Machine learning-based time series models for effective CO2 emission prediction in India

China, India, and the USA are the countries with the highest energy consumption and CO 2 emissions globally. As per the report of datacommons.org , CO 2 emission in India is 1.80 metric tons per capita, which is harmful to living beings, so this paper presents India’s detrimental CO 2 emission effec...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Environmental science and pollution research international Ročník 30; číslo 55; s. 116601 - 116616
Hlavní autori: Kumari, Surbhi, Singh, Sunil Kumar
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Berlin/Heidelberg Springer Berlin Heidelberg 01.11.2023
Springer Nature B.V
Predmet:
ISSN:1614-7499, 0944-1344, 1614-7499
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract China, India, and the USA are the countries with the highest energy consumption and CO 2 emissions globally. As per the report of datacommons.org , CO 2 emission in India is 1.80 metric tons per capita, which is harmful to living beings, so this paper presents India’s detrimental CO 2 emission effect with the prediction of CO 2 emission for the next 10 years based on univariate time-series data from 1980 to 2019. We have used three statistical models; autoregressive-integrated moving average (ARIMA) model, seasonal autoregressive-integrated moving average with exogenous factors (SARIMAX) model, and the Holt-Winters model, two machine learning models, i.e., linear regression and random forest model and a deep learning-based long short-term memory (LSTM) model. This paper brings together a variety of models and allows us to work on data prediction. The performance analysis shows that LSTM, SARIMAX, and Holt-Winters are the three most accurate models among the six models based on nine performance metrics. Results conclude that LSTM is the best model for CO 2 emission prediction with the 3.101% MAPE value, 60.635 RMSE value, 28.898 MedAE value, and along with other performance metrics. A comparative study also concludes the same. Therefore, the deep learning-based LSTM model is suggested as one of the most appropriate models for CO 2 emission prediction.
AbstractList China, India, and the USA are the countries with the highest energy consumption and CO2 emissions globally. As per the report of datacommons.org , CO2 emission in India is 1.80 metric tons per capita, which is harmful to living beings, so this paper presents India's detrimental CO2 emission effect with the prediction of CO2 emission for the next 10 years based on univariate time-series data from 1980 to 2019. We have used three statistical models; autoregressive-integrated moving average (ARIMA) model, seasonal autoregressive-integrated moving average with exogenous factors (SARIMAX) model, and the Holt-Winters model, two machine learning models, i.e., linear regression and random forest model and a deep learning-based long short-term memory (LSTM) model. This paper brings together a variety of models and allows us to work on data prediction. The performance analysis shows that LSTM, SARIMAX, and Holt-Winters are the three most accurate models among the six models based on nine performance metrics. Results conclude that LSTM is the best model for CO2 emission prediction with the 3.101% MAPE value, 60.635 RMSE value, 28.898 MedAE value, and along with other performance metrics. A comparative study also concludes the same. Therefore, the deep learning-based LSTM model is suggested as one of the most appropriate models for CO2 emission prediction.China, India, and the USA are the countries with the highest energy consumption and CO2 emissions globally. As per the report of datacommons.org , CO2 emission in India is 1.80 metric tons per capita, which is harmful to living beings, so this paper presents India's detrimental CO2 emission effect with the prediction of CO2 emission for the next 10 years based on univariate time-series data from 1980 to 2019. We have used three statistical models; autoregressive-integrated moving average (ARIMA) model, seasonal autoregressive-integrated moving average with exogenous factors (SARIMAX) model, and the Holt-Winters model, two machine learning models, i.e., linear regression and random forest model and a deep learning-based long short-term memory (LSTM) model. This paper brings together a variety of models and allows us to work on data prediction. The performance analysis shows that LSTM, SARIMAX, and Holt-Winters are the three most accurate models among the six models based on nine performance metrics. Results conclude that LSTM is the best model for CO2 emission prediction with the 3.101% MAPE value, 60.635 RMSE value, 28.898 MedAE value, and along with other performance metrics. A comparative study also concludes the same. Therefore, the deep learning-based LSTM model is suggested as one of the most appropriate models for CO2 emission prediction.
China, India, and the USA are the countries with the highest energy consumption and CO 2 emissions globally. As per the report of datacommons.org , CO 2 emission in India is 1.80 metric tons per capita, which is harmful to living beings, so this paper presents India’s detrimental CO 2 emission effect with the prediction of CO 2 emission for the next 10 years based on univariate time-series data from 1980 to 2019. We have used three statistical models; autoregressive-integrated moving average (ARIMA) model, seasonal autoregressive-integrated moving average with exogenous factors (SARIMAX) model, and the Holt-Winters model, two machine learning models, i.e., linear regression and random forest model and a deep learning-based long short-term memory (LSTM) model. This paper brings together a variety of models and allows us to work on data prediction. The performance analysis shows that LSTM, SARIMAX, and Holt-Winters are the three most accurate models among the six models based on nine performance metrics. Results conclude that LSTM is the best model for CO 2 emission prediction with the 3.101% MAPE value, 60.635 RMSE value, 28.898 MedAE value, and along with other performance metrics. A comparative study also concludes the same. Therefore, the deep learning-based LSTM model is suggested as one of the most appropriate models for CO 2 emission prediction.
