Milne-type inequalities for third differentiable and h-convex functions
This paper develops a novel Milne inequality for third-differentiable and h -convex functions using Riemann integrals. Furthermore, new Milne inequalities are proposed utilizing a summation parameter p ≥ 1 for s -convexity, convexity, and P -functions class. We examine cases when the third derivativ...
Uloženo v:
| Vydáno v: | Boundary value problems Ročník 2025; číslo 1; s. 4 - 15 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Cham
Springer International Publishing
07.01.2025
Hindawi Limited SpringerOpen |
| Témata: | |
| ISSN: | 1687-2770, 1687-2762, 1687-2770 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | This paper develops a novel Milne inequality for third-differentiable and
h
-convex functions using Riemann integrals. Furthermore, new Milne inequalities are proposed utilizing a summation parameter
p
≥
1
for
s
-convexity, convexity, and
P
-functions class. We examine cases when the third derivative functions are also bounded and Lipschitzian. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1687-2770 1687-2762 1687-2770 |
| DOI: | 10.1186/s13661-024-01984-7 |