Surface coloration of Zr-based metallic glass by nanosecond pulsed laser irradiation in ambient atmosphere

•Surface coloration of Zr-based metallic glass was achieved by nanosecond laser irradiation.•Four kinds of surface color were successfully produced.•The irradiated surfaces were covered by the laser scanning tracks and micro/nanoscale particles.•The coloring mechanism was discussed according to the...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Materials Letters Ročník 304; s. 130721
Hlavní autori: Zhang, Hongyang, Qian, Yongfeng, Zhang, Lin, Zhang, Di, Liu, Hanlin, Huang, Hu
Médium: Journal Article
Jazyk:English
Japanese
Vydavateľské údaje: Amsterdam Elsevier B.V 01.12.2021
Elsevier BV
Predmet:
ISSN:0167-577X, 1873-4979
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract •Surface coloration of Zr-based metallic glass was achieved by nanosecond laser irradiation.•Four kinds of surface color were successfully produced.•The irradiated surfaces were covered by the laser scanning tracks and micro/nanoscale particles.•The coloring mechanism was discussed according to the surface characteristics. Coloring the surface of metallic glasses (MGs) would be beneficial to their industrial and commercial applications. In this study, by nanosecond pulsed laser irradiation in ambient atmosphere, four kinds of surface color were successfully achieved for a typical Zr-based MG. All these four colorated MG surfaces mainly included two kinds of microstructures, i.e., the laser scanning tracks and micro/nanoscale particles. The chemical compositions of these four laser-irradiated surfaces were further characterized by X-ray diffraction (XRD), X-ray electron spectroscopy (XPS), and energy dispersive X-ray spectroscopy (EDS). The results indicated that kinds of oxides were formed on the irradiated surfaces. According to the XRD, EDS and XPS results, the cross-sectional characteristics as well as the comparative experiments in argon atmosphere, the surface color could be attributed to the interference of oxide films with different thicknesses. This study provides a simple and low-cost method for coloring MGs, which is expected to broaden their functional applications.
AbstractList Coloring the surface of metallic glasses (MGs) would be beneficial to their industrial and commercial applications. In this study, by nanosecond pulsed laser irradiation in ambient atmosphere, four kinds of surface color were successfully achieved for a typical Zr-based MG. All these four colorated MG surfaces mainly included two kinds of microstructures, i.e., the laser scanning tracks and micro/nanoscale particles. The chemical compositions of these four laser-irradiated surfaces were further characterized by X-ray diffraction (XRD), X-ray electron spectroscopy (XPS), and energy dispersive X-ray spectroscopy (EDS). The results indicated that kinds of oxides were formed on the irradiated surfaces. According to the XRD, EDS and XPS results, the cross-sectional characteristics as well as the comparative experiments in argon atmosphere, the surface color could be attributed to the interference of oxide films with different thicknesses. This study provides a simple and low-cost method for coloring MGs, which is expected to broaden their functional applications.
•Surface coloration of Zr-based metallic glass was achieved by nanosecond laser irradiation.•Four kinds of surface color were successfully produced.•The irradiated surfaces were covered by the laser scanning tracks and micro/nanoscale particles.•The coloring mechanism was discussed according to the surface characteristics. Coloring the surface of metallic glasses (MGs) would be beneficial to their industrial and commercial applications. In this study, by nanosecond pulsed laser irradiation in ambient atmosphere, four kinds of surface color were successfully achieved for a typical Zr-based MG. All these four colorated MG surfaces mainly included two kinds of microstructures, i.e., the laser scanning tracks and micro/nanoscale particles. The chemical compositions of these four laser-irradiated surfaces were further characterized by X-ray diffraction (XRD), X-ray electron spectroscopy (XPS), and energy dispersive X-ray spectroscopy (EDS). The results indicated that kinds of oxides were formed on the irradiated surfaces. According to the XRD, EDS and XPS results, the cross-sectional characteristics as well as the comparative experiments in argon atmosphere, the surface color could be attributed to the interference of oxide films with different thicknesses. This study provides a simple and low-cost method for coloring MGs, which is expected to broaden their functional applications.