China, India, and the USA are the countries with the highest energy consumption and CO2 emissions globally. As per the report of datacommons.org, CO2 emission in India is 1.80 metric tons per capita, which is harmful to living beings, so this paper presents India’s detrimental CO2 emission effect with the prediction of CO2 emission for the next 10 years based on univariate time-series data from 1980 to 2019. We have used three statistical models; autoregressive-integrated moving average (ARIMA) model, seasonal autoregressive-integrated moving average with exogenous factors (SARIMAX) model, and the Holt-Winters model, two machine learning models, i.e., linear regression and random forest model and a deep learning-based long short-term memory (LSTM) model. This paper brings together a variety of models and allows us to work on data prediction. The performance analysis shows that LSTM, SARIMAX, and Holt-Winters are the three most accurate models among the six models based on nine performance metrics. Results conclude that LSTM is the best model for CO2 emission prediction with the 3.101% MAPE value, 60.635 RMSE value, 28.898 MedAE value, and along with other performance metrics. A comparative study also concludes the same. Therefore, the deep learning-based LSTM model is suggested as one of the most appropriate models for CO2 emission prediction.
China, India, and the USA are the countries with the highest energy consumption and CO₂ emissions globally. As per the report of datacommons.org , CO₂ emission in India is 1.80 metric tons per capita, which is harmful to living beings, so this paper presents India’s detrimental CO₂ emission effect with the prediction of CO₂ emission for the next 10 years based on univariate time-series data from 1980 to 2019. We have used three statistical models; autoregressive-integrated moving average (ARIMA) model, seasonal autoregressive-integrated moving average with exogenous factors (SARIMAX) model, and the Holt-Winters model, two machine learning models, i.e., linear regression and random forest model and a deep learning-based long short-term memory (LSTM) model. This paper brings together a variety of models and allows us to work on data prediction. The performance analysis shows that LSTM, SARIMAX, and Holt-Winters are the three most accurate models among the six models based on nine performance metrics. Results conclude that LSTM is the best model for CO₂ emission prediction with the 3.101% MAPE value, 60.635 RMSE value, 28.898 MedAE value, and along with other performance metrics. A comparative study also concludes the same. Therefore, the deep learning-based LSTM model is suggested as one of the most appropriate models for CO₂ emission prediction.
Author Singh, Sunil Kumar
Kumari, Surbhi
Author_xml – sequence: 1
  givenname: Surbhi
  surname: Kumari
  fullname: Kumari, Surbhi
  organization: Dept. of Computer Science and Information Technology, Mahatma Gandhi Central University
– sequence: 2
  givenname: Sunil Kumar
  orcidid: 0000-0001-8954-6648
  surname: Singh
  fullname: Singh, Sunil Kumar
  email: sksingh@mgcub.ac.in, sunilsingh.jnu@gmail.com
  organization: Dept. of Computer Science and Information Technology, Mahatma Gandhi Central University
BookMark eNqFkU1LAzEQhoMoWKt_wFPAi5fVfO1ucpTiF1S8KHgLaTKpKdtsTbaC_97UCoqHesoQnieZmfcI7cc-AkKnlFxQQtrLTCmvm4owVjHaMl7JPTSiDRVVK5Ta_1UfoqOcF4Qwolg7Qi8Pxr6GCLgDk2KI82pmMjg8hCXgDClAxsveQZex7xMG78EO4R3w5JFhWIacQx_xKoEL5b6UIeL76II5RgfedBlOvs8xer65fprcVdPH2_vJ1bSygqmhaqyrjaekaVshROv8zEnLnBVeCW6lcpw0nMyIckYBA8UEEGcktYZ6RcDzMTrfvrtK_dsa8qBLUxa6zkTo11lzWpfN1KSu_0VZIwVRrZQb9OwPuujXKZZBNJNK0LpmvCkU21I29Tkn8HqVwtKkD02J3uSit7nokov-ykXLIsk_kg2D2exuSCZ0u1W-VXP5J84h_XS1w_oEL2ijKQ
CitedBy_id crossref_primary_10_1134_S1064562423701223
crossref_primary_10_1007_s41976_024_00143_x
crossref_primary_10_1016_j_seta_2025_104343
crossref_primary_10_1007_s10661_025_14121_3
crossref_primary_10_1016_j_ecmx_2025_101030
crossref_primary_10_1080_13504509_2025_2490667
crossref_primary_10_3389_fclim_2024_1457441
crossref_primary_10_3390_systems12120528
crossref_primary_10_1007_s11356_023_26824_6
