Optimal decision trees for categorical data via integer programming

Decision trees have been a very popular class of predictive models for decades due to their interpretability and good performance on categorical features. However, they are not always robust and tend to overfit the data. Additionally, if allowed to grow large, they lose interpretability. In this pap...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of global optimization Jg. 81; H. 1; S. 233 - 260
Hauptverfasser: Günlük, Oktay, Kalagnanam, Jayant, Li, Minhan, Menickelly, Matt, Scheinberg, Katya
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.09.2021
Springer
Springer Nature B.V
Schlagworte:
ISSN:0925-5001, 1573-2916
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!