ArticleNumber 130721
Author Qian, Yongfeng
Zhang, Hongyang
Huang, Hu
Zhang, Lin
Liu, Hanlin
Zhang, Di
Author_xml – sequence: 1
  givenname: Hongyang
  surname: Zhang
  fullname: Zhang, Hongyang
  organization: Key Laboratory of CNC Equipment Reliability, Ministry of Education, School of Mechanical and Aerospace Engineering, Electron Microscopy Center, Jilin University, Changchun, Jilin 130022, China
– sequence: 2
  givenname: Yongfeng
  surname: Qian
  fullname: Qian, Yongfeng
  organization: Key Laboratory of CNC Equipment Reliability, Ministry of Education, School of Mechanical and Aerospace Engineering, Electron Microscopy Center, Jilin University, Changchun, Jilin 130022, China
– sequence: 3
  givenname: Lin
  surname: Zhang
  fullname: Zhang, Lin
  organization: Department of Mechanical Engineering, Keio University, Yokohama 223-8522, Japan
– sequence: 4
  givenname: Di
  surname: Zhang
  fullname: Zhang, Di
  organization: Key Laboratory of CNC Equipment Reliability, Ministry of Education, School of Mechanical and Aerospace Engineering, Electron Microscopy Center, Jilin University, Changchun, Jilin 130022, China
– sequence: 5
  givenname: Hanlin
  surname: Liu
  fullname: Liu, Hanlin
  organization: Key Laboratory of CNC Equipment Reliability, Ministry of Education, School of Mechanical and Aerospace Engineering, Electron Microscopy Center, Jilin University, Changchun, Jilin 130022, China
– sequence: 6
  givenname: Hu
  surname: Huang
  fullname: Huang, Hu
  email: huanghu@jlu.edu.cn
  organization: Key Laboratory of CNC Equipment Reliability, Ministry of Education, School of Mechanical and Aerospace Engineering, Electron Microscopy Center, Jilin University, Changchun, Jilin 130022, China
BackLink https://cir.nii.ac.jp/crid/1870865118206957568$$DView record in CiNii
BookMark eNqFkU1rFTEUhoNU8Lb6D1wEdDu3-Zh8uRCkVCsUXLQFcRMymTOaYSa5JrmF_ntzHVcudJOzyPOck7znHJ3FFAGh15TsKaHyct6vri5Q94wwuqecKEafoR3Vine9UeYM7RqmOqHU1xfovJSZENIb0u_QfHfMk_OAfVpSdjWkiNOEv-VucAVGvEJ1yxI8_r64UvDwhKOLqYBPccSH43Ji2g1kHHJ2Y9g6hIjdOgSIFbu6pnL4ARleoueTa8KrP_UCPXy8vr-66W6_fPp89eG28z0ztRPCjdQzqiR4pw2XjLqp15IbPuiBgp4M48KZQYGftFd84mbsvXKSwDgJzi_Qm63vIaefRyjVzumYYxtpmdCUSCmNaFS_UT6nUjJM9pDD6vKTpcSeUrWz3VK1p1TtlmrT3v2l-VB_f7pmF5b_yW83OYbQvNPZdkS0FJRqRtqzlJC6Ye83DFpKjwGyLb5l6WEMGXy1Ywr_nvMLwoujRw
CitedBy_id crossref_primary_10_1016_j_renene_2023_119006
crossref_primary_10_1016_j_optlastec_2023_109812
crossref_primary_10_1016_j_jmapro_2021_10_016
crossref_primary_10_1016_j_matdes_2025_113757
crossref_primary_10_3390_cryst12050748
crossref_primary_10_1016_j_jallcom_2023_172659
crossref_primary_10_1016_j_optlastec_2023_109370
crossref_primary_10_1016_j_optlaseng_2024_108798
crossref_primary_10_1016_j_jnoncrysol_2023_122531
crossref_primary_10_1016_j_tca_2022_179163
crossref_primary_10_1016_j_mfglet_2022_11_008
Cites_doi 10.1016/j.surfcoat.2013.12.052
10.1016/j.matdes.2016.07.056
10.1016/j.jallcom.2017.08.265
10.1016/S0040-6090(02)00632-6
10.1016/j.cossms.2015.01.001
10.1016/j.matdes.2015.12.050
10.2116/analsci.19SAP03
10.1016/j.matlet.2021.129921
10.1016/j.jmatprotec.2016.01.023
10.1016/S0169-4332(02)00447-6
10.1016/j.matlet.2019.126650
10.1080/10408436.2017.1358149
10.1016/j.matchemphys.2021.124561
10.1080/14786435.2020.1791369
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright Elsevier BV Dec 1, 2021
Copyright_xml – notice: 2021 Elsevier B.V.
