Exploring actor–object relationships for query-focused multi-document summarization

Most research on multi-document summarization explores methods that generate summaries based on queries regardless of the users’ preferences. We note that, different users can generate somewhat different summaries on the basis of the same source data and query. This paper presents our study on how t...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Soft computing (Berlin, Germany) Ročník 19; číslo 11; s. 3109 - 3121
Hlavní autoři: Valizadeh, Mohammadreza, Brazdil, Pavel
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.11.2015
Springer Nature B.V
Témata:
ISSN:1432-7643, 1433-7479
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Most research on multi-document summarization explores methods that generate summaries based on queries regardless of the users’ preferences. We note that, different users can generate somewhat different summaries on the basis of the same source data and query. This paper presents our study on how to exploit the information regards how users summarized their texts. Models of different users can be used either separately, or in an ensemble-like fashion. Machine learning methods are explored in the construction of the individual models. However, we explore yet another hypothesis. We believe that the sentences selected into the summary should be coherent and supplement each other in their meaning. One method to model this relationship between sentences is by detecting actor–object relationship (AOR). The sentences that satisfy this relationship have their importance value enhanced. This paper combines ensemble summarizing system and AOR to generate summaries. We have evaluated this method on DUC 2006 and DUC 2007 using ROUGE measure. Experimental results show the supervised method that exploits the ensemble summarizing system combined with AOR outperforms previous models when considering performance in query-based multi-document summarization tasks.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1432-7643
1433-7479
DOI:10.1007/s00500-014-1471-x