crossref_primary_10_1080_23311916_2024_2317540
crossref_primary_10_1016_j_jastp_2024_106393
crossref_primary_10_3390_ijerph191912709
crossref_primary_10_3390_su15097648
crossref_primary_10_1186_s13021_025_00314_3
crossref_primary_10_1016_j_procs_2024_04_257
crossref_primary_10_21833_ijaas_2025_04_005
crossref_primary_10_3390_su17114940
crossref_primary_10_1007_s13132_025_02698_6
crossref_primary_10_1016_j_applthermaleng_2025_127263
crossref_primary_10_3390_su17072843
crossref_primary_10_3390_math13091481
crossref_primary_10_1016_j_hybadv_2024_100171
crossref_primary_10_1080_17509653_2024_2426492
crossref_primary_10_1080_15567036_2024_2305689
crossref_primary_10_1007_s10668_025_06305_1
crossref_primary_10_1007_s11356_024_33939_x
crossref_primary_10_1007_s11869_023_01329_w
crossref_primary_10_2166_wcc_2024_252
crossref_primary_10_3390_su16104219
crossref_primary_10_1088_2515_7620_ad9086
crossref_primary_10_1016_j_procs_2025_04_383
crossref_primary_10_1007_s13762_025_06628_6
crossref_primary_10_1007_s11356_024_35027_6
crossref_primary_10_1016_j_cities_2024_104881
crossref_primary_10_1016_j_ins_2024_120372
crossref_primary_10_1016_j_trd_2024_104276
crossref_primary_10_1080_17583004_2025_2496482
crossref_primary_10_1007_s11356_023_30428_5
crossref_primary_10_3389_fenvs_2025_1557388
crossref_primary_10_1007_s10661_024_13085_0
crossref_primary_10_1155_int_3334263
crossref_primary_10_1007_s11356_023_28022_w
crossref_primary_10_1007_s40032_025_01226_4
crossref_primary_10_3390_app13063832
crossref_primary_10_1007_s41748_025_00778_w
crossref_primary_10_3390_en17205119
crossref_primary_10_1007_s00477_023_02629_4
crossref_primary_10_1016_j_envsoft_2025_106533
crossref_primary_10_3390_math12182956
crossref_primary_10_3390_geosciences13060183
crossref_primary_10_3390_bdcc9030071
crossref_primary_10_1007_s11356_024_35764_8
crossref_primary_10_3390_math13111895
crossref_primary_10_1016_j_scs_2024_105326
crossref_primary_10_1016_j_trpro_2024_12_017
crossref_primary_10_3390_app14209373
crossref_primary_10_3846_jeelm_2024_22361
crossref_primary_10_1080_19942060_2024_2391988
crossref_primary_10_21605_cukurovaumfd_1648164
crossref_primary_10_1093_ijlct_ctae284
crossref_primary_10_1038_s41598_025_04236_5
crossref_primary_10_1186_s40068_025_00403_9
crossref_primary_10_3390_electronics12010107
crossref_primary_10_1088_1742_6596_3036_1_012006
crossref_primary_10_3390_math13121955
crossref_primary_10_3389_fenvs_2025_1623630
crossref_primary_10_3390_pr12122699
crossref_primary_10_1007_s11356_024_33460_1
crossref_primary_10_1088_1742_6596_2942_1_012004
crossref_primary_10_3390_su17083436
crossref_primary_10_21511_ppm_21_2__2023_37
crossref_primary_10_3390_atmos15030323
crossref_primary_10_1109_ACCESS_2023_3324725
crossref_primary_10_1007_s12145_024_01627_6
Cites_doi 10.7827/TurkishStudies.49699
10.1080/07474938.2010.481556
10.1186/s12879-020-4930-2
10.1016/j.jclepro.2019.03.334
10.1109/HEALTHCOM49281.2021.9399048
10.1016/j.jclepro.2020.123293
10.1109/Confluence51648.2021.9377137
10.1016/j.jclepro.2020.125324
10.1016/j.renene.2020.11.050
10.1111/joes.12429
10.1177/09720634211050425
10.1016/j.energy.2020.119076
10.1016/j.spc.2021.10.001
10.1007/978-981-33-6912-2_5
10.1016/j.ins.2009.12.010
10.1016/j.jup.2021.101256
10.1016/j.rser.2020.110114
10.1016/j.apenergy.2020.116328
10.1016/j.procs.2020.03.240
10.1016/S0140-6736(16)31019-4
10.1109/IC3.2019.8844902
10.1007/978-3-030-63823-8_84
10.1007/s11356-020-08675-7
10.1016/j.ijforecast.2020.06.008
10.11113/jt.v75.2603
10.1016/S0306-2619(03)00096-5
10.1080/17583004.2020.1840869
10.1016/j.jclepro.2020.122269
10.1002/tea.3660180102
10.1007/s11356-020-10689-0
10.1016/j.energy.2016.12.022
10.1002/qre.2171
10.1016/j.autcon.2020.103280
10.1016/j.geoderma.2020.114222
10.1080/01605682.2019.1700183
10.1016/j.jclepro.2020.120723
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022
Copyright Springer Nature B.V. Nov 2023
2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022
– notice: Copyright Springer Nature B.V. Nov 2023
– notice: 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
DBID AAYXX
CITATION
3V.
