Machine learning-based time series models for effective CO2 emission prediction in India

China, India, and the USA are the countries with the highest energy consumption and CO 2 emissions globally. As per the report of datacommons.org , CO 2 emission in India is 1.80 metric tons per capita, which is harmful to living beings, so this paper presents India’s detrimental CO 2 emission effec...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Environmental science and pollution research international Ročník 30; číslo 55; s. 116601 - 116616
Hlavní autori: Kumari, Surbhi, Singh, Sunil Kumar
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Berlin/Heidelberg Springer Berlin Heidelberg 01.11.2023
Springer Nature B.V
Predmet:
ISSN:1614-7499, 0944-1344, 1614-7499
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:China, India, and the USA are the countries with the highest energy consumption and CO 2 emissions globally. As per the report of datacommons.org , CO 2 emission in India is 1.80 metric tons per capita, which is harmful to living beings, so this paper presents India’s detrimental CO 2 emission effect with the prediction of CO 2 emission for the next 10 years based on univariate time-series data from 1980 to 2019. We have used three statistical models; autoregressive-integrated moving average (ARIMA) model, seasonal autoregressive-integrated moving average with exogenous factors (SARIMAX) model, and the Holt-Winters model, two machine learning models, i.e., linear regression and random forest model and a deep learning-based long short-term memory (LSTM) model. This paper brings together a variety of models and allows us to work on data prediction. The performance analysis shows that LSTM, SARIMAX, and Holt-Winters are the three most accurate models among the six models based on nine performance metrics. Results conclude that LSTM is the best model for CO 2 emission prediction with the 3.101% MAPE value, 60.635 RMSE value, 28.898 MedAE value, and along with other performance metrics. A comparative study also concludes the same. Therefore, the deep learning-based LSTM model is suggested as one of the most appropriate models for CO 2 emission prediction.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1614-7499
0944-1344
1614-7499
DOI:10.1007/s11356-022-21723-8