Approximation of functions by a class of Durrmeyer–Stancu type operators which includes Euler’s beta function
In this work, we construct the genuine Durrmeyer–Stancu type operators depending on parameter α in [ 0 , 1 ] as well as ρ > 0 and study some useful basic properties of the operators. We also obtain Grüss–Voronovskaja and quantitative Voronovskaja types approximation theorems for the aforesaid ope...
Uloženo v:
| Vydáno v: | Advances in difference equations Ročník 2021; číslo 1; s. 1 - 14 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Cham
Springer International Publishing
07.01.2021
Springer Nature B.V SpringerOpen |
| Témata: | |
| ISSN: | 1687-1847, 1687-1839, 1687-1847 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this work, we construct the genuine Durrmeyer–Stancu type operators depending on parameter
α
in
[
0
,
1
]
as well as
ρ
>
0
and study some useful basic properties of the operators. We also obtain Grüss–Voronovskaja and quantitative Voronovskaja types approximation theorems for the aforesaid operators. Further, we present numerical and geometrical approaches to illustrate the significance of our new operators. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1687-1847 1687-1839 1687-1847 |
| DOI: | 10.1186/s13662-020-03164-0 |