7QL
7SN
7T7
7TV
7U7
7WY
7WZ
7X7
7XB
87Z
88E
88I
8AO
8C1
8FD
8FI
8FJ
8FK
8FL
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BEZIV
BHPHI
C1K
CCPQU
DWQXO
FR3
FRNLG
FYUFA
F~G
GHDGH
GNUQQ
HCIFZ
K60
K6~
K9.
L.-
M0C
M0S
M1P
M2P
M7N
P64
PATMY
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQBIZ
PQBZA
PQEST
PQQKQ
PQUKI
PRINS
PYCSY
Q9U
7X8
7S9
L.6
DOI 10.1007/s11356-022-21723-8
DatabaseName CrossRef
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Ecology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Pollution Abstracts
Toxicology Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Business Premium Collection (Alumni)
Proquest Health Research Premium Collection
ABI/INFORM Global (Corporate)
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
ProQuest Health & Medical Complete (Alumni)
ABI/INFORM Professional Advanced
ABI/INFORM Global
Health & Medical Collection (Alumni Edition)
Medical Database
Science Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Environmental Science Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
ProQuest Central Basic
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
ProQuest Central Student
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
Environmental Sciences and Pollution Management
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Business Premium Collection
ABI/INFORM Global
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Business Collection
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Pollution Abstracts
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
ABI/INFORM Complete (Alumni Edition)
ProQuest Public Health
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
Toxicology Abstracts
ProQuest Science Journals
ProQuest Medical Library
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic

ProQuest Business Collection (Alumni Edition)
AGRICOLA
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Environmental Sciences
EISSN 1614-7499
EndPage 116616
ExternalDocumentID 10_1007_s11356_022_21723_8
GeographicLocations India
China
GeographicLocations_xml – name: India
– name: China
GroupedDBID ---
-Y2
.VR
06D
0R~
0VY
199
1N0
2.D
203
29G
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
4P2
53G
5GY
5VS
67M
67Z
6NX
78A
7WY
7X7
7XC
88E
88I
8AO
8C1
8FE
8FH
8FI
8FJ
8FL
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACGOD
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACREN
ACSNA
ACSVP
ACZOJ
ADBBV
ADHHG
ADHIR
ADHKG
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFDZB
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHPBZ
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGNMA
BHPHI
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBD
EBLON
EBS
EDH
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
FYUFA
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6~
KDC
KOV
L8X
LAS
LLZTM
M0C
M1P
M2P
M4Y
MA-
ML.
N2Q
N9A
NB0
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
PATMY
PF0
PHGZT
PQBIZ
PQBZA
PQQKQ
PROAC
PSQYO
PT4
PT5
PYCSY
Q2X
QOK
QOS
R89
R9I
RHV
RNI
RNS
ROL
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCK
SCLPG
SDH
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK6
WK8
Y6R
YLTOR
Z45
ZMTXR
~02
~KM
AAYXX
ABFSG
ABRTQ
ACSTC
AEZWR
AFFHD
AFHIU
AFOHR
AHWEU
AIXLP
ATHPR
BANNL
CITATION
PHGZM
PJZUB
PPXIY
3V.
7QL
7SN
7T7
7TV
7U7
7XB
8FD
8FK
C1K
FR3
K9.