– notice: Copyright Elsevier BV Dec 1, 2021
DBID RYH
AAYXX
CITATION
7SR
8BQ
8FD
JG9
DOI 10.1016/j.matlet.2021.130721
DatabaseName CiNii Complete
CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1873-4979
ExternalDocumentID 10_1016_j_matlet_2021_130721
S0167577X2101418X
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABJNI
ABMAC
ABXRA
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSM
SSZ
T5K
XPP
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
ACLOT
ACVFH
ADCNI
AEIPS
AEUPX
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
EFKBS
RYH
~HD
29M
9DU
AAYXX
ABXDB
ACNNM
AFJKZ
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SEW
SMS
WUQ
7SR
8BQ
8FD
AFXIZ
AGCQF
AGRNS
BNPGV
JG9
SSH
ID FETCH-LOGICAL-c429t-55ad1c2176eca893621af486393b8b1e8f9235a9b7ecf8c73f39d4c7a60edf533
ISICitedReferencesCount 12
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000697350800006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-577X
IngestDate Fri Jul 25 02:24:49 EDT 2025
Sat Nov 29 07:22:49 EST 2025
Tue Nov 18 21:18:18 EST 2025
Mon Nov 10 09:09:41 EST 2025
Fri Feb 23 02:43:06 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Surface coloring
Metallic glass
Nanosecond pulsed laser
Surface microstructure
Language English
Japanese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c429t-55ad1c2176eca893621af486393b8b1e8f9235a9b7ecf8c73f39d4c7a60edf533
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5691-5627
PQID 2581066695
PQPubID 2045434
ParticipantIDs proquest_journals_2581066695
crossref_primary_10_1016_j_matlet_2021_130721
crossref_citationtrail_10_1016_j_matlet_2021_130721
nii_cinii_1870865118206957568
elsevier_sciencedirect_doi_10_1016_j_matlet_2021_130721
PublicationCentury 2000
PublicationDate 2021-12-01
2021-12-00
20211201
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Materials Letters
PublicationYear 2021
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Song (b0035) 2020; 100
del Pino (b0065) 2002; 415
Williams (b0040) 2016; 232
Adams (b0070) 2014; 248
Yang (b0045) 2017; 728
Khun (b0015) 2016; 92
Gao (b0025) 2021; 266
Nguyen (b0020) 2019; 256
Khan (b0005) 2018; 43
Chen (b0060) 2021; 297
Diyatmika (b0010) 2015; 19
Huang (b0030) 2016; 109
del Pino (b0050) 2002; 197
Yamamoto, Kurimoto (b0055) 2020; 36
Khan (10.1016/j.matlet.2021.130721_b0005) 2018; 43
Song (10.1016/j.matlet.2021.130721_b0035) 2020; 100
Khun (10.1016/j.matlet.2021.130721_b0015) 2016; 92
Chen (10.1016/j.matlet.2021.130721_b0060) 2021; 297
Gao (10.1016/j.matlet.2021.130721_b0025) 2021; 266
Huang (10.1016/j.matlet.2021.130721_b0030) 2016; 109
del Pino (10.1016/j.matlet.2021.130721_b0050) 2002; 197
Yamamoto (10.1016/j.matlet.2021.130721_b0055) 2020; 36
del Pino (10.1016/j.matlet.2021.130721_b0065) 2002; 415
Diyatmika (10.1016/j.matlet.2021.130721_b0010) 2015; 19
Yang (10.1016/j.matlet.2021.130721_b0045) 2017; 728
Adams (10.1016/j.matlet.2021.130721_b0070) 2014; 248
Nguyen (10.1016/j.matlet.2021.130721_b0020) 2019; 256
Williams (10.1016/j.matlet.2021.130721_b0040) 2016; 232
References_xml – volume: 256
  year: 2019
  ident: b0020
  publication-title: Mater. Lett.
