMp2Y2s6db8KfLhaGwym5OrCdqv3C0R76PjgHZPqmG-0UbFnF6ND5c_uDEIEUnrR2dRgORk_D7F7pv1cHkCMf6tZTj48-j97xlGMC2SLvmQ-fjrKirqGmtE1_k3jjpnS6sVs5Yr6gkVS6sz2yQAX2VIHxmIpdFhRWhUPjeG3Az0Wg2KWxQjDbOnrANXazVmkdK6zZhp0nbi1RMob-SEz2U4uZvo9ivdP85nK1t3njnf-6te3C3XWmzd41q3IetUD6A3eM-sQ9vtjNb9RBmH-uo0sBaGo0zTvbds_X8e2CkpqFiNWtQxXCZz5owGLQUbPRJMuLMo11HtlzRuRdhnc1LNilR-R7Bl2v5y13YLhdleAzMRtnQy0QWKK9VYnJdmIASeGUonCkGEHXDnrq2JDsxg3xL-2LSBJUUoZLWUEnNAN5snlk2BUmulN7r8JG2k1OV9uAYwMvNbewpOivKyrA4RxkqAmQTY-LLZRRaS_QHRIwybzuk9p-5vFVPrm7VC7iNYE0_TKYnT-GOxFVlk_y5B9vr1Xl4Brfcz_W8Wj2vNY7B1-sG7QWIb2qH |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning-based+time+series+models+for+effective+CO2+emission+prediction+in+India&rft.jtitle=Environmental+science+and+pollution+research+international&rft.au=Kumari%2C+Surbhi&rft.au=Singh%2C+Sunil+Kumar&rft.date=2023-11-01&rft.pub=Springer+Berlin+Heidelberg&rft.eissn=1614-7499&rft.volume=30&rft.issue=55&rft.spage=116601&rft.epage=116616&rft_id=info:doi/10.1007%2Fs11356-022-21723-8&rft.externalDocID=10_1007_s11356_022_21723_8 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-7499&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-7499&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-7499&client=summon |