L.-
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
7S9
L.6
ID FETCH-LOGICAL-c429t-6cd5af106774447dfbd8c2dc4f943c89d30630b09da9e2e924e0da81ca1f90ef3
IEDL.DBID RSV
ISICitedReferencesCount 85
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000819908500010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1614-7499
0944-1344
IngestDate Sun Aug 24 03:52:56 EDT 2025
Fri Sep 05 12:01:21 EDT 2025
Tue Dec 02 16:27:46 EST 2025
Sat Nov 29 08:04:21 EST 2025
Tue Nov 18 21:07:24 EST 2025
Thu Apr 10 08:02:36 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 55
Keywords Holt-Winters
LSTM
Linear regression
Time series forecasting
Random forest regressor
Air pollution
emissions
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c429t-6cd5af106774447dfbd8c2dc4f943c89d30630b09da9e2e924e0da81ca1f90ef3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8954-6648
OpenAccessLink https://link.springer.com/content/pdf/10.1007/s11356-022-21723-8.pdf
PQID 2894155236
PQPubID 54208
PageCount 16
ParticipantIDs proquest_miscellaneous_3153565055
proquest_miscellaneous_2684097885
proquest_journals_2894155236
crossref_primary_10_1007_s11356_022_21723_8
crossref_citationtrail_10_1007_s11356_022_21723_8
springer_journals_10_1007_s11356_022_21723_8
PublicationCentury 2000
PublicationDate 20231100
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 20231100
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Environmental science and pollution research international
PublicationTitleAbbrev Environ Sci Pollut Res
PublicationYear 2023
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References T Nyoni (21723_CR36) 2019; 4
C Magazzino (21723_CR30) 2021; 72
Ü Ağbulut (21723_CR3) 2020; 268
E Solgi (21723_CR41) 2016; 7
M Mele (21723_CR33) 2021; 28
L Yin (21723_CR45) 2021; 283
MS Bakay (21723_CR10) 2021; 285
R Kumar (21723_CR23) 2020; 167
21723_CR16
21723_CR15
21723_CR37
P Ahmadi (21723_CR6) 2019; 225
KP Ajewole (21723_CR8) 2020; 16
S García (21723_CR18) 2010; 180
Z Zuo (21723_CR46) 2020; 11
H Hewamalage (21723_CR21) 2021; 37
21723_CR31
21723_CR12
AN MK (21723_CR34) 2020; 27
21723_CR11
Ü Ağbulut (21723_CR2) 2022; 29
Ü Ağbulut (21723_CR5) 2021; 215
A Lepore (21723_CR26) 2017; 33
X Fang (21723_CR17) 2020; 20
P Gopu (21723_CR20) 2021
21723_CR28
Q Wang (21723_CR43) 2020; 258
S Kumar (21723_CR24) 2021; 23
L Abdullah (21723_CR1) 2015; 75
21723_CR25
G Wellington (21723_CR44) 2019; 4
21723_CR29
NK Ahmed (21723_CR7) 2010; 29
R Good (21723_CR19) 1981; 18
M Mele (21723_CR32) 2020; 277
21723_CR42
C Chatfield (21723_CR13) 1978; 27
C-H Huang (21723_CR22) 2020; 118
21723_CR40
G Sbrana (21723_CR39) 2021; 72
J Crespo Cuaresma (21723_CR14) 2004; 77
Z Liu (21723_CR27) 2020; 366
R Pino-Mejías (21723_CR38) 2017; 118
Ü Ağbulut (21723_CR4) 2021; 135
21723_CR9
C Nontapa (21723_CR35) 2020
References_xml – ident: 21723_CR37
  doi: 10.7827/TurkishStudies.49699
– volume: 29
  start-page: 594
  issue: 5
  year: 2010
  ident: 21723_CR7
  publication-title: Econ Rev
  doi: 10.1080/07474938.2010.481556
– ident: 21723_CR11
– volume: 20
  start-page: 1
  issue: 1
  year: 2020
  ident: 21723_CR17
  publication-title: BMC Infectious Diseases
  doi: 10.1186/s12879-020-4930-2
– volume: 225
  start-page: 1209
  year: 2019
  ident: 21723_CR6
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2019.03.334
– ident: 21723_CR15
  doi: 10.1109/HEALTHCOM49281.2021.9399048
– volume: 277
  start-page: 123293
  year: 2020
  ident: 21723_CR32
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2020.123293
– ident: 21723_CR40
  doi: 10.1109/Confluence51648.2021.9377137
– volume: 285
  start-page: 125324
  year: 2021
  ident: 21723_CR10
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2020.125324
– ident: 21723_CR29
  doi: 10.1016/j.renene.2020.11.050
– ident: 21723_CR31
  doi: 10.1111/joes.12429
– volume: 23
  start-page: 730
  issue: 4
  year: 2021
  ident: 21723_CR24
  publication-title: J Health Manag
  doi: 10.1177/09720634211050425
– volume: 215
  start-page: 119076
  year: 2021
  ident: 21723_CR5
  publication-title: Energy
  doi: 10.1016/j.energy.2020.119076