– volume: 266
  year: 2021
  ident: b0025
  publication-title: Mater. Chem. Phys.
– volume: 109
  start-page: 153
  year: 2016
  end-page: 161
  ident: b0030
  publication-title: Mater. Des.
– volume: 297
  year: 2021
  ident: b0060
  publication-title: Mater. Lett.
– volume: 100
  start-page: 1
  year: 2020
  end-page: 13
  ident: b0035
  publication-title: Philos. Mag.
– volume: 19
  start-page: 95
  year: 2015
  end-page: 106
  ident: b0010
  publication-title: Curr. Opin. Solid State Mater. Sci.
– volume: 43
  start-page: 233
  year: 2018
  end-page: 268
  ident: b0005
  publication-title: Crit. Rev. Solid State Mater. Sci.
– volume: 92
  start-page: 667
  year: 2016
  end-page: 673
  ident: b0015
  publication-title: Mater. Des.
– volume: 728
  start-page: 289
  year: 2017
  end-page: 294
  ident: b0045
  publication-title: J. Alloy. Compd.
– volume: 232
  start-page: 34
  year: 2016
  end-page: 42
  ident: b0040
  publication-title: J. Mater. Process. Technol.
– volume: 248
  start-page: 38
  year: 2014
  end-page: 45
  ident: b0070
  publication-title: Surf. Coat. Technol.
– volume: 197
  start-page: 887
  year: 2002
  end-page: 890
  ident: b0050
  publication-title: Appl. Surf. Sci.
– volume: 36
  start-page: 41
  year: 2020
  end-page: 46
  ident: b0055
  publication-title: Anal. Sci.
– volume: 415
  start-page: 201
  year: 2002
  end-page: 205
  ident: b0065
  publication-title: Thin Solid Films
– volume: 248
  start-page: 38
  year: 2014
  ident: 10.1016/j.matlet.2021.130721_b0070
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2013.12.052
– volume: 109
  start-page: 153
  year: 2016
  ident: 10.1016/j.matlet.2021.130721_b0030
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2016.07.056
– volume: 728
  start-page: 289
  year: 2017
  ident: 10.1016/j.matlet.2021.130721_b0045
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2017.08.265
– volume: 415
  start-page: 201
  year: 2002
  ident: 10.1016/j.matlet.2021.130721_b0065
  publication-title: Thin Solid Films
  doi: 10.1016/S0040-6090(02)00632-6
– volume: 19
  start-page: 95
  year: 2015
  ident: 10.1016/j.matlet.2021.130721_b0010
  publication-title: Curr. Opin. Solid State Mater. Sci.
  doi: 10.1016/j.cossms.2015.01.001
– volume: 92
  start-page: 667
  year: 2016
  ident: 10.1016/j.matlet.2021.130721_b0015
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2015.12.050
– volume: 36
  start-page: 41
  year: 2020
  ident: 10.1016/j.matlet.2021.130721_b0055
  publication-title: Anal. Sci.
  doi: 10.2116/analsci.19SAP03
– volume: 297
  year: 2021
  ident: 10.1016/j.matlet.2021.130721_b0060
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2021.129921
– volume: 232
  start-page: 34
  year: 2016
  ident: 10.1016/j.matlet.2021.130721_b0040
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2016.01.023
– volume: 197
  start-page: 887
  year: 2002
  ident: 10.1016/j.matlet.2021.130721_b0050
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/S0169-4332(02)00447-6
– volume: 256
  year: 2019
  ident: 10.1016/j.matlet.2021.130721_b0020
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2019.126650
– volume: 43
  start-page: 233
  year: 2018
  ident: 10.1016/j.matlet.2021.130721_b0005
  publication-title: Crit. Rev. Solid State Mater. Sci.
  doi: 10.1080/10408436.2017.1358149
– volume: 266
  year: 2021
  ident: 10.1016/j.matlet.2021.130721_b0025
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2021.124561
– volume: 100
  start-page: 1
  year: 2020
  ident: 10.1016/j.matlet.2021.130721_b0035
  publication-title: Philos. Mag.
  doi: 10.1080/14786435.2020.1791369
SSID ssj0004904
ssib005901216
ssib017385842
ssib023895592
ssib006543807
Score 2.4323738
Snippet •Surface coloration of Zr-based metallic glass was achieved by nanosecond laser irradiation.•Four kinds of surface color were successfully produced.•The...