– volume: 29
  start-page: 141
  year: 2022
  ident: 21723_CR2
  publication-title: Sustain Prod Consump
  doi: 10.1016/j.spc.2021.10.001
– start-page: 47
  volume-title: In Soft Computing and Signal Processing
  year: 2021
  ident: 21723_CR20
  doi: 10.1007/978-981-33-6912-2_5
– volume: 180
  start-page: 2044
  issue: 10
  year: 2010
  ident: 21723_CR18
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2009.12.010
– volume: 4
  start-page: 1
  issue: 2
  year: 2019
  ident: 21723_CR36
  publication-title: DRJ-J Econ Finance
– volume: 72
  start-page: 101256
  year: 2021
  ident: 21723_CR30
  publication-title: Util Policy
  doi: 10.1016/j.jup.2021.101256
– volume: 135
  start-page: 110114
  year: 2021
  ident: 21723_CR4
  publication-title: Renew Sust Energ Rev
  doi: 10.1016/j.rser.2020.110114
– volume: 283
  start-page: 116328
  year: 2021
  ident: 21723_CR45
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2020.116328
– volume: 167
  start-page: 373
  issue: 2019
  year: 2020
  ident: 21723_CR23
  publication-title: Procedia Comp Sci
  doi: 10.1016/j.procs.2020.03.240
– ident: 21723_CR28
– ident: 21723_CR25
  doi: 10.1016/S0140-6736(16)31019-4
– ident: 21723_CR9
  doi: 10.1109/IC3.2019.8844902
– start-page: 743
  volume-title: International Conference on Neural Information Processing
  year: 2020
  ident: 21723_CR35
  doi: 10.1007/978-3-030-63823-8_84
– volume: 7
  start-page: 813
  issue: 4
  year: 2016
  ident: 21723_CR41
  publication-title: J North Khorasan Univ Med Sci
– volume: 27
  start-page: 23631
  issue: 19
  year: 2020
  ident: 21723_CR34
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-020-08675-7
– volume: 37
  start-page: 388
  issue: 1
  year: 2021
  ident: 21723_CR21
  publication-title: Int J Forecast
  doi: 10.1016/j.ijforecast.2020.06.008
– volume: 75
  start-page: 67
  issue: 1
  year: 2015
  ident: 21723_CR1
  publication-title: Jurnal Teknologi
  doi: 10.11113/jt.v75.2603
– volume: 77
  start-page: 87
  issue: 1
  year: 2004
  ident: 21723_CR14
  publication-title: Appl Energy
  doi: 10.1016/S0306-2619(03)00096-5
– volume: 11
  start-page: 577
  issue: 6
  year: 2020
  ident: 21723_CR46
  publication-title: Carbon Manag
  doi: 10.1080/17583004.2020.1840869
– volume: 268
  start-page: 122269
  year: 2020
  ident: 21723_CR3
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2020.122269
– volume: 18
  start-page: 1
  issue: 1
  year: 1981
  ident: 21723_CR19
  publication-title: J Res Sci Teach
  doi: 10.1002/tea.3660180102
– volume: 4
  start-page: 1
  issue: 2
  year: 2019
  ident: 21723_CR44
  publication-title: Forecast Forecast Eval Dyn Res J
– volume: 16
  start-page: 11
  year: 2020
  ident: 21723_CR8
  publication-title: J Undergrad Math
– ident: 21723_CR12
– volume: 28
  start-page: 2669
  issue: 3
  year: 2021
  ident: 21723_CR33
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-020-10689-0
– ident: 21723_CR16
– volume: 118
  start-page: 24
  year: 2017
  ident: 21723_CR38
  publication-title: Energy
  doi: 10.1016/j.energy.2016.12.022
– volume: 33
  start-page: 1281
  issue: 6
  year: 2017
  ident: 21723_CR26
  publication-title: Qual Reliab Eng Int
  doi: 10.1002/qre.2171
– volume: 118
  start-page: 103280
  year: 2020
  ident: 21723_CR22
  publication-title: Autom Constr
  doi: 10.1016/j.autcon.2020.103280
– volume: 366
  start-page: 114222
  year: 2020
  ident: 21723_CR27
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2020.114222
– volume: 27
  start-page: 264
  issue: 3
  year: 1978
  ident: 21723_CR13
  publication-title: J R Stat Soc: Ser C: Appl Stat
– volume: 72
  start-page: 701
  issue: 3
  year: 2021
  ident: 21723_CR39
  publication-title: J Oper Res Soc
  doi: 10.1080/01605682.2019.1700183
– ident: 21723_CR42
– volume: 258
  start-page: 120723
  year: 2020
  ident: 21723_CR43
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2020.120723
SSID ssj0020927
Score 2.6458108
Snippet China, India, and the USA are the countries with the highest energy consumption and CO 2 emissions globally. As per the report of datacommons.org , CO 2...