Coloring the surface of metallic glasses (MGs) would be beneficial to their industrial and commercial applications. In this study, by nanosecond pulsed laser...
SourceID proquest
crossref
nii
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 130721
SubjectTerms Amorphous materials
Argon
Chemical composition
Color
Coloring
Irradiation
Laser applications
Lasers
Materials science
Metallic glass
Metallic glasses
Nanosecond pulsed laser
Nanosecond pulses
Oxide coatings
Pulsed lasers
Spectrum analysis
Surface coloring
Surface microstructure
Thickness
X ray photoelectron spectroscopy
X-ray diffraction
X-ray spectroscopy
Title Surface coloration of Zr-based metallic glass by nanosecond pulsed laser irradiation in ambient atmosphere
URI https://dx.doi.org/10.1016/j.matlet.2021.130721
https://cir.nii.ac.jp/crid/1870865118206957568
https://www.proquest.com/docview/2581066695
Volume 304
WOSCitedRecordID wos000697350800006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-4979
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004904
  issn: 0167-577X
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa6DSR4QDBAFDbkB8RLlSmXJrYfJ-g0UClIdKjwEtlOjFJlaUnbafsR_GeO7dxGgcEDL1HlxInT8_X4O6fngtALqhQHoqscBuayoytgOYxz5kSun8jAMGpTXX9MJhM6m7EPvd73OhfmIidFQS8v2fK_ihrGQNg6dfYfxN3cFAbgMwgdjiB2OP6V4D9uSsWlDkLPa_ECIfxSOnrDSnTLaJ7rytaGN2v2WfBisdJ2cTJYbnJ9DZxJy0FWlrpwQR0Nyc9FZgLS1-eLlS5GcC2I6B1f25cb5CZBqKHqjUf6dFF8veLVRqldrZn1vX6GcZW2482EcVZsjb3Oum4K3_sp5KPNn_nU9WaClg4JmdnNyGpgSgLd9o51VXTgDjtK1vul6rdeiPkREH140SO9Bt3qmtgE7OuVtifv45Oz8TiejmbTl8tvjm5Cpv-srzqy7KA9n4QM9Pze8ZvR7G2baMvcpli8Xnedi2kCBrcf_Duus1Nk2dbebwjN9D66V1ki-Ngi6AHqpcU-utupT7mPbpv4YLl6iOYVqnCLKrxQuEYVrlGFDaqwuMItqrBFFTaowh1U4azAFapwi6pH6OxkNH116lRtOhwJZGbthCFPPAmmbZRKDvQ38j2uhhSobyCo8FKqwIgIORMklYpKEqiAJUNJeOSmiQJz4zHaLRZF-gThNIQb0VCJIBBDQRIRqlRIQQIeuIKLsI-C-guNZVXDXrdSyeM6WHEeWzHEWgyxFUMfOc2spa3hcsP1pJZVXPFQyy9jwNoNMw9BtLA0fQQkuzQyFrwbMTCLItpHB7XQ40plrGI_pJ72IrDw6Z9PP0N32l_WAdpdl5v0EN2SF-tsVT6vsPoDOwi9Pw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Surface+coloration+of+Zr-based+metallic+glass+by+nanosecond+pulsed+laser+irradiation+in+ambient+atmosphere&rft.jtitle=Materials+letters&rft.au=Zhang%2C+Hongyang&rft.au=Qian%2C+Yongfeng&rft.au=Zhang%2C+Lin&rft.au=Zhang%2C+Di&rft.date=2021-12-01&rft.pub=Elsevier+BV&rft.issn=0167-577X&rft.eissn=1873-4979&rft.volume=304&rft.spage=1&rft_id=info:doi/10.1016%2Fj.matlet.2021.130721&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-577X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-577X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-577X&client=summon