China, India, and the USA are the countries with the highest energy consumption and CO2 emissions globally. As per the report of datacommons.org, CO2 emission...
China, India, and the USA are the countries with the highest energy consumption and CO2 emissions globally. As per the report of datacommons.org , CO2 emission...
China, India, and the USA are the countries with the highest energy consumption and CO₂ emissions globally. As per the report of datacommons.org , CO₂ emission...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 116601
SubjectTerms algorithms
Aquatic Pollution
Atmospheric Protection/Air Quality Control/Air Pollution
Autoregressive models
Business metrics
Carbon dioxide
Carbon dioxide emissions
China
Comparative studies
comparative study
Deep learning
Earth and Environmental Science
Ecotoxicology
Emission
energy
Energy consumption
Environment
Environmental Chemistry
Environmental Health
GIS Applied to Soil-Agricultural Health for Environmental Sustainability
India
Learning algorithms
Long short-term memory
Machine learning
Mathematical models
neural networks
Performance measurement
prediction
Predictions
Regression analysis
Regression models
Statistical analysis
Statistical models
Time series
time series analysis
Waste Water Technology
Water Management
Water Pollution Control
SummonAdditionalLinks – databaseName: Science Database
  dbid: M2P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZ4DSy8K8pLRmIDi_iRxp4QQiAYeAwgdYsS20GVUFqawu_nLnEbgdQurPFZsXxn353v8RFylksnothxlqgoYwrOIst0kjCrvMs5ly73DdhE8vSk-33zEh7cqpBWOb0T64vaDS2-kV-CY4C6T8je1eiTIWoURlcDhMYyWQXLhmNK16N4mTlckWkgW41SjEulQtFMUzrHZYzpt4IhRJNk-rdiaq3NPwHSWu_cbf53xVtkI1ic9LoRkW2y5Msd0rltC9xgMJzwapf0H-vsSk8DnMQ7Qz3nKGLQUxRXX9EaPaeiYO7SJh0Ebkx68ywoYsfh6xsdjTH-gzyng5I-lCCEe-Tt7vb15p4F9AXgkzAT1rMuzoq6w5xSKnFF7rQVzqrCKGm1cRLbdeWRcZnxwoMf5yOXaW4zXpjIF7JDVsph6fcJNTzrOZGIAuiVTHSuCu2BAr70IquLLuHTrU9taE2OCBkfadtUGdmVArvSml2p7pLz2ZxR05hjIfXRlEdpOKRV2jKoS05nw7BTGDPJSj_8AhpshgOeto7n00jQGmAXRzHQXEylpf3N_FUdLF7VIVlHcPum8vGIrEzGX_6YrNnvyaAan9Si_gMJFAOG
  priority: 102
  providerName: ProQuest
Title Machine learning-based time series models for effective CO2 emission prediction in India
URI https://link.springer.com/article/10.1007/s11356-022-21723-8
https://www.proquest.com/docview/2894155236
https://www.proquest.com/docview/2684097885
https://www.proquest.com/docview/3153565055
Volume 30
WOSCitedRecordID wos000819908500010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ABI/INFORM Collection
  customDbUrl:
  eissn: 1614-7499
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0020927
  issn: 1614-7499
  databaseCode: 7WY
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/abicomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ABI/INFORM Global
  customDbUrl:
  eissn: 1614-7499
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0020927
  issn: 1614-7499
  databaseCode: M0C
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/abiglobal
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Environmental Science Database
  customDbUrl:
  eissn: 1614-7499
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0020927
  issn: 1614-7499
  databaseCode: PATMY
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1614-7499
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0020927
  issn: 1614-7499
  databaseCode: 7X7
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1614-7499
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0020927
  issn: 1614-7499
  databaseCode: BENPR
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1614-7499
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0020927
  issn: 1614-7499
  databaseCode: 8C1
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1614-7499
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0020927
  issn: 1614-7499
  databaseCode: M2P
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1614-7499
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0020927
  issn: 1614-7499
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7RlgMX3hVbyspI3MCSX1nbR1htBYcuq_JaTlFiO1UllFabLb-_M3lsBKJIcLGUeKxYMx7PTOyZD-BVqaMSWZTcGlFwg7rIC2ctDybFUkody9SBTdjl0q3XftUnhTXDbffhSLLdqcdkN6kzujCrOIEqae724ADNnSPAhrNPX3dhlvDK9ukxfx73qwka_crfjkJbC3Py4P_m9hDu9x4le9stgUdwJ9WP4XAxJrBhZ6_BzRNYn7a3JxPr4SLOOdmxyAhjntFyTA1r0XEahu4s66574I7I5h8VI2w4-rvGrjZ0vkMyZRc1-1DjInsKX04Wn-fveY-ugHJQfstnIWZF1VaQM8bYWJXRBRWDqbzRwfmoqRxXKXwsfFIJ47QkYuFkKGTlRar0IezXl3V6BszLYhaVVRXSG21daSqXkALfzERw1QTkwPA89KXHCQHjRz4WTSYG5sjAvGVg7ibwejfmqiu88Vfq40GOea-ETY6xJLlLSs8m8HLXjZyiM5GiTpfXSEPFbjCSdtntNBqtAvq9IkOaN4P8x8_cPqujfyN_DvcIzL7LdDyG_e3mOr2Au-Hn9qLZTGHPfvtO7dq2rcPWzeUUDt4tlqszfDoVc2rVatoqxA27Kf6h
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VgkQvlFfVhQJGghNYjR_Z2IcKodKqq7ZLD0XaW0hsp1qpZJfNFsSf4jcyk8dGILW3Hrgmk5fzjWfGnpkP4E2uvIxiL3iio4xr1EWemSThTgefC6F8HhqyiWQ8NpOJPVuD310tDKVVdnNiPVH7maM18l0MDMj2STX8MP_OiTWKdlc7Co0GFsfh108M2aq90Sf8v2-lPDw43z_iLasAPl_aJR86H2dF3TlNa534IvfGSe90YbVyxnpFbajyyPrMBhkwPgmRz4xwmShsFAqF970DdzV1FqNUQXm2CvAi21DEWq25UFq3RTpNqZ5QMaX7Sk6UUIqbvw1h793-syFb27nDzf9thB7Cg9ajZh8bFXgEa6F8DFsHfQEfnmxnsOoJTE7r7NHAWrqMC0523LPl9FtgpI6hYjU7UMXQnWdNugtaBLb_WTLixqPVRTZf0P4WYZpNSzYqUcmewpdb-cotWC9nZdgGZkU29DKRBcprlZhcFyagBB4ZRs4UAxDdr05d23qdGEAu075pNMEjRXikNTxSM4B3q2vmTeORG6V3Okyk7SRUpT0gBvB6dRpHivaEsjLMrlCGmv3YxJj4ehmFVhH9_ihGmfcdOvvHXP9Wz25-q1dw_-j89CQ9GY2Pn8OGRPexqfLcgfXl4iq8gHvux3JaLV7Wasbg622j9g_75mHl
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VghAXyqtioYCR4ARWHdvZ2IeqQtuuWBWWHkDaW0hsp1oJsstmC-Kv8es6k8dGILW3Hrgmk8Sxv_F47Jn5AF7lyksR-4gnWmRcoy7yzCQJdzr4PIqUz0NDNpFMp2Y2s6db8KfLhaGwym5OrCdqv3C0R76PjgHZPqmG-0UbFnF6ND5c_uDEIEUnrR2dRgORk_D7F7pv1cHkCMf6tZTj48-j97xlGMC2SLvmQ-fjrKirqGmtE1_k3jjpnS6sVs5Yr6gkVS6sz2yQAX2VIHxmIpdFhRWhUPjeG3Az0Wg2KWxQjDbOnrANXazVmkdK6zZhp0nbi1RMob-SEz2U4uZvo9ivdP85nK1t3njnf-6te3C3XWmzd41q3IetUD6A3eM-sQ9vtjNb9RBmH-uo0sBaGo0zTvbds_X8e2CkpqFiNWtQxXCZz5owGLQUbPRJMuLMo11HtlzRuRdhnc1LNilR-R7Bl2v5y13YLhdleAzMRtnQy0QWKK9VYnJdmIASeGUonCkGEHXDnrq2JDsxg3xL-2LSBJUUoZLWUEnNAN5snlk2BUmulN7r8JG2k1OV9uAYwMvNbewpOivKyrA4RxkqAmQTY-LLZRRaS_QHRIwybzuk9p-5vFVPrm7VC7iNYE0_TKYnT-GOxFVlk_y5B9vr1Xl4Brfcz_W8Wj2vNY7B1-sG7QWIb2qH
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning-based+time+series+models+for+effective+CO2+emission+prediction+in+India&rft.jtitle=Environmental+science+and+pollution+research+international&rft.au=Kumari%2C+Surbhi&rft.au=Singh%2C+Sunil+Kumar&rft.date=2023-11-01&rft.pub=Springer+Berlin+Heidelberg&rft.eissn=1614-7499&rft.volume=30&rft.issue=55&rft.spage=116601&rft.epage=116616&rft_id=info:doi/10.1007%2Fs11356-022-21723-8&rft.externalDocID=10_1007_s11356_022_21723_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-7499&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-7499&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-7499&client=summon